文档库 最新最全的文档下载
当前位置:文档库 › 线性系统理论综述

线性系统理论综述

线性系统理论综述
线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。

一.线性系统理论研究内容综述

系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。

动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。

线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。

线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。

线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

述引入到线性控制中,并在此基础上引入了对研究系统结构和控制具有基本意义的的能控性和能观性的概念。

(一)状态空间的描述

状态空间的基本特点是用系统内部描述来取代经典线性控制系统理论中引以为常的传递函数形式的外部输入输出描述,

第一个方程称为状态方程,用以描述状态向量与输入向量间的动态关系;第二个方程称为输出方程或测量方程,描述输出向量与状态向量和输入向量之间的线性组合关系。,,和都是常系数矩阵。这个模型可用下面的框图表示

把系统的的分析和综合置于时间域内。同时,能控性和能观性的引入,导致了线性系统的分析和综合在指导原则上的一个根本变化,这种内部结构代替外部结构的变化,是现代线性控制理论的根本。

线性系统理论主要包括线性系统的时间域理论和线性系统的复频域理论。时间域理论主要包括线性系统的状态空间描述和线性运动分析,线性系统的能控性和能观性,系统运动的稳定性,线性反馈系统的时间域综合。

线性系统的状态空间描述是分析和综合的基础。系统的动态过程的数学实质就是反映各组变量间因果关系的一个数学模型。可以把数学的模型分为内部描述和外部描述两种基本类型。系统的外部描述是输入输出描述,外部描述的特点,把系统当“黑箱”处理,用传递函数来表示,而系统的内部描述是把系统当做“白箱”处理,认为系统内部的结构和信息时可以知道的,是一个数学模型,可以两个数学方程来表征。首先,通过对状态空间的表述,我们至少要表明状态空间和状态的基本概念,以及对状态空间的基本描述的内涵、形式、建立方法、特性和变换,以及其对组合的系统的推广。

接着线性系统理论着重对系统运动规律的定量分析。分别就连续时间系统和离散时间系统分析。

线性定常连续系统的自由运动

在没有控制作用下,线性定常系统由初始条件引起的运动称为线性定常系

统的自由运动,可由齐次状态方程描述)()(t Ax t x

= 齐次状态方程通常采用幂级数法、凯莱-哈密顿定理和拉普拉斯变换法求

解。

幂级数法:

设齐次方程的解是t 的向量幂级数

+++++=k k t b t b t b b t x 2210)( 式中, ,,,,,10k b b b x 都是n 维向量,且0)0(b x =,求导并考虑状态方程,

)(2)(2210121 +++++=++++=-k k k k t b t b t b b A t kb t b b t x

拉普拉斯变换法:

取拉氏变换,

)0()()(1x A sI s X --=

凯莱-哈密顿定理法:

矩阵A 满足它自己的特征方程。即若设n 阶矩阵A 的特征多项式为

1110()[]n n n f I A a a a --=-=++

++λλλλλ

则有 0)(0111=++++=--I a A a A a A A f n n n

线性离散系统的运动分析

递推法(迭代法):适合于线性定常和时变系统;

G 、H 是定常矩阵。

给定k=0时的初始状态x(0) ,及任意时刻 u(k)

由迭代法得:

....

(1)解的表达式的状态轨迹线是状态空间中一条离散轨迹线。它与连续系统状态的解很相似。解的第一部分只与系统的初始状态有关,它是由起始状态引

起的自由运动分量。第二部分是由输入的各次采样信号引起的强迫分量,其值

与控制作用u 的大小、性质及系统的结构有关。

[1]()()x k T Gx kT Hu KT +=+232(1)(0)(0)

(2)(1)(1)(0)(0)(1)

(3)(2)(2)(0)(0)(1)(0)x Gx Hu x Gx Hu G x GHu Hu x Gx Hu G x G hu Ghu Ghu =+=+=++=+=+++10()(0)()

k k

k j i j x k G x G Hu i ---==+∑

(2)在输入引起的响应中,第k 个时刻的状态只取决于所有此刻前的输入采

样值,与第k 个时刻的输入采样值无关。

Z 变换法:仅适合于线性定常系统。

由于

将G 、H 、U(z)、x(0)代入x(k)的Z 变换式。

线性系统的运动规律分析的实质,归结为相对于给定输入和初始状态求解

系统状态求解系统状态方程,建立因果关系的解析形式解。

(二)能控性和能观性

在对系统运动分析后,然后围绕能控性和能观性两个基本结构特性,重点

是针对连续时间时不变系统。

能控性判别准则-----三个定理

(1)线性定常系统完全能控的充要条件是矩阵

是满秩的。

若线性定常系统的系数矩阵A 有互不相同的特征值,则系统能控的充要条

件是输入矩阵B 没有任何一行的元素全部为零。

若A 为约旦型,则系统能控的充要条件是 : (I )B 中对应于互异的特征值的各行,没有一行的零。 (II )B 中与每个约旦块最后一行相对应的各行,没有一行的元素全为零。

