文档库 最新最全的文档下载
当前位置:文档库 › 高等数学 各章知识点总结——第9章

高等数学 各章知识点总结——第9章

高等数学 各章知识点总结——第9章
高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间

2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三

维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。

n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离:

||PQ

邻域: 设0P 是n R 的一个点, 是某一正数,

与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP

空心邻域: 0P 的

邻域去掉中心点0P 就成为0P 的

空心邻域,记为

0(,)U P o

=0{0||}P PP 。

内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域

),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有

属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界.

聚点:设E 为n 维空间中的点集,n

P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。

开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n

E R , 如果E 的补集

n E R 是开集,则称E 为闭集。

区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域.

有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域.

有界闭区域的直径:设D 是n

R 中的有界闭区域,则称1212,()max{||}P P D

d D PP 为D 的直径。

二、多元函数

n 元函数就是n R 的一个子集D 到R 的一个函数,即对任意的P D ,都存在唯一的

y R ,使得()y f P 。习惯上,我们用()y f x 表示一元函数, 用),(y x f z 表示

二元函数,用(,,)w f x y z 表示三元函数. 一般用(),R n y f P P 或12(,,,)n y f x x x L 表示n 元函数. 三、多元函数的极限

设多元函数)(P f z 在D 有定义,0P 是D 的一个聚点,A 为常数。如果对任意给定的0 ,都存在0 ,当0

(,)P D P U

时,有

()f P A

则称A 为P 趋于0P 时函数)(P f z 在D 上的极限,记为

P P lim (P)f A 或

0(P),(P P )f A 。

四、多元函数的连续性

设多元函数)(P f z 在D 有定义,0P 是D 的一个聚点。如果0

0P P lim

(P)(P )f f ,

则称)(P f z 在0P 点连续。如果)(P f z 在区域D 上各点都连续,就称)(P f z 在D 上连续.如果函数)(P f z 在 点0P 处不连续,则称函数)(P f z 在点0P 处间断, 也称0P 是函数),(y x f z 的间断点。 五、偏导数

设二元函数),(y x f z ,),(000y x P 为平面上一点。如果0(,)z f x y 在0x 的某一邻

域内有定义且在0x 存在, 则称),(y x f z 在点),(000y x P 处对x 可偏导,称此极限值为函数),(y x f z 在点

),(000y x P 处对x 的偏导数,记为

000000(,)

(,)

(,)

,

,x

x y x y x y z f z x

x

或00(,)x f x y

六、高阶偏导数

2222xx z f f f x x x x ,22xy z f f f x y x y y x

22yx

z f f f y x y x x y , 2222yy z f f f y y y y

如果函数),(y x f z 的两个二阶混合偏导数,xy

yx f f 都在平面区域D 内连续,那么这两个二阶混合偏导数在D 内相等。 七、全微分

设函数),(y x f z 在点000(,)P x y 的某一邻域内有定义,,A B 为常数。如果

()z A x B y o ,其中 则称函数 ),(y x f z 在点000(,)P x y 可微分(简称可微),称A x B y 为函数),(y x f z 在点000(,)P x y 的全微分,

记作dz ,即dz A x B y

可微的必要条件:函数),(y x f z 在点000(,)P x y 可微, 则(1) ),(y x f 在点

000(,)P x y 处连续。(2) ),(y x f 在点000(,)P x y 处偏导数存在, 且

z d 00(,)d x f x y x 00(,)d y f x y y 。

可微的充分条件:函数),(y x f z 在点000(,)P x y 的某个邻域内可偏导,且偏导数

(,),(,)x y f x y f x y 在点000(,)P x y 连续,则),(y x f z 在点000(,)P x y 可微。

八、多元复合函数的求导法则

链式法则:),(v u f z ,),(),,(y x v v y x u u

一阶全微分的形式不变性:),(v u f z ,),(),,(y x v v y x u u

,z z z z dz dx dy dz du dv x y u v

九、隐函数及其求导法

若),(y x F 满足:(1) ),(y x F 在),(00y x 某邻域内可偏导, 且(,),x F x y (,)y F x y 连续,(2) 00(,)0F x y ,(3) 00(,)0y F x y 。则(1) 存在0x 的某个邻域,在此邻域内存在唯一确定的一元函数)(x f y 满足称函数)(x f y 称为由方程0),( y x F 所确定的隐函数,

且)(x f y 具有连续导数,

(,)d ()d (,)

x y F x y y

f x x F x y . 若12(,,,,)n F x x x y L 满足:(1) ),,,,(21y x x x F n 在点),,,,(0

00201y x x x n 的某个(n +1)

