文档库 最新最全的文档下载
当前位置:文档库 › 锅炉给水最小流量调节阀抖动的控制

锅炉给水最小流量调节阀抖动的控制

锅炉给水最小流量调节阀抖动的控制
锅炉给水最小流量调节阀抖动的控制

锅炉给水最小流量调节阀抖动的控制

珠海发电厂一期2台700MW亚临界机组,锅炉为日本三菱公司制造的辐射、再热、强制循环、室外布置锅炉(BM-FRR),额定蒸发量为2290t/h,主要蒸汽参数为:过热器出口压力为

18.2MPa,温度为541℃,再热器出口压力为5.3MPa,温度为568℃。汽轮机为日本三菱公司制造的再热凝汽式、三缸四排汽轮机(TC4F-40),额定功率为700MW;最大功率为730MW。发电机为美国西屋公司制造的水冷定子绕组的氢气内冷发电机,额定功率为746MW,容量为828.889MVA,功率因数0.9,机组运行方式为:定-滑-定。

2号机组投产后,2台汽动给水泵的最小流量阀在调节过程中有抖动现象,特别是在370~400MW负荷时,当开度指令为8%~11%的情况下,调节阀抖动更明显。由于这种状况,造成了最小流量调节阀的阀芯损坏,不得不更换。为消除最小流量调节阀在低开度指令情况下的抖动问题,通过分析阀门的控制信号和开度指令并结合实际的运行情况,找出解决问题的办法。

1 给水系统工艺流程

给水系统由2台50%MCR锅炉容量的汽动给水泵及其前置泵和1台25%MCR锅炉容量的电动给水泵及其前置泵和6,7,8号高加等组成。电动给水泵既作为机组启动用,又作为机组正常运行时的备用泵。各台给水泵的出口有单独的再循环管和最小流量调节阀为泵提供最小流量。给水系统最小流量控制工艺流程如图1所示(图中只画出1台给水泵)。

2 最小流量阀的控制

2.1 控制信号

最小流量阀是以给水泵出口流量(图1中A点处的流量)为控制信号,控制其开度,以保证给水泵的安全运行。

给水泵出口A点处的流量(以下简称泵出口流量)是通过前置泵入口流量孔板测量的流量(图1中B点处的流量)减去最小流量阀出口处流量(图1中C点处的流量)得到的,如图2所示。最小流量阀出口C点处的流量是通过阀门开度按图3的曲线计算得到。图3(a)和(b)分别为汽动给水泵和电动给水泵最小流量阀开度-流量曲线。

2.2 最小流量阀的开度指令

最小流量阀的控制主要是按其开度指令来调节阀门的开关。图4是最小流量阀控制原理图。图5(a)和(b)分别为汽动给水泵和电动给水泵控制回滞线,其中f1(x)、f2(x)分别是关指令和开指令曲线。

2.3 控制简述

下面以汽动给水泵为例,简述最小流量阀的调节控制过程:

(1)给水泵启动时,A点处的流量小于40t/h,最小流量阀的开度指令为100%;

(2)当A点处的流量大于或等于40t/h(若最小流量阀已处于全开,根据图3(a)得C点处的流量为427t/h,则B点处流量大于或等于467t/h),最小流量阀开始关闭,关指令按图5(a)f1(x)曲线给出;

(3)在关阀的过程中,如果A点处的流量继续增加,阀门沿f1(x)指令曲线关阀;如果A点处的流量减小,此时阀门是否动作,视流量减小的幅度而定,如图5所示;如果流量由M减少至N,由于控制采用了大、小选逻辑,此时阀门的指令不会由μM增加至μN,而只是维持μM不变,直至A点处流量减小到O点处时,阀门才会沿f2(x)曲线开阀;

(4)当A点处的流量大于690t/h时,最小流量阀全关;

(5)当A点处的流量小于650t/h时,阀门沿着f2(x)指令曲线开阀;

