文档库 最新最全的文档下载
当前位置:文档库 › 逆变器用户使用手册

逆变器用户使用手册

逆变器用户使用手册
逆变器用户使用手册

GDLYEC-PV-3~270/500光伏并网逆变器

用户使用手册

版本2.0

国电龙源电气有限公司

目录

1关于本手册 (3)

1.1 前言 (4)

1.2 内容简介 (4)

1.3 面向读者 (4)

1.4 手册使用 (4)

2 安全须知 (5)

2.1 警示符号说明 (6)

2.2 安全提示 (7)

2.3 操作中的注意事项 (9)

3 产品简介 (10)

3.1 光伏并网系统 (11)

3.2 产品特点 (11)

3.3 电气原理 (12)

3.4 产品外观 (14)

4 产品功能与LCD操作指南 (17)

4.1 GDL YEC-PV-3~270/500主要功能 (18)

4.1.1 并网发电 (18)

4.1.2 MPPT功能 (18)

4.1.3低电压穿越功能 (18)

4.1.4 保护功能 (19)

4.1.5 远程控制功能 (20)

4.1.6自动开关机功能 (20)

4.2 GDL YEC-PV-3~270/500运行模式 (20)

4.3 GDL YEC-PV-3~270/500 LCD操作指南 (22)

4.3.1 LCD主界面 (22)

4.3.2 LCD控制指令发送 (24)

5 产品安装 (30)

5.1 注意事项 (31)

5.2 机械尺寸 (31)

5.3 放置与移动 (31)

5.4直流输入线缆连接 (32)

5.4.1 直流输入电气参数规格 (32)

5.4.2直流输入线缆要求 (33)

5.4.3线缆连接 (33)

5.5交流输出线缆连接 (36)

5.5.1交流输出电气规格 (36)

5.5.2 交流输出线缆要求 (36)

5.5.3 线缆连接 (36)

5.6 系统地线连接 (38)

5.6.1地线线缆要求 (38)

5.7 远程监控通信线连接 (38)

6 产品运行指南 (40)

6.1 启动 (41)

6.2 关机 (42)

7 电气特性 (43)

1关于本手册

关于本章

本章介绍了本手册的主要内容、面向的读者、手册使用须知以及手

册所使用的符号定义,帮助用户更好的阅读本手册内容。

1.1 前言

尊敬的用户,非常感谢您使用国电龙源电气有限公司研发生产的GDLYEC-PV-3~270/500光伏并网逆变器产品,我们由衷地希望本产品能够满足您的需求,同时期望您能对产品的性能与功能提出宝贵的意见与建议,我们将持续改进,以提供更优质的产品与解决方案。

1.2 内容简介

本手册适用于GDLYEC-PV-3~270/500光伏并网逆变器产品(以下简称为GDLYEC-PV-3~270/500),手册包括以下主要内容:

1.安全须知

介绍了对GDL YEC-PV-3~270/500进行操作和维护时,需要注意的安全事项。

2.产品简介

介绍了GDLYEC-PV-3~270/500使用的系统组成与自身结构。

3.产品功能

介绍了GDL YEC-PV-3~270/500的功能与运行模式与人机界面的使

用方法。

4.产品安装

介绍了GDLYEC-PV-3~270/500产品安装的安装方法与注意事项。

5.产品运行指南

介绍了GDLYEC-PV-3~270/500的操作与启动运行的典型流程。

6.电气特性

介绍了GDLYEC-PV-3~270/500详细的技术参数。

1.3 面向读者

本手册适用于对逆变器进行操作,维护及执行其他工作的人员。读者需具备一定的电气知识,熟悉电气原理图与电子元器件特性。

1.4 手册使用

在使用本产品前请仔细阅读本手册。请将妥善保存本手册,以方便相关人员使用。

2 安全须知

关于本章

本章介绍了GDLYEC-PV-3~270/500光伏并网逆变器产品的安全使用概况,以及在使用,维护时需要遵守的安全注意事项。

2.1 警示符号说明

阅读本操作指南,请注意如下警示符号说明

2.2 安全提示

本设备为高压大功率电力设备,使用前请详细阅读本用户使用手册,以便安全操作本设备

注意:静电

◆静电会对设备内部器件造成不可恢复的损坏

◆对设备进行操作时,请遵守静电防护规范

注意:维护和维修

◆维护和维修时需保证至少两名操作人员进行

操作

◆注意断开直流、交流侧的连接

◆确认所有带电器件均已完全放电

提示:

请详细阅读本操作手册,并妥善保存该手册

以便随时查阅

2.3 操作中的注意事项

打开设备

危险:触电

即便GDLYEC-PV-3~270/500所有连接都断开,

产品电容中仍存在致命高压,请对直流母线放电

直到安全电压后,方可进行维护检修操作

带电测量

危险:触电

设备中存在高压,意外碰触有导致致命电击

的危险,带电测量时注意做好防护工作。

3 产品简介

关于本章

本章主要介绍GDLYEC-PV-3~270/500光伏并网逆变器在光伏逆变系

统中的应用方案,以及GDLYEC-PV-3~270/500技术特点与系统构成。

3.1 光伏并网系统

光伏并网发电系统示意图如图3-1所示,它由光伏阵列、汇流箱、并网逆变

器以及配电设备等装置构成,光伏阵列将太阳光能转化为直流电能,并网逆变器将直流电能转变为与电网同频同相,且合乎电网要求的优质正弦交流电能并入电网,并网逆变装置是光伏并网发电系统中的关键设备。

图 3-1 光伏并网发电系统示意图

GDLYEC-PV-3~270/500太阳能光伏并网逆变器为光伏并网电站提供了高效、安全的解决方案,设备采用先进的并网逆变控制技术,先进的功率器件,完善的保护功能,是光伏并网发电系统的优选设备。

3.2 产品特点

?高性能DSP芯片全数字化控制

?最高转换效率98.7%

?可远程调度有功、无功功率

?宽泛的MPPT电压跟踪范围

?先进的孤岛效应检测方案

?低电压穿越功能

?完善的可编程保护功能

?多语液晶显示和多种通信接口

?彩色LCD液晶触摸屏显示

?优化的防尘、防沙设计

?辅助电加热(可选)

3.3 电气原理

如图3-2所示为GDLYEC-PV-3~270/500的主回路示意图,主回路使用三相桥式变换器结构,将光伏阵列的直流电能转换为高频三相斩波电压,并通过滤波器平滑得到正弦电流后并入电网。

图3-2 GDLYEC-PV-3~270/500 主回路示意图

3.4 产品外观

如图3-3 所示为GDLYEC-PV-3~270/500外观图片

3-3 GDLYEC-PV-3~270/500外观

如图3-4为设备机柜前面板介绍

?状态指示灯:指示当前设备运行状态

?LCD触摸控制屏:显示设备运行状态,可对设备运行参数进行设定

?操作/锁定旋钮:操作/锁定LCD控制屏

?急停开关:按下此旋钮可使设备紧急停止

?直流隔离开关:闭合时直流电压接入设备,断开时设备因无直流输入电压无法正常工作

?交流断路器:闭合后电网电压接入设备,断开时设备因无供电电压无法正常工作

?门锁把手:用于锁定和开启设备门

状态指示灯

LCD触摸控制屏

操作锁定开关

急停开关

功率柜1直

流隔离开关交流断路器

图3-4 GDL YEC-PV-3~270/500 机柜前面板

状态指示灯

在GDLYEC-PV-3~270/500的最上端有三个状态指示灯,指示设备运行状态。

LCD触摸控制屏

用户可通过触摸屏察看设备的运行信息,实现外部控制与通讯功能(LCD无通讯功能),具体功能如下:

?控制逆变器运行

?显示逆变器状态

?显示逆变器实时运行数据

?显示故障信息

?设置运行参数

?提供多种通讯接口(CAN,RS485,以太网)

钥匙锁定开关

用户可以通过钥匙开关,进行触摸屏功能的锁定。当钥匙开关旋转到STOP 位置,LCD触摸屏将会被锁住。避免运行过程中,不慎触碰触摸屏,导致错误指令的发出。当钥匙开关旋转到START位置,触摸屏被解锁,可以进行逆变器的控制与运行数据的查看。

急停按钮

按下此按钮后,逆变器立即停机,交流接触器断开。若要重新启动设备,需要顺时针旋转急停按钮,松开急停按钮,通过触摸屏重新发出运行指令。

交流侧断路器

交流断路器控制交流电路的通断,可以实现逆变器输出与电网的断开。如上图所示位置,逆变器交流断路器处于断开位置,顺时针旋转90度,可以使交流断路器闭合。此时可以启动逆变器运行。

直流隔离开关

直流隔离开关控制直流段电路的通断。图中所示位置逆变器隔离开关处于断开位置,顺时针旋转90度,可以使隔离开关闭合。

4 产品功能与LCD操作指南

关于本章

本章主要介绍GDLYEC-PV-3~270/500的主要功能与运行模式,以及如何通过LCD进行设置

4.1 GDLYEC-PV-3~270/500主要功能

4.1.1 并网发电

GDLYEC-PV-3~270/500并网逆变器上电自检成功后,设定好系统参数及控制参数,设备会自动检查光伏阵列端口的电压,交流侧电网条件,如果都在逆变器运行允许范围之内,通过LCD发出“运行”指令,逆变器启动运行。