(三)稳定性

外部稳定性和内部稳定性

1.外部稳定性(BIBO 稳定性)

称一个因果系统为外部稳定,如果对任意一个有界输入u(t),即满足条件

对应的输出y(t)均为有界,即有

2.内部稳定性(渐近稳定性)

如果由时刻 任意非零初始条件 引起的状态零输入响应

1()()[(0)()]x z zI G zx HU z -=-+()1z

U z z =

-21[,,,...]n M B AB A B A B -=10(),[,)

u t t t β≤<∞?∈∞20,(),[)y t t t β≤<∞?∈∞000(),(),[,)x A t x x t x t t ==∈∞0t 00()x t x =

对所 为有界,并满足渐近属性即成立。

3.李亚普诺夫意义下运动稳定性的概念: 李亚普诺夫第一方法:小范围内稳定性分析方法,泰勒展开,线性化。 李亚普诺夫第二方法:广义能量属性的李亚普诺夫函数。

自治系统:

平衡状态:

受扰运动:自治系统由初态引起的运动。

(四)线性反馈系统的时间域综合

研究控制系统主要有两大类问题:

一是:已知控制系统,通过各种手段,如:时域、频域、根轨迹、状态空间等方法和手段 对系统的各种性能进行分析,这就是控制系统的分析问题;

二是:对未知的控制系统进行设计使其满足某种性能指标要求,这称为控制系统的综合问题。

无论是经典控制理论还是现代控制理论,反馈都是控制系统设计的主要方式。经典控制理论用传递函数描述系统,因此只能采用输出反馈;而在现代控制理论中,由于采用系统内部的状态变量来描述系统的特征,所以除了可以采用输出反馈外,还大量使用状态反馈。

在进行控制系统设计时,由于状态反馈能提供更多的校正信息,对于控制系统性能的改善和提高具有很重要的意义。

为了利用系统状态作为反馈量,必须使用传感器来测量状态变量,但由于并不是所有状态变量在物理上均可量测,所以需要用状态观测器来估计系统状态的值。因此,状态反馈与状态观测器的设计就构成了用状态空间法综合设计控制系统的主要内容。

极点配置问题:如果对控制系统的性能要求用一组给定的极点来描述,控制系统的综合问题就称为极点配置问题;

最优控制问题:如果控制系统的性能要求是由某个最优指标描述,这时的控制系统综合就称为最优控制问题。

二.线性系统理论数学模型建立

由上述可知,现代线性控制理论与经典理论相比,所采用的方法和算法更适合于在数字计算机上进行,又由于很多实际系统都可用线性系统模型近似的

0[,)t t ∈∞()u x t θlim ()0

u t x t θ→∞=()0u t =0000(,),(),[,)x f x t x t x x t ==∈∞0(,)0,[,)e e x f x t t t ==?∈∞

描述,所以它的应用范围十分广泛。在航空、航天、航海、机械、电器、力学等技术领域中,线性系统理论都有应用实例。在20世纪50年代中期迅速兴起的空间技术,线性系统理论得到了大力推动发展和应用,来解决例如把火箭或飞行器用最少燃料或最短时间准确发射到预定轨道一类的控制问题。

上面所说的火箭最少燃料或最短时间问题可以归结为最速下降问题,这个问题不仅是一个典型的线性系统理论问题,同时也是一个最优控制(现代控制理论另外一个很重要的分支)问题。1969年,美国阿波罗11号载人登月,就是最速下降问题实际应用的一个成功范例,下面我将对最速下降问题进行简单介绍。

下面是最速下降问题的数学模型:

设有一物体M 作垂直升降运动,如图所示。

外作用力u(t)是有限的。

设: u t ≤u max (常数)

要求:物体M 以最快的速度到

达地面,且到达地面时的速度为0。

求:u(t)=?