(6)在开阀的过程中,如果A点处的流量继续减少,阀门沿f2(x)指令曲线开阀;如果A点

处的流量增大,此时阀门是否动作视流量增大的幅度而定,如图5所示;如果流量由N增加至M,由于控制采用了大、小选逻辑,此时阀门的指令不会由μN增加至μM,而只是维持μN不变,直至A点处流量增加到P点处时,阀门才会沿f1(x)曲线关阀。

3 最小流量阀抖动的原因

3.1 A点处的流量小波动的原因

从以上控制过程可以看出:由于最小流量阀的开关指令不是1根曲线,且采用了大、小选控制逻辑,因此调节阀门开关时,A点处的流量小波动(对汽动给水泵反方向波动幅度小于40t/h 时),阀门指令不会变化,不可能造成阀门由原来的开突变到关,或相反。所以,从控制原理上分析,阀门不可能产生抖动。

3.2 最小流量阀特性不好的原因

如果最小流量阀的特性不好,比如死区较大,那么在小开度指令的情况下,A点处的流量有可能发生突变,并且突变的范围有可能大于40t/h,这就有可能造成最小流量调节阀抖动,甚至振荡。下面是其中1种情况的分析:

如果A点处流量为650~690t/h,阀门沿f1(x)曲线工作。如果流量增大,阀门指令减小;由于阀门特性差,阀门关一点就使最小流量阀出口的流量为0,A点处流量突然增加,此时DCS 的给水控制系统为维持汽包水位就会通过调节给水泵的转速使A点处流量减少。由于控制回滞线较窄,A点处流量减小至650t/h时,最小流量阀工作在f2(x)曲线上。

由于阀门特性差,开阀门指令较小时,最小流量阀出口的流量几乎无变化,阀门开到某值时,则阀出口流量突然增加使得A点处的流量突然下降,使最小流量阀的开指令继续增加,形成正反馈,A点处流量大幅下降,此时DCS为维持汽包水位就会通过调节给水泵的转速使A点流量增加。如果A点处流量突然增大的量超过40t/h,最小流量阀由f2(x)曲线开阀跳到f1(x)曲线上关阀,这样就完成了1次振荡的过程。

以上分析得出阀门抖动或振荡的原因:(1)最小流量阀控制曲线回滞线太窄;(2)最小流量阀的特性差,尤其是阀门死区太大。

3.3 最小流量阀抖动的原因

从实际运行的情况发现:最小流量阀在8%~11%的开度时,即使阀门的开度指令没有变化,阀门也有抖动现象。造成这种抖动的原因是:由于要求最小流量阀需具备快关和快开的能力,在调试时,将阀门中的放大器调整为8~9s的时间内完成快关和快开。这就使得阀门的执行机构特性不能同时满足快关和快开的时间,又保证其在小输入的情况下工作稳定,因此,阀门在小指令开度时就会发生抖动现象。

4 防止阀抖动的办法

可采用下列办法防止最小流量调节阀抖动。

(1)如果阀门抖动的原因是由于阀门特性及控制指令曲线的回滞线窄造成的,则应增加控制指令曲线的回滞线的宽度。并且在确保安全的前提下,尽可能避开最小流量阀在小开度范围内工作。如果要从根本解决阀门特性不好的问题需更换特性好的阀门。

(2)如果阀门抖动并非由于阀门指令变化而引起的,而是由于阀门内的放大器使得执行机构特性变差,工作不稳定造成的。解决的最好办法是更换阀门的执行机构。当然也可以通过改变控制曲线的方法使阀门不工作在小开度指令的区域内,如图6所示控制曲线,使阀门工作在15%~100%的区域内。

5 处理结果

根据分析并结合实际运行情况,采用修改调节阀的控制指令曲线的办法,使用最小流量阀控制指令曲线,避免最小流量阀工作在小开度指令的范围内。改进控制指令曲线后,最小流量阀门运行近1年,再未发生抖动现象。