GDLYEC-PV-3~270/500并网逆变器具有优良的并网功能,在启动阶段通过电压控制,实现逆变器输出电压与电网电压的同步,以减小接触器闭合时产生的冲击电流,在关机时,通过软关机实现对电网的零冲击,因此是一款电网友好型的并网逆变器。

4.1.2 MPPT功能

GDLYEC-PV-3~270/500并网逆变器具有快速、高效、宽范围(420V~820V)的MPPT功能。

GDLYEC-PV-3~270/500并网逆变器所用MPPT技术的技术特点:

1)采用变步长的扰动观察法,兼顾了追踪的快速性与追踪之后的稳定性。

2)采用多个电压点功率检测与单个电压点功率检测结合的方法,减小了扰动观察法误动作的可能。

3)充分考虑不同天气状况(如晴天,阴天,多云等)光伏阵列的PV曲线的不同,针对不同状况有针对性进行追踪。

4)充分考虑在光伏阵列峰值的左右两侧曲线坡度的不同,采用不同的追踪策略进行处理。

4.1.3低电压穿越功能

GDLYEC-PV-3~270/500并网逆变器具备低电压穿越功能。在光伏并网点电压跌落的时候,设备能够保持并网,支持电网恢复正常。

电网正常时逆变器工作在MPPT模式。当发生电压跌落时,逆变器输出的电流迅速增大,这时逆变器工作模式由MPPT模式转化为电流控制模式,逆变器输

出最大的电流I max 并保持并网运行,在逆变器交流侧电压跌至20%标称电压时,逆变器能够保证不间断并网运行1秒; 随着电网电压的回升,逆变器重新恢复到MPPT 模式,当逆变器交流侧电压在跌落后3秒内能够恢复到标称电压90%时,逆变器能够保证不间断并网运行。并网逆变器实现低压穿越过程如图4-1所示:

nU 0.20.40.60.8

1

-0

1T 2T I

N

I I 1213T s T s

==

图4-1 低电压穿越示意图

4.1.4 保护功能

GDLYEC-PV-3~270/500并网逆变器具有完备的保护功能,主要有: ● 交流过/欠压保护 ● 交流过/欠频保护 ● 反相序保护 ● 防孤岛保护 ● 过载限功率保护

四象限西门子_ABB变频器说明书

目录 第一章产品基本信息介绍 (03) 第二章设计原则及依据 (05) 第三章电控系统技术说明 (07) 第四章变频器参数设定 (16) 第五章操作流程 (18) 第六章故障和报警 (19) 第七章元件清单 (22) 第八章原理接线图 (23)

第一章产品基本信息介绍1.1概述 BPJ7系列矿用隔爆兼本质安全型交流变频器是一种集真空磁力起动器、数字式变频调速装置及相关的散热技术为一体的高新技术产品。该产品适用于交流50Hz、额定电压660V的异步电动机重负荷软起动、软停车和运行过程控制,具有起动电流小、起动速度平稳、起动性能可靠、对电网冲击小等优点,其起动曲线有“S”型和线性二种。该曲线可根据现场实际工况进行调整,从而减少起动时对设备的动张力。此外,变频器具有在线控制功能,可根据电机的负荷变化,调整电机工作电源电压和频率,从而达到所需转矩。具有明显的节能效应,可实现经济运行。随着煤矿自动化程度的不断提高,变频器正以其节能、高效、安全、可靠的特点,逐渐成为今后煤矿电机设备调速控制的发展方向,并得以广泛的应用。 本产品主要用于煤矿井下或露天矿山、港口码头、选煤厂、发电厂等大负荷恶劣环境中运输设备的软起动、软停车和运行过程控制,即用于煤矿井下绞车提升机、刮板运输机、给煤机、风机、局扇、水泵及油泵等设备的调速控制。 1.2产品型号 主要规格参数: a)输入电压: AC660V,50/60Hz,75%Ue~110% Ue,电网不平衡度:最大为电网线电压的±3%。 b)输出电压:电压随频率呈线性变化。 c)额定功率:15~315kW,功率因素:0.97(额定负载下);频率分辨率:0.01Hz。 d)额定电流:660VAC,18~377A;额定过载电流:150%额定电流1min。 e)起动频率:0.5~60Hz 可调设定,频率分辨率:0.01Hz。 f)工作制:连续工作制或短期工作制。 g)本安电源:输入电压127V,本安输出最高开路电压:24.2VDC;本安输出最大电流:0.5A; h)冷却方式:热管风冷却。 1.3型式 防爆型式:隔爆兼本质安全型Exd[ib]I。 控制型式:恒转矩型、变转矩型、四象限矢量控制型。