首先将这个问题的数学模型简化出来,这样我们就可以描述这个线性系统问题。

依据题意及示意图,设物体质量为m,显然根据物理关系可以得到:m d 2x

d t 2=u t ?mg 。

设m=1,则d 2x d t =u t ?g ,并设x 1=x ,x 2=x 。

则可以推导出系统状态方程为:x 1=x 2,x 2=u ?g 。

又设t 0表示初始时刻,t f 表示终端时刻,x t =x 1(t)表示物体距地面的高度,x t =x 2(t)表示物体运行速度,那么有:

x 1(t 0)x 2(t 0) 表示初始状态, x 1(t f )x 2(t f )

表示终端状态。 所以,该线性系统问题可描述为:

对于系统 x 1=x 2x 2=u ?g ,在初始状态 x 1(t 0)x 2(t 0) 任意,终端状态 x 1(t f )x 2(t f ) = 00

的情况下,求满足约束条件 u t ≤u max (常数)的u(t),使: dt t f t 0

=t f ?t 0最小。 由这个最速下降问题数学模型的建立可以看出,线性系统的理论和方法是建立在其模型基础之上的。不管是对系统进行分析还是综合,一个首要的前提是建立起系统数学模型。建立模型时,最重要的是确定什么事需要反映和研究的主要系统属性,并在此基础上来定出他们的定量关系。随着所观察问题的性质不同,一个系统可以有不同的模型,它们代表了系统不同侧面的属性。系统

数学模型的基本要素是变量、参量、常量和它们之间的关系。变量包括状态变量、输入变量和输出变量,有些情况下还需考虑扰动变量。参量可以是系统的参数或表征系统性能的参数,前者受系统环境的影响可产生变动,后者可随设计要求而人为地改变其取值。常量是指系统中不随时间改变的参数。线性系统的数学模型有两种主要形式,即时间域模型和频率域模型,时间域模型表现为微分方程组或差分方程组,可同时适用于线性时不变和线性时变系统。频率域模型表现为传递函数和频率响应,只适应于线性时不变系统。对应于系统的这两项模型,已经发展和形成线性系统理论中的两类不同方法。

在线性系统理论中,输入变量、状态变量和输出变量三者之间的数学关系被看作是线性的,系统数学模型的描述有两种基本类性。

这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。文章中所研究的系统均假定具有若干输入端和输出端,如图所示。

图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出,二者分别用量u=[u1,u2,Λ,u p]T和y= [y1,y2,Λ,y p]T表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的变量为内部变量,以x=[x1,x2,L,x n]T向量表示。系统的数学描述是反映系统变量间的因果关系和变换关系的一种数学模型。

系统的数学模型通常有两种基本类型。一种是系统的外部描述,即输入—输出描述。

系统描述的另一种类型是内部描述,及状态空间描述。这种描述是基于系统内部结构分析的一类数学模型,通常由两个数学方程式组成。一是反映系统内部变量x=[x1,x2,L,x n]T和输入变量u=[u1,u2,Λ,u p]T间因果关系的数学表达式,常具有微分方程或差分方程的形式,称为状态方程。另一个表征系统内部变量x=[x1,x2,L,x n]T及变量u=[u1,u2,Λ,u p]T和输出变量y=[y1,y2,Λ,y p]T间转换关系的数学式,具有袋鼠方程的形式,称为输出方程。仅当在系统具有一定属性的条件下,两种描述才具有等价关系。

三.线性系统理论应用——智能控制简介

很多实际系统(工程系统、生物系统、经济系统、社会系统等)都可以用线性系统模型近似地描述,而线性系统理论和方法又比较成熟,因此它的应用

范围十分广泛。在航空、航天、化工、机械、电机等技术领域中,线性系统理论都有应用实例。在科学领域,线性系统理论的研究不但为控制理论的其他分支提供了理论基础,而且对数学研究也提出了一些有实际意义的新问题,例如时下很热门的一个研究方向——智能控制。

智能控制(Intelligent Control)是传统控制发展的高级阶段,是控制技术高度分化且综合的重要产物。由于一些被控独享呈现高度的时变性、非线性、时滞性和不确定性,简单的控制策略已不能满足现代控制的要求,综合的、集成的智能控制技术成为研究和应用的热点。智能控制作为一门新的学科分支,得到了普遍的承认,并且已经被广泛的应用于工业、农业、服务业、军事航空等各个领域。近年来,随着人工智能技术和其他信息处理技术,尤其是信息论、系统论和控制论的发展,智能控制在机理和应用实践方面取得了突破性的进展。遗传算法与模糊逻辑、神经网路相互融合,通过模拟认得思维方式和结构来设计用于解决复杂的各种非线性问题的控制策略,并已在各种实际工程项目中得到应用,取得了良好的效果。分布式人工智能中的Agent和Multi Agent System 已成为研究的热点,构建基于Agent的集散递阶结构的智能控制系统为智能控制注入了新的活力。