高压给水主调节阀故障

高压给水主调节阀故障集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高压给水主调节阀故障一、事件经过 2008年6月10日7时32分,#3机负荷120MW,发现高压给水主路调节阀在5%开度卡住,不能开关,此时高压给水流量39t/h,高压主蒸汽流量1109t/h并持续增大,立即派人去就地检查阀门气源、电源正常,就地开度与DCS上开度相符,紧急通知检修人员处理。7:45高压汽包水位下降至-600MM时,向中调申请紧急停机。 2008年11日18时58分,#3机组负荷270MW,发现#3机组高压汽包水位较低,为-296mm,此时高压给水主调门开度为72%,出现卡涩无法继续开大,此时高压给水流量仅为192t/h,明显低于该开度下的正常给水量(此开度下给水流量正常值应为300t/h以上),而高压汽包蒸发量此时为230t/h,高压汽包水位有继续下降趋势,立即至现场检查发现#3机组高压给水主调门开度在70%左右时声音和振动较大,但该阀门开度减小后声音和振动现象逐渐消失;17时00分退出#3机组AGC和一次调频,#3机组降负荷至170MW,高压给水主调门切至手动,维持开度为66%,声音和振动现象消失,稳定后高压给水流量和高压汽包蒸发量平衡(同为170t/h),高压汽包水位稳定在-300mm左右。21时50分停机后发现,#3机高压给水主调门在关闭到35%时,也出现卡涩现象,无法继续关闭。

2008年6月12日,#3机启动过程中,高压给水调节系统管道振动大,现场观察发现高压调阀开度较大(高压给水流量在约220吨以上)时整个管道系统振动很大,后按要求将机组负荷维持在240MW,悉心操作,认真监视管道振动情况,确保了机组安全运行。 2008年7月7日7时15,在启机过程中,机组负荷120MW,#1机高压给水主调门卡涩,卡在5.9%开度附近,给水流量只有37t/h左右。切至手动调节只能关小,不能开大。立即退出ALR控制,降低机组负荷至 84MW。就地检查该阀几乎没有开度,立即手动关闭B给水泵高压出口电动阀,并断开高压给水调阀的气源,高压给水调阀还是不动。之后开启该高压给水调阀气源,并开启B给水泵高压出口电动阀,高压给水调阀立即动作,此时该阀重新动作正常。重新升负荷至120MW,投入ALR,机组顺利进汽。 2008年7月30日7时30分,#3机组启动过程中发现,高压给水主调门开度指令60%时,高压给水流量仅有30t/h,现场检查确认其阀杆已断裂,机组维持3000rpm空负荷运转。通知检修人员处理,检修人员检查后告知需停机更换高压给水主调阀。 6.2008年9月22日,19时26分#2机负荷311.5MW,高压主汽流量269.9T/H,#2机高压给水调阀开度突然由6 7.5%异常升至92.4%,而高

WNS系列燃气热水锅炉安全操作规程

WNS系列燃气热水锅炉安全操作规程 一、锅炉点火前的检查工作 1、锅炉内部检查:详细检查锅筒、炉胆、火管、管板、封头及拉撑等受压部件是否正常,有无严重腐蚀或变形、裂纹,锅内有无水垢、杂质,锅的内部有无遗留的工具杂物等,特别是锅筒内部,在确认清理干净,锅内装置合格,并无人在炉内后,密闭人孔、手孔。 2、外部检查:除检查锅炉本体外部有无损坏,还应检查炉膛内受热面、绝热保温层是否完整无损。检查炉膛内是否有残留污垢。 3、燃烧器检查:检查燃烧器安装位置是否合理,是否便于维修,供汽管路是否畅通、严密,气压表是否正确,风机电机转向是否正确,风门开关是否灵活。负荷调节装置是否正确,点火电极、点火位置、小火位置、大火位置是否预设好。 4、锅炉附属设备检查:给水泵试运行无漏水、噪音及异常升温等现象,保持轴承箱内油位正常,冷却水畅通;水处理设备、除氧器试运转,检查锅炉给水是否达到GB1576-2008《低压锅炉水质标准》的规定。锅炉给水要严格控制为:硬度≤0.03mmol/L,溶解氧≤0.1mg/L,PH值≥7,含油量≤2mg/L,含铁量≤0.3mg/L,悬浮物≤5mg/L。 5、锅炉测试、控制仪表检查:检查热工仪表和电器设备是否完好,其有效期限和铅封是否合格;检查压力表指针的位置,关闭压力表旋塞,在无压力时有限止钉的压力表指针应在限止钉处,无限止钉的压力表,指针距零位的数值不超过压力表规定的允许误差;检查温度表的指示是否合理;检查安全阀是否已调整到规定的始启