维邻域内可偏导, 且1

121212(,,,,),,(,,,,),(,,,,)n x n x n y n F x x x y F x x x y F x x x y L L L L 连续。 (2) 000012(,,,,)0n F x x x y L ,(3) 000012(,,,,)0y n F x x x y L

则(1) 存在点),,,(0

0201n x x x 的某个n 维邻域, 在此邻域内存在唯一的n 元函数,且函数

),,,(21n x x x f y 在该邻域内具有连续偏导数,,i i x x y F y F

1,2,,i n L 。

十、空间曲线的切线与法平面

空间曲线 的参数方程为

)()()

(t z z t y y t x x ,))(),(),((0000t z t y t x M 为曲线上一点。如果

000(),(),()x t y t z t 不全为0,则在点0M

在点0M 处的法平面方程为:000000()'()()'()()'()0x x x t y y y t z z z t 。 十一、空间曲面的切平面与法线

曲面 :0),,( z y x F 在点处0M

在点处0M

十二、无条件极值

极值存在的必要条件:函数),(y x f z 在点),(000y x P 处取得极值, 且在该点处函数的偏导数都存在, 则),(y x f z 在),(000y x P 点处的一阶偏导数为零, 即 0000(,)0,

(,)0x y f x y f x y

极值存在的充分条件:函数),(y x f z 在点),(000y x P 的某邻域内有一阶及二阶连续

偏导数,且0000(,)(,)0x y f x y f x y 。令00(,)xx f x y A ,00(,)xy f x y B ,00(,)yy

f x y C ,则

(1) 当02 B AC 时,00(,)f x y 是函数),(y x f z 的极值,其中当0 A 时

00(,)f x y 为极大值,当0 A 时00(,)f x y 为极小值。

(2) 当02 B AC 时,00(,)f x y 不是极值。 十三、条件极值

函数),(y x f z (称为目标函数)在条件(,)0,1,2,,i x y i k L 下极值问题转化为求辅助函数11

(,,,,)(,)(,)k

k i i

i L x y f x y x y

L 的无条件极值的问题。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高等数学(上册)-第一章教案

第一章:函数、极限与连续 教学目的与要求 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 所需学时:18学时(包括:6学时讲授与2学时习题) 第一节:集合与函数 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

《高等数学》 各章知识点总结——第6章

第6章 微分方程总结 1.可分离变量微分方程 一阶微分方程y '=?(x , y ) 或M(x)N(y )dx +P(x)Q(y )dy =0能写成 g (y )dy =f (x )dx 两边积分可得通解。 2.齐次微分方程 dy y ()dx x =φ,令x y u =, 即y =ux , 有)(u dx du x u ?=+, 得??=-x dx u u du )(?。 3.一阶线性微分方程 (1)齐次线性 0)(=+y x P dx dy 用分离变量法可求得通解P(x)dx y Ce -?=。 (2)非齐次线性方程)()(x Q y x P dx dy =+ 由齐次方程常数变易法可得通解 ])([)()(C dx e x Q e y dx x P dx x P +??=?-。 4.伯努利方程 n y x Q y x P dx dy )()(=+ (n ≠0, 1),以y n 除方程的两边, 得 )()(1x Q y x P dx dy y n n =+-- 令z =y 1-n , 得线性方程 )()1()()1(x Q n z x P n dx dz -=-+. 5.可降阶的高阶微分方程 (1)y (n )=f (x ) :积分n 次 1)1()(C dx x f y n +=?-, 21)2(])([C dx C dx x f y n ++=??-,? ? ?. (2)y ''= f (x , y '):设y '=p(x) , 则方程化为 p '=f (x , p )。 (3)y ''=f (y , y '):设y '=p(y), dy dp p dx dy dy dp dx dp y =?=='',原方程化为 ),(p y f dy dp p = 6.二阶常系数线性微分方程 (1)二阶常系数齐次线性微分方程: y ''+py '+qy =0 (2)二阶常系数非齐次线性微分方程: y ''+py '+qy =f (x )

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

《高等数学》 各章知识点总结——第9章

第9章 多元函数微分学及其应用总结 一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y 间的距离: ||PQ = 邻域: 设0P 是n R 的一个点,δ是某一正数,与点0P 距离小于 δ的点P 的全体称为点0P 的δ 邻域,记为),(0δP U ,即00(,){R |||}n U P P PP δδ=∈< 空心邻域: 0P 的 δ 邻域去掉中心点0P 就成为0P 的δ 空心邻域,记为 0(,)U P δ =0{0||}P PP δ<<。 内点与边界点:设E 为n 维空间中的点集,n P ∈R 是一个点。如果存在点P 的某个邻域 ),(δP U ,使得E P U ?),(δ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P ∈R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E ?R , 如果E 的补集 n E -R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0>M ,使得(,)E U O M ?,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域.