许多工业连续生产线上,例如:化工、冶炼、材料加工、轧钢等,由于反应机理复杂,关联耦合严重,环境干扰不确定,要求与约束多样等原因,对其系统运行情况和过程的信息了解较少,自动化集成控制应用存在一定的难度,需要运用智能控制模式。生产过程的智能控制主要包括两个方面:局部及和全局级。局部及的智能控制是将智能引入工艺过程的某一单元进行控制器的设计,例如专家控制器、智能PID控制器、神经元网络控制器等。全局级的智能控制主要针对整个生产的自动化,包括整个操作工艺的控制,过程的故障诊断,规划过程操作处理异常等。针对局部智能控制设计,目前研究的热点是智能PID 控制器的设计。因为PID控制至今仍是工业控制中最广泛的控制规律,单常规的PID控制已不鞥满足现在复杂的工业生产,所以就有必要将人工智能技术与传统的PID控制规律结合为智能PID控制。通过智能技术的加盟,智能PID控制器相比传统的PID控制器,在参数的整定和在线自适应调整方面有其显著的优越性,并可用于控制一些非线性的复杂对象。专家控制系统把专家操作经验和计算机强大的计算机能力结合起来,具有启发式推理的能力,能对时变、非线性、易受干扰的复杂控制对象取得较好的控制效果,主要应用于系统设计、仿真建模、参数整定、故障检测及过程监控。

但现有专家控制系统无法表达符号以外的知识,存在只是获取困难和知识库无法自动更新的缺憾。模糊控制具备人类模糊语言信息的能力,可模拟人类进行判断和决策。神经网络控制具有并行处理和高度自组织、自学习、自适应能力、但它不能描述和处理模糊信息,运行过程不具有推理的透明性。智能控

制一般不具有解析性,没有通用的稳定性判定方法,还有很多方面有待进一步完善。由于智能控制理论的建立至今不过短短十几年时间,虽然也建立起了基本框架和理论思路,但就其作为一门学科而言,还远未成熟。对智能控制理论研究的意义在于:如果没有严格的科学的理论指导,满目的应用是不会取得持续的成功。智能控制的主要研究领域是经典控制无法解决的故事、气象等广义的传统领域。也包括了控制对象不断复杂化,控制过程不断智能化的工业、制造业等工程领域。正是由于这些传统控制方法无力解决的问题,成为智能控制发展的动力,也使智能控制的发展充满活力与希望。但在智能控制发展的热潮中,应当看到,国内外智能控制的应用研究的成果层出不穷与理论研究的缓慢发展甚至是停滞不前形成了一种不平衡现象。智能控制的工程应用还有待进一步开发和推广,还需要以更充分的范例体现其发展的必要性和应用的优越性。

通过完成线性系统理论综述论文,不仅将课本内容重新梳理了一遍,而且在查找文献资料的过程中对这门课程有了更直观的了解。

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.wendangku.net/doc/3b17281913.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

线性系统理论

系统控制的理论和实践被认为是对20世纪人类生产和社会活动产生重大影响的科学领域之一。其中,线性系统理论是系统控制理论中最基础,最成熟的分支。系统存在于自然界和人类社会的各个领域。从系统控制理论的角度来看,它通常被定义为具有某些相关功能和受限制部分的特定功能的整体。系统状态由描述系统行为的变量表示。它具有完整性,抽象性和相对性的特征。 摘要 线性系统科学与技术是一门应用广泛的学科。面对各种各样的复杂系统,控制对象可以是确定性的或随机的,并且控制方法可以是常规控制或最优控制。控制理论与社会生产和科学技术的发展密切相关,并且在近代发展迅速。线性系统理论是现代控制理论中最基础,最成熟的分支,是控制科学的重要课程之一。 线性系统理论内容丰富,思想深刻,方法多样,富有美感。它不仅为线性控制系统的建模,分析和综合提供了完整的理论,而且还包含许多解决复杂问题的方法。这些方法简化了系统的建模,分析和综合,为系统控制理论的其他分支和其他学科提供了参考。它们是解决复杂问题的有效方法。 线性系统理论的发展经历了两个阶段:经典线性系统理论和现代线性系统理论。 古典理论形成于1930年代和1940年代。奈奎斯特在1932年提出了反馈放大器的稳定性理论。波特在1940年代初提出了波特图。埃文斯在1948年提出了根轨迹理论。这表明了经典线性控制理论的