压力,泄放管是否堵塞;检查压力控制器、温度传感器等电路畅通、动作灵敏准确。 6 五大系统检查 (1)、风烟系统检查:从进风口到出烟口进行检查,看燃烧器进风口是否畅通,烟道闸门开关是否灵活,烟道有无杂物;同时转动风机,调整风机转向;锅炉房还应有足够的通风孔,通风孔应畅通。 (2)、水系统检查:将软化水注满软化池,水泵使用前一定要排出空气,调整水泵的转动方向,然后逐步打开水泵到锅炉的阀门。检查工作结束后,可向锅炉进水,进水前打开锅炉顶部的空气阀,排出锅内空气,进水速度不宜过快,进水时,要检查人孔、手孔、法兰连接处和阀门等有无泄漏,有泄漏时,应停止进水,更换填料或修理。此时,不要急于点火,应稍停一下,注意观察锅内水位,维持不变,如水位逐渐降低,应查明原因设法消除。如关闭给水阀后,锅内水位继续上升,则说明给水阀漏水,应进行修理或更换。停止给水后,还应试开排污阀放水,检查有无堵塞。 试运行前,所有的阀门都应在规定的开关位置,检查时应按规定的位置进行调整。 锅炉给水系统:空气阀开、锅炉进水阀开。 锅炉排污系统:所有排污阀关。 (3)、电气系统检查:检查供电电源是否符合额定电压,推上电源,检查电源是否符合额定电压,进配电柜是否符合额定电压。去除主回路供电,模拟点火程序,看控制回路是否正常。 (4)、燃料系统检查:先对燃气锅炉检查调压装置是否合适,

DG型高压锅炉给水泵型式与基本参数

沈阳水泵股份有限公司企业标准 DG型高压锅炉给水泵型式与基本参数Q/SB J02.003-2006 代替QJ/S d1.03-1996 1 范围 本标准规定了DG型高压锅炉给水泵型式与基本参数。 本标准适用于50MW至200MW火电机组用的高压锅炉给水泵。 2 规范性引用文件 GB/T 3216-2005 回转动力泵水力性能验收试验1级和2级 3 型式 泵为卧式、多级、单壳体、节段式、中心支承、进出口垂直向上或向下的离心泵。 4 型号 4.1 型号表示方法 4.1.1 第一种表示方法 设计改进 泵出口压力 名义流量 多级高压锅炉给水泵 4.1.2 型号示例 流量为400 m3/h,出口压力为180kgf/ cm2(17.64MPa),C型改进设计的多级高压锅炉给水泵: DG400-180C 4.1.3 第二种表示方法 设计改进 级数 壳体为锻件用B表示;双 壳体结构用T表示 多级高压锅炉给水泵 设计顺序号 4.2.2 型号示例 流量为570 m3/h,扬程为2150m,10级,壳体为锻件的多级高压锅炉给水泵: 5DGB-10。 制订:批准: 审核:实施日期:

Q/SB J02.005-2006 5旋转方向 从驱动端看,泵为顺时针方向旋转。 6基本参数 高压锅炉给水泵的性能参数应符合表1及表2的规定。 6.2 表1及表2中所列性能参数为输送常温清水时设计点的数值。 6.3 图1~图10中曲线为泵的性能范围。 6.4 性能参数的检验和偏差应符合GB/T3216的规定。 表1 性能参数