电动车用辅助逆变器的设计方案与实现

电动车用辅助逆变器的设计与实现 摘要: 电动汽车的运行与普通汽车有许多不同, 需要设计安装大量专用辅助设备, 且要求辅助设备结构简单、运行稳定、运行成本低。文章描述了电动车用辅助逆变器的特殊应用环境和工作要求, 提出一种设计思路, 并分别从硬件结构和软件流程两方面介绍系统的构成。关键词: 逆变器SA 4828 芯片脉宽调制CAN 总线 1 引言 目前各种类型的电动汽车发展日新月异, 车辆主动力单元采用的电机和驱动方式各有特色, 但在车用辅助电机的选择上却观点一致, 即充分利用电动车直流母线电压高(通常为300~600 V ) 的特点, 利用辅助逆变器将直流变成三相交流电驱动交流异步电机, 为车上的刹车气泵、液压助力泵、空调压缩机等设备提供动力。在大型电动车上, 驱动这些设备的电机功率在3~10 kW 之间, 采用交流电机可以比同等直流电机成本更低、体积更小、重量更轻, 而且运行噪音小、维护量大大降低。电动车的发展在国外已经进入实际应用阶段, 而国内仍处于开发样车阶段, 多数研发单位只是将通用变频器进行简单改装后作为辅助逆变电源投入使用。这样不仅成本较高, 不能完全适应电动车的实际运行需要, 也不具备CAN 总线通讯能力, 无法参与整车系统的数据通讯。新公布的国家“863 计划”关于电动车发展规划中已经明确规定: 新申报的电动车开发项目必须采用基于CAN 总线的整车通讯控制系统。因此辅助逆变器在提供三相交流电源功能的同时, 系统必须具有CAN 总线通讯接口, 以便参与整车系统的控制。电动车用辅助逆变器的设计必须充分考虑产品的运行环境和负载特点, 简化系统硬件结构, 确保设备运行稳定。从直流输入来看, 电动车动力电池电压有一定的波动范围, 在电量充足时每个电池单体的电压可以达到 1. 45 V 或更高, 随着使用过程中能量的不断输出, 电压会逐渐降低, 达到 1. 2 V 甚至更低。由280 节单体串联成的电池组, 其母线电压通常会在400~330 V 之间浮动, 变化率高达21. 2%。因此逆变器必须能够适应较宽范围内的电压浮动。同时, 作为电源设备, 这种辅助逆变器不仅可以驱动各种三相交流电机, 还可以作为车上的工频电源, 为更多的车载设备服务。因此, 设计开发一种专用的电动车用辅助逆变器, 不仅可适应电动车直流母线电压浮动大的特点, 还可以参与整车控制, 提高系统运行效率、节约能源。 2 系统整体构成设计 完成辅助逆变器的设计必须从其输入?输出要求出发, 做到结构清晰、功能明确。在系统结构上可以将电动车用辅助逆变器按功能分为4 个部分, 如图 1 所示。

多电平逆变器主要控制策略综述

多电平逆变器主要控制策略综述 ( 本站提供应用行业:阅读次数:1082) 【字体:大中小】 1 引言 多电平逆变器具有谐波小、共模电压小、电压变化率小、电磁干扰小、开关频率低、系统效率高、适合中高压大容量变频器应用等特点,近十年得到广泛的研究[1]。研究主要集中在拓扑结构、控制策略两方面。图1是多电平逆变器的主要研究内容。 图1 多电平逆变器主要研究内容 由于多电平逆变器拓扑结构的多样性,且涉及到直流电压的均衡、开关频率的合理分配、冗余状态的利用等特殊要求,使得对多电平逆变器的控制具有一定的挑战性。 2 载波调制方法(Carrier-based Modulation) 载波调制是最常用的多电平控制方法之一,其特点是通过载波和调制波(或参考波)间的比较而获得器件的开关状态。载波调制按其采样方法可分为:自然采样和规则采样,自然采样一般用于模拟电路实现,规则采样用于数字实现。规则采样又分对称和不对称采样。在载波调制中,对于m电平逆变器,常定义幅度调制比ma和频率调制比mf分别为: 其中Ac为载波峰峰值,fc为载波频率,Am为调制波峰值,fm为调制波频率。多电平载波调制由于载