形成。古典理论在第二次世界大战中的应用取得了巨大的成功。本文主要研究单输入单输出线性时不变系统。 1950年代后,随着航空技术的发展和控制理论的应用范围的扩大,经典线性控制理论的局限性日益明显。这种情况促进了线性系统的研究,从1960年以后的古典阶段到现代阶段。美国学者R.E.卡尔曼首先将状态空间方法应用于多元线性系统的研究,提出了可控性和可观测性两个基本概念,并提出了相应的标准。1963年,例如吉尔伯特,他得到了揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展做出了开创性的工作。1965年后,现代线性系统理论又得到发展。有许多研究多元系统的理论和方法,例如线性系统的几何理论,线性系统的代数理论和多变量频域方法。随着计算机技术的发展,线性系统的计算方法和计算机辅助设计受到越来越多的关注。

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

华南理工大学线性系统理论考博试题answer

一、 1、 求脉冲响应函数 系统脉冲响应为: ...)4()3()2()1()(+-+-+-+-=t t t t t g f δδδδ ∑∞ =-=1 )(i i t δ 传递函数为: s s i i s s f f e e e e t g L s g --∞ =---=?==∑1)())(()(0 2、 已知)sin(t r π=,求输出响应 系统响应; ?? ?=?≤≤-?-=other n n t n t t y 0 3.2.1212) sin()( π 3、 判断系统是否BIBO 稳定?若是请证明,若不是请举例论证结论 不是BIBO 稳定,令系统输入为: )()(t t y ε=,则系统输出在∞→t 时,趋于无 穷 4、 上述系统可否用频域法求取结论 不能,系统的传递函数不是有理分式 二、已知系统: bu Ax x += ,其中k ξξξ 21,为k 个特征向量,k

)(2211k k At At e b e ξξξ??++??+???=? k At k At At e e e ξξξ???++???+???= 2211 k t k t t k e e e ξξξλλλ???++???+???= 221121 []????? ?? ???????????????=t k t t k k e e e λλλξξξ 21212 1(k λλλ 21为特征向量对应的特征 根) τ τ τ d e bb e T A t T A ?0 [][ ] ????? ? ?????????????????? ??????????????=?k k t k k d e e e e e e k k ξξξτξξξτ λτλτ λτλτλτλ 2121 0212 1212 1 因而有: n k d e bb e rank T A t T A <≤?)(0 ττ τ 系统不可控 2、 举例说明该系统不完全能控 略 3、 若该系统能控模态稳定,不能控模态不稳定,试问系统初始状态满足什么条件系统状态 最终趋向于0?并说明理由。 (不懂) 三、下图中,u 为电流源,y 为a ,b 两点间的电压,R =1Ω,C = 1F R R a b y

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

空军工程大学博士研究生入学试题[001]

空军工程大学2016年博士研究生入学试题 考试科目:线性系统理论(A卷)科目代码3003 说明:答题时必须答在配发的空白答题纸上,答题可不抄题,但必须写清题号,写在试题上不给分;考生不得在试题及试卷上做任何其它标记,否则试卷作废,试题必须同试卷一起交回。 一、填空题(每空2分,共20分) (1)状态变量组数学上表征为一个极大变量组。(2)线性系统时域运动分析的核心在于揭示系统状态相对于和 的演化规律。 (3)系统完全能控和系统完全互为等价关系。 (4)系统的稳定性可分为稳定性和稳定性,其中,前者又被称为“BIBO稳定性”。 (5)对连续时间线性时不变系统,系统则必定为BIBO稳定,反之则未必。 (6)控制系统的综合归结为。 (7)一般来说,反馈的类型可分为和。 二、计算题(每小题5分,共15分) (1)确定微分方程3523 &&&&&&的一个状态空间描述。 y y y y u +-+=

(2)计算下列状态空间描述的传递函数G(s) 140321[10]x x u y x ????=+????--????=& (3)化以下线性系统为约当标准型 010341[20]x x u y x ????=+????--???? =& 三、(15分)假设系统状态方程如下 112201230x x u x x ????????=+????????--? ???????&&1 [20]y x = 请: (1)计算状态转移矩阵 (2)求解状态方程的解 (3)判断系统的能控能观性 四、(15分)利用Lyapunov 稳定性判据,分析如下系统的稳定性。 (1) 22121122221212() ()x x cx x x x x cx x x =++=-++&& (2)

matlab综述报告

MATLAB综述报告 1.MATLAB的简介和主要特点 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。 它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,

FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA 的支持。 2.在控制领域中的应用 在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型)、状态方程模型(系统的内部模型)、零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。 MATLAB中,使用函数tf()建立控制系统的传递函数模型,或将控制系统的其它模型转换为传递函数模型,使用格式:sys=tf(num,den)。 早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。MATLAB控制系统工具箱和SIMULINK辅助环境的出现,给控制系统分析带来了福音。控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析等。 复域(根轨迹)分析: (1)零极点图pzmap()函数用来绘制系统的零极点图,

线性系统理论_中英文对照

[Linear system theory and design] Absolutely integrable 绝对可积 Adder 加法器 Additivity 可加性 Adjoint 伴随 Aeronautical航空的 Arbitrary 任意的 Asymptotic stability渐近稳定 Asymptotic tracking 渐近跟踪 Balanced realization 平衡实现 Basis 基 BIBO stability 有界输入有界输出稳定 Black box 黑箱 Blocking zero 阻塞零点 Canonical decomposition 规范分解 Canonical规范 Capacitor 电容 Causality 因果性 Cayley-Hamilton theorem 凯莱-哈密顿定理Characteristic polynominal 特征多项式 Circumflex 卷积

Coefficient 系数 Cofactor 余因子 Column degree 列次数 Column-degree-coefficient matrix 列次数系数矩阵Column echelon form 列梯形 Column indices 列指数集 Column reduced 列既约 Common Divisor公共因式 Companion-form matrix 规范型矩阵Compensator 调节器,补偿器 Compensator equation补偿器方程 Control configuration 控制构型Controllability 能控性 Convolution 卷积 Conventional常规的 Coprimeness互质 Corollary推论 Cyclic matrix 循环矩阵 Dead beat design 有限拍设计 Decoupling 解耦 Degree of rational function有理矩阵的次数Description of system系统描述

现代控制理论试卷答案与解析

现代控制理论试卷作业 一.图为R-L-C 电路,设u 为控制量,电感L 上的支路电流 11121222121212010Y x U R R R R Y x R R R R R R ????????????=+????????-????+++???????? 和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程(注意指明参考 方向)。 解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。 以电感L 上的电流和电容两端的电压为状态变量,即令:12,L c i x u x ==,由基尔霍夫电压定律可得电压方程为: 从上述两式可解出1x ?,2x ? ,即可得到状态空间表达式如下: ??????21y y =????????++-211212110R R R R R R R ??????21x x +u R R R ????????+2120 二、考虑下列系统: (a )给出这个系统状态变量的实现; (b )可以选出参数K (或a )的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。 解:(a )模拟结构图如下: 则可得系统的状态空间表达式: (b ) 因为 3023A -??=??? 0013 k k a -??-??-? 110b ????=?????? 所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。 又因为:[2C = 1 ]0 所以:当0k =或1a =时,该系统不能观;当0k ≠且1a ≠时,该系统能观。 综上可知:当1a =时或0k =且1a =时,该系统既不能控也不能观。 三、已知系统. Ax x =?的状态转移矩阵为: (1)试确定矩阵A ,并验证At e 确为上式。

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

线性系统理论中状态反馈综述

线性系统理论中状态反馈综述 学号:1402028 姓名:王家林 现代控制理论源于20世纪60年代,以极大值等原理为形成标志,经典理论中以单一输入变量为研究对象,主要通过频率进行控制,现在控制理论以线性空间理论为基础,在时域中研究系统,能够定量的进行系统的分析和设计,随着计算机运算能力的发展,现代控制也在更多领域得到应用。控制系统是有受控对象和反馈控制器两部分组成的闭环系统,经典控制理论通常采用输出反馈,而现代控制理论多采用状态反馈。闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所具备的分布情况,把极点的配置作为系统的动态品质指标。这种把极点配置在某位置的过程称为极点配置。在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。 20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观性两个基本概念。其研究问题的方法主要有时域状态空间分析法,线性二次型最优状态调节器法,状态观测器控制法,李雅普诺夫稳定性分析法以及极点配置法等。近年来,计算机技术的迅速发展给需要大计算量的现代控制提供了更好的发展空间,同事工业生产的告诉发