η-Q 图2 DG270-140C型泵性能曲线3 n=2985r/min Pa-Q H-Q

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

锅炉给水多级离心泵维护检修规程

多级离心泵维护检修规程 锅炉给水泵 一、适用范围 1、 本规程适用于DG 型多级离心泵的检修及维护保养,现配有 DG85-67X 8 型两台,DG13-35X 10型三台。 2、 设备性能及技术参数 DG85-67X 8 型多级离心泵性能参数: 流量 扬程 转速 效率 汽蚀余量: 水温:t < 160C 电机功率: 220kw DG13-35X 10型多级离心泵性能参数: 流量 扬程 转速 效率 汽蚀余量: 水温:t < 160C 电机功率: 37kw 二、 设备完好的标准 要求:多级离心泵各连接部位无跑冒滴漏, 稳, 设备维护 日常维护内容 a. 严格执行操作规程,禁止超负荷运行; b. 检查泵运转情况,地脚螺栓及联接螺栓是否坚固,发现松动及时调整坚固; c. 清扫泵及周围环境,并经常保持整洁; d. 检查泵防护、安全装置,经常保持良好; e. 备用泵按时盘车; f. 检查压力表的灵敏、准确度; g. 检查变频调速器状态是否正常。 h. 安排专人对轴承定期进行加油保养。 日常巡回检查内容 a. 每小时巡回检查一次泵的压力、流量,并作好记录; b. 每班检查两次联接部位、密封部位,及时消除跑、冒、滴、漏; c. 每班检查两次管道、阀门及其联接部位,及时清除泄漏; d. 每班检查两次泵、电机有无振动,电流是否正常; e. 每班检查两次轴承润滑情况是否良好。 Q=70m3/h H=550m n=2950r/min n =65% NPSH=3.0m Q= 13m3/h H=350m n=2950r/min n =65% NPSH=3.0m ,联轴器间隙符合要求,泵运行要平 无异常振动,噪音等情况。泵运行中的电流、压力、流量符合设计要求。 1、 2、

DG型次高压锅炉给水泵的基本常识.

湖南中大节能泵业有限公司 DG 型次高压锅炉给水泵的基本常识 DG 型次高压锅炉给水泵的概述: DG型次高压锅炉给水泵为卧式多级单吸节段式离心泵,其系列锅炉给水泵是专为更新改造的新系列工业蒸汽锅炉配套的高效节能产品,不仅适用于中、低压锅炉给水,也适用于工厂、城市高扬程输水。 DG 型次高压锅炉给水泵的型号说明: 例 DG5-27×3 DG -单吸、多级锅炉给水泵 5-流量 (m3/h 27-泵单级扬程(m 3-泵级数 DG 型次高压锅炉给水泵的结构型式: 泵体与泵盖构成叶轮的工作室, 在进、出水法兰上制有安装真空表和压力表的管螺孔, 泵体下部制有放余水的管螺孔。 叶轮为单吸闭式, 设置平衡盘平衡绝大部分轴向力, 同时设有推力轴承来承受可能残存的小部分轴向推力, 轴承的布置使轴处于稳定的拉杆状态。叶轮在装配前均须作严格的静平衡校验,以保证运行的平稳。

泵轴由两个巴氏合金滑动轴承支承,轴承装在泵悬架中的轴承体内,用稀油润滑。在泵体上设有密封环, 可以提高泵的容积效率, 另一方面也可以避免高压水回流入吸入室,扰乱进水流场,可以保证水泵的吸入性能。 轴封一般为软填料密封, 水泵工作时可引少量介质至填料函处, 也可外接冷却润滑水, 起水封及冷却润滑作用。按用户的需要,可以将填料密封改为机械密封。 泵壳可在轴线处轴向拆开, DG 型泵吸入口垂直向上,吐出口垂直向上,与轴心线垂直。 DG 型次高压锅炉给水泵的参数范围: 流量 Q 17.4~180m3/h 扬程 H 409~1050m DG 型次高压锅炉给水泵的主要零部件材质为: 进、出水段:ZG230-450 中段 :ZG230-450 导叶 :QT450 叶轮 :QT450 主轴 :40Cr 密封环 :QT450 轴套 :HT250 平衡盘 :ZG2Cr13 平衡环 :锡青铜