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(), ()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=,

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于) () (lim 0x F x f x x ''→;当 )()(lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型 同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“00 ”或“ ∞ ∞ ”型才能运用该法则; ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

高等数学大一上总结

第一章函数与极限 主要内容:函数的定义;函数的几种特性;复合函数、反函数与初等函数的概念;数列与函数极限的定义;极限的运算法则;无穷小与无穷大的概念;两个重要极限;无穷小的比较;函数在点与区间的连续性及间断性;闭区间上连续函数的性质。 内容要点: 1.函数的概念及函数奇偶性、单调性、周期性、有界性。 2.复合函数和反函数的概念。 3.基本初等函数的性质及其图形。 4.立简单实际问题中的函数关系式。 5.极限的概念,掌握极限四则运算法则及换元法则。 6.子数列的概念,掌握数列的极限与其子数列的极限之间的关系。 7.极限存在的夹逼准则,了解实数域的完备性(确界原理、单调有界数列必有极限的原理, 柯西(Cauchy),审敛原理、区间套定理、密性定理)。会用两个重要极限求极限。 8.无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9.函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 一、求函数的定义域 ①分式的分母不等于零;②偶次方根式中,被开方式大于等于零;③含有对数的式子,真数式大于零;④反正弦、反余弦符号内的式子绝对值小于等于1;⑤分段函数的定义域是各段 函数定义域的并集;(6)若已知y=f(x)的定义域是[a,b],求y=f[t(x)]的定义域,方法是 解a≦t(x)≦b 二、判断两个函数是否相同 一个函数的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断函数表达式是否统一即可。 三、判断函数奇偶性 判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和仍是奇(偶)函数;两个奇函数之积是偶函数;两个偶函数之积仍是偶函数;一奇一偶之积是奇函数。 四、数列极限的求法 利用数列极限的四则运算法则、性质以及已知极限求极限。(1)若数列分子分母同时含n,则同除n的最高次项。(2)若通项中含有根式,一般采用先分子或分母有理化,再求极限的方法。(3)所求数列是无穷项和,通常先用等差或等比数列前n项求和公式求出,再求极限。(4)利用两边夹逼定理求数列极限,方法是将极限式中的每一项放大或缩小,并使放大、缩小后的数列具有相同的极限。通式为形如1的无穷次方的不定式,一般采用两个重要极限中等于e的那个式子求解。 五、函数极限的求法 1.用数列求极限方法, 2.在一点处连续,则在此处极限等于此处函数值, 3.分段函数,在某点极限存在,则此处左右极限都存在且相等。

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

高等数学上册第一章心得与分享

第一章 函数极限与连续 (一) 本章重点(important points ): 1. 了解极限的定义(重点是理解极限定义中的“任意”和“存在”,以及N 与ε的相关性;动态变化性)及求法,定义要从代数及几何两方面进行理解。 2. 理解以及运用两个重要的极限公式(及其拓展形式)。 3. 无穷小理论及其运用(主要是等价无穷小代换,在求极限以及一些证明题中会经常用到,so it is also important!)。 4. 函数的连续(这是以后很多公式定理运用的条件,所以必须掌握地very good !)。 5. 分段函数的连续性,可导性,及其极限值的求法。 (二) 知识点分析(analysis ): 常用不等式 1) 绝对值不等式: ||x |?|y ||≤|x ±y |≤|x |+|y | 2) 三角不等式: |x ?z |=|x ?y +y ?z |≤|xy |+|yz | 3) Bernoulli Inequality(贝努力不等式): 若 x>-1, n ∈z, 且n>=2 则(1+x )n ≥1+nx 4) Cauchy Inequality (柯西不等式): (∑x i y i ) n i=12 ≤(∑x i 2n i=1)?(∑y i 2n i=1) 5) e x ≥1+x 6) ln(1+n)≤x

7) (1+1n )n <(1+1 n+1 )n+1 && (1+1n ) n+1 >(1+1n ) n+2 即:数列{(1+1n )n } 单调递增, 数列{(1+1n ) n+1 } 单调递减。 8) 设 x ∈z +, 则 1 x+10 n i=1 ,则有判别式?≤0 故 4 (∑x i y i n i=1) 2 ≤ 4∑x i 2 ? ∑y i 2≤0n i=1n i=1 → (∑x i y i ) n i=12 ≤(∑x i 2 n i=1)? (∑y i 2n i=1) 三. 求极限的方法: 1.利用极限的基本性质与法则。 2.利用数列求和。 3.利用两个重要极限。 4.利用对数恒等式(主要是解有关幂指型函数的题)。 5.利用函数的连续性。 6.利用无穷大与无穷小的关系(无穷小乘以一个有界函数结果是无穷小;无穷大加无穷大不一定等于无穷大;)

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a-b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

相关文档