波个数的增加,而变得较复杂,但也给控制提供了更多的自由度。 2.1 子谐波脉宽调制SHPWM(SubHarmonic PWM) 由Carrara[2]提出的SHPWM的基本原理是:对m电平逆变器,将m-1个具有相同频率fc和峰峰值Ac的三角载波集连续分布。频率为fm、幅值为Am的正弦调制波置于载波集的中间。将调制波与各载波信号进行比较,得到逆变器的开关状态。在载波间的相位关系方面,Carrara考虑了三种典型配置方案: (1) PD—所有载波具有相同相位; (2) POD—正、负载波间相位相反; (3) APOD—相邻载波间相位相反。 图2是SHPWM采用PD配置的波形图。SHPWM的最大线性幅度调制比ma为1。对SHPWM的研究有如下一些重要结论[3]: ·对于三相系统,频率比mf应为取3的倍数; ·单相逆变器,APOD配置电压谐波最小; ·三相逆变器,PD配置线电压谐波最小。 图2 5电平SHPWM-PD波形(ma=0.9,mf=21) 2.2 开关频率最优脉宽调制SFOPWM(Switching Frequency Optimal PWM) 由Steinke[4]提出的SFOPWM与SHPWM基本原理相同,只是前者在三相正弦调制波中叠加了一定的零序电压(三次谐波电压)。设三相均衡参考电压分别为va,vb,vc,叠加零序电压vn,后三相参考电压分别为varef,vbrdf,vcref,具体叠加方法为:

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

车载逆变器设计毕业设计

摘要 车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz 交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。 本文重点对车载逆变器进行研究。将逆变器分为逆变电路,控制系统和滤波电路三个主要部分。 逆变桥采用三相全桥逆变电路,为了简化整个逆变主电路的设计,逆变电路采用了将IGBT单元;驱动电路;保护电路等结合在一起的IPM。控制系统由控制调节器,矫正环节和时间比例控制及脉冲形成环节构成。 本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。 关键词:车载逆变器脉冲调宽保护电路正弦波SG3525A

Abstract 12V DC car inverter can the car into 220V/50Hz AC electronic devices, commonly used in car electronic equipment. Inverter application in daily life is very broad, such as laptop computers, video recorders, and some electric tools. The design of the inverter can be divided into three main parts: the power stage circuit,control system and filtering circuit. Control system consists of PWM generating circuit,compensative circuit,and control regulator. This design has a flexible, applicable to a wide range of features, and can basically meet the practice needs. And the design of high frequency inverter with noise reduction, response speed and the circuit to adjust the flexible advantages. Designed to meet the development trend of miniaturization of the power inverter, lightweight, high-frequency and high reliability, low noise. Keywords:car inverter pulse, width modulated, protection, circuit sine wave, SG3525A

并网逆变器工作原理

并网逆变器工作原理 逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。 中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。 控制电路工作 逆变器的主电路均需要有控制电路来实现,一般有方波和正弦波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。 1.方波输出的逆变器 方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。 2.正弦波输出的逆变器 正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、下桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。 主电路功率器件的选择 逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOS-FET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。

西门子开关安装使用说明书2版

KYN28A-12(3AH5、3AH3)户内高压真空断路器 安装使用说明书 广东珠江开关有限公司 二OO六年六月

目录 1概述 1.1总则 (2) 1.2使用条件 (2) 1.3技术参数 (3) 1.4机械参数 (3) 1.53AH5外形尺寸 (4) 1.63AH3外形尺寸 (5) 2结构与功能 2.1断路器总体结构 (6) 2.2断路器内部接线原理图………………………………………….7~8 3调试和操作 3.1准备工作 (9) 3.2机构储能操作 (9) 3.3合闸、分闸操作 (9) 3.4与柜体配合过程操作 (9) 4储运 4.1运输 (9) 4.2仓储 (10) 5维修 (10) 6随机文件 (10) 7订货须知 (10) .

1概述 1.1总则 3AH5和3AH3户内高压真空断路器是三相交流50Hz,额定电压12kV 户内高压开关设备。断路器符合IEC56、IEC694、BS531以及DINVDE0670的所有条款,而且还满足中国标准GB1984《交流高压断路器》和DL403(绝缘部分),并具有可靠的联锁功能。 重要说明: ——主要零配件由西门子公司提供; ——本公司是西门子公司授权制造商; ——本公司与西门子公司进行技术合作,生产3AH开关; ——产品受到西门子公司的质量监督和控制。 1.2使用条件 1.2.1正常条件 环境温度环境湿度 最高温度+40℃日平均相对湿度95%≤ 最底温度-15℃月平均相对湿度90%≤ 日平均值不大于+35℃ 断路器装置地点的海拔高度最高可达1000m。 1.2.2特殊使用条件 顾客若偏离正常使用条件可与制造厂家协商制造。

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 令狐采学

车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路 VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携