展,是的工程界对控制的要求也日益提高,由此也极大地推动了现代控制理论的发展和完善。 在控制理论与实践中的一个基本要求是设计反馈控制率,将闭环系统的极点配置在制定的位置上,从而保证闭环系统具有所要求的动态和稳态特性。由于模型的不确定因素和各种扰动的存在,使得精确极点配置的控制方式不可能得到真正的实现。世纪设计中只能将闭环系统的极点配置在指定的区域内,就可以使系统获得满意的性能。近年来,对D稳定理论的研究十分活跃,利用这一理论研究区域极点配置问题已取得一些成果,包括最优控制、鲁棒性等方面。 在对系统的分析和设计中,首先要考虑的是系统的稳定性问题,而线性系统的稳定性与其极点的位置紧密相关,因此极点配置问题在系统设计中是很重要的。为此,需要根据分析和设计的目的,将系统极点配置在指定区域内或指定某个位置。 所谓极点配置问题,就是通过反馈矩阵的选择,使闭环系统的极点,即闭环特征方程的特征值恰好处于所希望的一组极点位置上或者是某个区内。由于希望的极点具有一定的任意性,因此极点的配置也具有一定的任意性。 对于线性系统而言,其稳定性取决于状态的零输入响应,因而取决于系统极点的分布,当极点的实部小于零时,系统是稳定的;当极点分布在虚轴上时,系统是临界稳定的;当极点的实部大于零时,系统是不稳定的。同事,系统动态响应的基本特性也依赖于极点的分布,若系统极点是负实数,则系统动态响应时非周期的,按指数规律

电子科技大学2015控制科学与工程学科研究生培养方案

控制科学与工程学科硕士研究生培养方案 (专业代码:081100) 控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为;且与各应用领域的密切结合,又形成了控制工程丰富多样的内容。本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势,在我国国民经济发展和国家安全方面发挥了重大作用。 我校控制科学与工程学科为四川省重点学科,师资力量雄厚,形成了复杂系统控制与优化、新能源系统控制技术、计算机视觉与模式识别、机器人技术与系统等研究方向,具有电子信息优势明显,学科交叉特色鲜明,工程研究能力突出等特点。本学科的发展受益于社会和国家的发展,同时也在国家的决策咨询、国防建设、行业推动、社会服务、人才培养等方面做出了突出的贡献。 一、培养目标 热爱祖国,遵纪守法,具有良好的道德品质;掌握本学科领域坚实的基础理论和系统的专门知识;掌握一门外语,能比较熟练地阅读本学科领域的外文资料,并有一定的外语写作能力;具有从事科学研究、教学工作或独立担负专门技术工作的能力。 二、研究方向 1.智能信息处理与控制2.复杂系统控制与优化 3.新能源系统控制技术4.计算机视觉与模式识别 5.智能系统及其应用6.检测技术与自动化装置 7.电力电子与运动控制8.测控通信与导航控制 9.机器人技术与系统10.多媒体数据挖掘 三、培养方式和学习年限 硕士研究生的培养,采取课程学习和论文研究工作相结合的方式。通过课程学习和论文研究工作,系统掌握所在学科领域的理论知识,培养分析问题和解决问题的能力。硕士研究生的培养采用导师个人指导或导师组集体指导相结合的方式。 全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。 四、学分与课程学习基本要求 总学分要求不低于26学分,课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课要求不低于15学分,公共基础课必修,基础课至少选修1门,专业基础课不低于4个学分。 允许在导师指导下、在相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求补修相应专业本科核心课程至少2门,通过考试,但不计学分;通过后方可选修专业课。

《线性系统理论》试卷及答案

C 2 《线性系统理论》试卷及答案 1、(20分)如图所示RLC 网络,若e(t)为系统输入变量r(t),电阻R 2两端的电压为输出量y(t),选定状态变量为 x 1(t)=v 1(t),x 2(t)=v 2(t),x 3(t)=i(t) 要求列写出系统的状态空间描述。 2、(15分)求出下面的输入输出描述的一个状态空间描述。 y (4)+4y (3)+3y (2)+7y (1)+3y=u (3)+ 2u (1)+ 3u 3、(15分)计算下列线性系统的传递函数。 [] 210X 13101X y -????=+???? -????= 4、(10分)分析下列系统的能控性。 0111X X u a b ? ???? =+???? -???? 5、(10分)分析下列系统的能观性。 []1110a X X y X b ? ??==-???? 6、(15分)判断下列系统的原点平衡状态x e 是否大范围渐近稳定。 122 2112 3x x x x x x ==-- 7、(15分)已知系统的状态方程为 221012000401X X u ? --???? ????=-+????????-???? 试确定一个状态反馈阵K ,使闭环极点配置为λ1*=-2、λ2*=-3、λ3*=-4。