式电器使用。 图1中IC1、IC2采用了TL494CN(或 KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。 TL494芯片的内部电路

西门子440变频器参数的说明

西门子变频器440调试基本参数(河北敬业二期竖炉)变频器参数调试具体如下: 1. P0003=3 用户访问级专家级 2. P0010=0 调试参数过滤器准备运行 3. P0100=0 选择工作地区是欧美功率 KW 频率 50HZ 4. P0205=0 变频器的应用对象恒转距 5. P0300=1 选择电动机的类型异步电动机 6. P0304 电动机的额定电压 7. P0305 电动机的额定电流 8. P0307 电动机的额定功率 9.P0308 电动机的额定功率因数 10.P0309 电动机的额定效率 11.P0310 电动机的额定频率 12.P0311 电动机的额定速度 13.P0314 电动机的极对数 14.P0701=1 数字输入1的功能 ON/OFF(接通正转/停车命令) 15.P0702=9 数字输入2的功能故障确认 16.P0719=0 命令和频率设定值的选择 17.P0725=1 PNP/NPN数字输入 PNP方式==高电平有效 18.P0731=52.2 数字输出1的功能变频器正在运行 19.P0732 = 52.7 数字输出2的功能变频器报警 20.P0756 =0 单极性电压输入 21.P0771=24 DAC功能实际输出频率 22.P0776=0 DAC数摸电流输出 23.P1000=2 频率设定值的选择模拟输入 24.P1070=1050 主设定值 MOP设定值 25.P1071=1050 主设定值标定 MOP设定值 26.P1120=20S 斜坡上升时间 27.P1121=20S 斜坡下降时间 28.P1210=0 自动再起动禁止自动再起动 29.P1300=20 无传感器的矢量控制 唐山理工自控公司 2006-1-4 西门子440变频器参数的说明:由于西门子440变频器不是电梯专用的变频器,调整比较麻烦,也不是太好理解。结合我们以前调试的经验,把参数总结给大家,以供参考,现就有关参数给大家做说明如下: 2),在电机自学习时,要把它改为1,可以通过面板来操作;完成后可改为2 实现正常运行。 P701 、P702、P703 、P704、P705、P706 是数字输入1、2、3、4、5、6的功能,对应变频器的端子号5、6、7、8、16、17 。我们定义为多段速度选择位1、2、3、和使能BICO参数化,即分别设定为17、17、17、99、99、99

多电平逆变器

多电平逆变器 摘要多电平逆变器及其相关技术的研究与应用,是现代电力电子技术的最新发展之一,它主要面向高压大容量的应用场合近年来,多电平逆变器的研究受到广泛重视,并得到了一定的应用。多电平逆变器输出端可以有更多级的输出电压波形,谐波含量小,波形更接近正弦波,逆变器性能更好,更适用于高压大容量的电力电子变换。总结和比较了多电平逆变器各种基本拓扑结构的特点,它们主要包括了:二极管钳位式、飞跨电容钳位式,电容电压自平衡式和联型式拓扑,并且分析了它们的优缺点。本文介绍了几种多电平逆变器调制方式。 关键字多电平逆变器拓扑结构调制策略 1引言 1.1 多电平逆变器的产生和发展背景 电力电子技术自20世纪50年代诞生以来,经过半个多世纪的飞速发展,至今已被广泛应用于电力系统、电机调速系统及各种电源系统等需要电能变换的领域。在低压小功率的用电领域,电力电子技术的各个方面己渐趋成熟,将来的研究目标则是高功率密度、高效率和高性能;而在高压大功率的工业和输配电领域,各个方面的技术正成为当今电力电子技术的研究重点。。大功率电力电子装置如电力系统中的高压直流输电(HVDC),以静止同步补偿器(STATCOM)和有源电力滤波器(APF)为代表的柔性交流输电技术(FACTS),以及以高压变频为代表的大电机驱动和大功率电源等需要能够处理越来越高的电压等级和容量等级,同时,为了满足输出电压谐波含量的要求,这些大功率电力电子装置还要能够工作在高开关频率下,并且尽量减少电磁干扰(EMI)问题。电力电子器件是电力电子装置的核心。在过去几十年里,以GTO、BJT、MOSFET为代表的自关断器件得到长足的发展,尤其是以IGBT、IGCI,为代表的双极性复合器件的惊人进步,使得电力电子器件向大容量、高频、易驱动、低损耗、智能模块化的方向发展。即便如此,在某些应用场合,传统的两电平电压源变换器拓扑,仍然不能满足人们对高压、大功率的要求。并且,以现有的电力电子器件的工艺水平,其功率处理能力和开关频率之间是矛盾的,往往功率越大,开关频率越低。所以为了实现高频化和低EMI的大功率变换,在功率器件水平没有本质突破的情况下,有效的手段是从电路拓扑和控制方法上找到问题的方案。现有的高压大功率变换电路归结起来可以分为5类。1、普通三相逆变器2、降压一普通变频一升压电路3、变压器祸合的多脉冲逆变器4、交一交变频电路5、多电平变换器。相对于其他的高压大功率变换电路,多电平变换器技术由于优点多,受到了越来越广泛的关注、研究和应用。

车载电子逆变器的设计

目录 摘要: (1) 第1章绪论 (3) 1.1逆变器的定义及其应用领域 (3) 1.2逆变技术的发展过程及现状 (4) 1.3 逆变器用功率开关器件 (5) 1.4 逆变器主电路的基本形式及分类 (7) 1.5 本课题研究的目的和任务 (8) 第2章变电源的主电路拓扑结构分析 (9) 2.1 典型主电路拓扑 (9) 2.1.1 推挽逆变主电路 (9) 2.1.2 半桥逆变主电路 (9) 2.1.3 全桥逆变主电路 (10) 2.2 设计指标及要求 (11) 2.3 主电路的研究与设计 (12) 2.3.1 系统的基本原理 (12) 2.3.2 前级升压电路 (12) 2.3.3 输出逆变电路 (15) 第3章控制电路的研究 (17) 3.1 脉宽调制(PWM)技术 (17) 3.2 推挽电路的驱动电路 (17) 3.2.1 KA7500B内部结构 (18) 3.2.2 驱动电路及其他外围电路的研究 (18) 3.3 末级控制输出电路 (21) 3.3.1 驱动信号 (22) 3.3.2 输出欠压、过压和过流保护 (23) 3.3.3 MCS-51外围电路图 (23) 第4章高频变压器的设计 (25) 4.1 磁性原件对电源设计的重要意义 (25) 4.2 应用于开关电源的基本磁学理论 (26) 4.3 推挽变换器中变压器的设计 (29) 4.3.1 变压器工作原理 (29) 4.3.2双极性变压器的计算 (30) 附录 (33) 附录1主程序流程图 (33) 附录2 DC/DC变换电路 (34) 附录3 DC/AC变换电路 (35) 参考文献 (36) 致谢 (37)

西门子g120中文说明书

西门子股份公司: 德国西门子股份公司创立于1847年,是全球电子电气工程领域的领先企业。西门子自1872年进入中国,140余年来以创新的技术、卓越的解决方案和产品坚持不懈地对中国的发展提供全面支持,并以出众的品质和令人信赖的可靠性、领先的技术成就、不懈的创新追求,确立了在中国市场的领先地位。2015年(2014年10月1日至2015年9月30日),西门子在中国的总营业收入达到69.4亿欧元,拥有超过32000名员工。西门子已经发展成为中国社会和经济不可分割的一部分,并竭诚与中国携手合作,共同致力于实现可持续发展。 西门子变频器: 西门子变频器是由德国西门子公司研发、生产、销售的知名变频器品牌,主要用于控制和调节三相交流异步电机的速度。并以其稳定的性能、丰富的组合功能、高性能的矢量控制技术、低速高转矩输出、良好的动态特性、超强的过载能力、创新的BiCo(内部功能互联)功能以及无可比拟的灵活性,在变频器市场占据着重要的地位。 简介: 西门子变频器以其强大的品牌效应,打破了以前日本品牌变频器在中国市场上的垄断地位,据有关专业市场调研机构的统计,西门子的高低压变频器在中国市场上已位居第一。 西门子变频器在中国市场的使用最早是在钢铁行业,然而在当时电机调速还是以直流调速为主,变频器的应用还是一个新兴的市场,但随着电子元器件的不断发展以及控制理论的不断成熟,变频调速已

逐步取代了直流调速,成为驱动产品的主流,西门子变频器因其强大的品牌效应在这巨大的中国市场中取得了超规模的发展,西门子在中国变频器市场的成功发展应该说是西门子品牌与技术的完美结合。在中国市场上我们能碰到的早期的西门子变频器主要有电流源的SIMOVERT A,以及电压源的SIMOVERT P,这些变频器也主要由于设备的引进而一起进入了中国的市场,目前仍有少量的使用,而其后在中国市场大量销售的主要有MICRO MASTER和MIDI MASTER,以及西门子变频器最为成功的一个系列SIMOVERT MASTERDRIVE,也就是我们常说的6SE70系列。它不仅提供了通用场合使用的AC 变频器,也提供了在造纸,化纤等特殊行业要求使用的多电机传动的直流母线方案。当然西门子也推出了在我个人看来技术上比较失败然而在市场上却相当成功的ECO变频器,在技术上的失败主要是由于它有太高的故障率,市场上的成功主要是因为它超越了富士变频器成为中国市场的第一品牌。现在西门子在中国市场上的主要机型就是MM420,MM440.6SE70系列。 参数设置: 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