答案: 1、(20分)如图所示RLC 网络,若e(t)为系统输入变量r(t),电阻R 2两端的电压为输出量y(t),选定状态变量为 x 1(t)=v 1(t),x 2(t)=v 2(t),x 3(t)=i(t) 要求列写出系统的状态空间描述。 列出向量表示形式 解出解出解出r x x x L R x x x r x L R x x x x x x C R x x x C x C x r x R x L L L L ???? ??????+????? ???????????????? ?--=??????????+--=-=+=+==++1321113211 31 11 32122222112211333113000x y x x L

控制科学与工程学科硕士研究生培养方案-中国石油大学华东

控制科学与工程学科硕士研究生培养方案 学科代码:081100 一、培养目标: 1.认真掌握马克思主义基本理论,树立爱国主义和集体主义思想,遵纪守法,具有较强的事业心和责任感,具有良好的道德品质和学术修养,身心健康。 2.在本学科领域掌握坚实宽广的基础理论和系统深入的专业知识,具有从事科学研究工作或独立担任专门技术工作的能力。 本学科硕士学位获得者应具有坚实宽广的数学、物理基础知识和熟练的计算机技术,掌握控制科学与工程学科坚实宽广的基础理论和系统深入的专业知识,了解本学科的最新研究成果,能创新性地研究和解决与本学科有关的理论和实际问题,具有一定的独立从事科学研究和管理工作的能力。 3.掌握一门外语,能熟练阅读专业外文资料,并具有较好的科技写作能力。 二、培养方向: 1.控制理论与控制工程 2.检测技术与自动化装置 3.系统工程 4.模式识别与智能系统 三、学习年限:3年 四、学分要求:总学分最低修满30学分,必修课不得低于16学分。

备注: 1.本专业其他未选的必修课和校内其他专业的必修课和选修课均可作为本专业的选修课。 2.对跨学科报考或同等学历录取的研究生,由导师指定补修本专业的本科主干课程2门,最多不超过4学分。补修课所取得学分不记入总学分。 3.专业外语课程作为必修环节,由导师指导查阅一定数量的专业外文文献资料,在第三学期开题阶段提交一份外语文献阅读报告,交导师审查并评定成绩,通过后记1学分。

六、科学研究与学位论文: 执行《中国石油大学(华东)学术型硕士研究生培养工作有关规定》和《中国石油大学(华东)硕士研究生论文和答辩工作的有关规定》。

重庆邮电大学研究生线性系统理论试卷2011-2012A

重庆邮电大学研究生考卷A 学号 姓名 考试方式 班级 考试课程名称 线性系统理论 考试时间: 年 月 日 一、(10分)如下图所示系统,求以u 为输入,R2上电压u2为输出的状态空间表达式。 二、(10分)某系统的状态空间表达式为: u x x x x x x ??????????-+????????????????????---=??????????631234100010321321 ,???? ? ?????=321]001[x x x y ,试求该系统的传递函数。 三、(15分)已知连续时间线性时不变系统状态方程如下: (1)求解状态转移矩阵)(t φ和逆矩阵)(1t -φ (2)求单位阶跃信号u (t )=1(t )作用下的状态响应 四、(15分)确定使下面连续时间线性时不变系统完全能控和完全能观测的待定 ()()()( )()()0101,0,0,11210x t x t u t t x u t t ?? ???? =+≥== ? ? ?--?????? R u

参数a,b 取值范围 []x b y u x x x a x x x 00 10030012011321321=???? ????+?????? ??????????????---=?????????????? 五、(15分)试找出李亚普洛夫能量函数,判断下列连续时间非线性时不变系统为大范围渐近稳定。 ???? ??--+-==3221 213)(x x x x x x f x 六、(15分)给定一个完全能控单输入单输出连续时间线性时不变系统: []1 0 212 1 121 0 210 1 1x x u y x ????????=+???? ????-????= 试求出非奇异变换P 把上述系统变换为能控标准型。 七、(20分)给定单输入单输出连续时间线性时不变受控的传递函数为: ) 8)(4(10 )(++= s s s s G 试确定一个状态反馈阵K 使得闭环极点配置为***1112, 4, 7λλλ=-=-=-,并写出闭环系统状态方程。

相关文档
相关文档 最新文档