车载逆变器原理图详解

2008年05月05日09:15 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。 热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷ (R1+Rt+R2)V,常温下的计算值为U≈6.2V。结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小正好满足要求,并略留有一定的余量。 当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比较器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM 比较器、“或”门以及“或非”门的输出均发生翻转,输出级三极管

多电平逆变研究

摘要:多电凭高压变频器自诞生以来就在节能和环保方面体现出极高的价值,也引起了众多的学者进行研究。本文对多电平高压变频器的两种主要拓扑结构及其原理进行分析。 关键词:三电平;单元串联多电平;应用 About multi-level high-voltage converter topology of the two TANG Xin g Long LIU Hui Kang XIONG Wen SUN Kai(Wuhan University of Science a nd Technology College of Information Science and Engineering,Wuhan Hu bei 430081)Abstract: With high voltage inverter, since its birth in the ene rgy-saving and environmental protection reflects the high value, it also ca used a lot of academics for research. In this paper, the multi-level high-vo ltage converter topology of the two main structure and principles for analy sis.Key words: Level 3; Series multi-level unit; Application 1 前言 对于高压电动机,我们如果采用传统的三相六拍的结构变频器对电动机进行控制,由于电压过高,加上电力电子器件开关速度的提高,这样开关器件输出的值就会很大。由于电动机的绕组的中性点是不接地的,电动机每绕组对地存在分布电容,输出电压的变化相当于电容两端电压的变化,即对电容的频繁充放电,充放电对电动机定子绕组的绝缘将造成冲击,而且越大,冲击也越大。电压输出端的电压谐波很容易引起电动机发热而造成电机的损坏,再加上由于电力电子器件本身制造的原因很难达到我所需要的6KV或10KV的高压所以就必须对变频器的拓扑结构进行研究。 多电平变换器最早引起研究者的兴趣是在1980年的IEEEIAS年会上,日本长冈科技大学的A.Naba。等人提出了中性点钳位型(Neutral Point Clamped-NPC)的三电平电路结构[1]。基本思想是通过一定的主电路拓扑结构获得多级阶梯波形输出来等效正弦波。由于多电平变换器对功率逆变器件和控制电路要求都很高,最初并未受到太多关注。直到90年代,随着GTO, IGBT的成熟应用和IGCT, IEGT等新型全控型器件的先后出现,以及以DSP为核心的高性能数字控制技术的普及,多电平变换器的研究和应用才有了迅猛发展。目前已提出多种多电平电路结构,根据主开关器件的电压钳位方式,可将其分为二极管钳位型(Diode Clamped,又称中性点钳位型NPC)、电容钳位型(Capacitor Clamped)和单元级联型(Cascaded Multicell)三类[2]。 2 三电平变频器及其派生的方案 2.1 三电平变频器的工作原理

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

DC-AC车载逆变器设计与实现

编号 201103222011024120 南京航空航天大学金城学院 毕业设计 题目DC-AC车载逆变器设计与实现 学生姓名施坜圆 学号2011024120 系部自动化系 专业自动化 班级20110322 指导教师朱海霞副教授 二〇一五年五月

南京航空航天大学金城学院 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:DC-AC车载逆变器设计与实现)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:施坜圆2015年5月16日 (学号):2011024120

毕业设计(论文)报告纸DC-AC车载逆变器设计与实现 摘要 车载逆变器是将汽车中的蓄电池转换成日常使用的220V/50Hz的交流电,供人们随身携带的电子产品如笔记本、ipad等使用。目前市场上大多的车载逆变器都为方波或者是修正弦波,少数为正弦波逆变器,但其价格非常昂贵。正弦波逆变弥补了方波逆变的不足,适合各类的负载,并且对电子产品本身的影响也相对较小。 本设计基于开关电源技术和电力电子技术,采用二次逆变的方式设计。前级采用SG3525芯片,将SG3525产生的PWM信号控制场效应管的开关,再经EE55高频变压器将12V的低压直流电升压至360V的高压交流电,通过整流滤波得到高压直流电。后级采用EG8010和IR2110芯片,通过EG8010输出的SPWM信号控制开关管的导通,通过取样电阻电压反馈,经过LC工频滤波及相应的输入输出电压保护,最后得到稳定标准的正弦波。 关键字:车载逆变器,正弦波逆变器,SPWM直流电源式逆变器,EG8010

相关文档