调节阀的特性及选择(DOC)

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

T961H,Y H型给水调节阀

T961H,Y H型给水调节阀是锅炉给水自动调节系统中最主要设备之一,广泛应用于电站、化工、石油、冶金等给水系统流量的调节。其结构特点是采用多片带孔圆盘叠加而成的孔板组件和其上部的笼罩构成节流组件。通过阀芯的升降来改变孔板组件或笼罩到通流截面而实现给水流量的调节,保证生产过程的需要。由于调节时采用孔板组件,改变了传统的一次降压为多次降压。大流量区由上部笼罩截面改变调节给水流量,所以压降铡。因此该阀抗汽蚀、噪音小。延长了调节阀的使用寿命。由于该阀采用了压力平衡式结构,减轻阀芯和阀杆等有关零部件的受力情况,降低了阀门密封比压,从而延长密封面的使用寿命,减少执行机构的驱动力矩,节约能源。由于该阀采用装配式结构,因此拆装方便,减少了维修工作量。该阀适用于各类液体流量的调节。 用途 安装在锅炉的给水管道上、减温减压装置管道上,供调节锅炉给水流量用。 结构简述 1.主要由阀体、阀座、密封圈、阀杆、阀盖等组成。 2.阀门的流量调节,靠针形阀瓣在阀座内的相对上下移动改变阀座与阀杆之间的环形面积的大小来实现。 3.阀杆向下移动为关,反之为开。阀门与管道为焊接连接。 4.阀门采用电动执行机构角行程来驱动。 安装说明 1.阀门必须垂直安装在水平管道上,阀杆向上。 2.必须按图示箭头所指介质流向进行安装。 3.冲洗管路时,阀门为全开状态。

阀体部分: 阀内部件: 表1.可提供的用户选择

表2.本体材质为碳钢 表3.本体材质为不锈钢 注: 1、以上为标准的配置结构,阀座为金属对金属,还可提供用斯太莱合金涂层的硬化阀内件。针对具体使用温度,我们有更加合理的螺栓螺母选择。 2、PTFE V形环阀杆填料是的标准配置也可选用柔性石墨。 3、标准的阀体材料是碳钢和不锈钢,还可以提供多种用于高腐蚀性应用场合的合金材料。

燃气锅炉运行操作规程

三峡全通锅炉运行操作规程 一、锅炉房主要设备概述 三峡全通锅炉房现有WNS20-1.25-YQ锅炉6台,配备全自动离子交换器、除氧器各3台以及多级泵9台。 (一)锅炉 型号WNS20-1.25-YQ,共六台。由唐山信徳锅炉公司制造生产,额定蒸发量20吨/小时,额定蒸汽压力1.25兆帕,额定蒸汽温度194℃,燃料种类为天然气。锅炉机组由锅炉本体、燃烧器、管路、阀门及控制柜等部件组成。本锅炉为三回程湿背式结构,通风方式为正压通风。锅炉配置天然气燃烧器,全自动控制,燃烧性能优良。锅炉本体配有水位自动调节,蒸汽超压报警,低水位报警、停炉,燃烧自动调节及可靠的熄火保护等装置。通风设备鼓风机电机功率75千瓦,电流141.3安培。 锅炉烟气流程:燃料从燃烧器向前喷出,在锅炉炉胆内燃烧与燃尽。高温烟气在转向室内180度转向,流经第二回程烟管换热后,经前烟箱折转180度进入第三回程烟管再次换热,最后经过烟箱、省煤器由烟囱排出。 锅炉房汽水流程:自来水经离子交换器除去水中的钙镁等金属离子成为软水进入软水箱,软水箱的软水由软水泵送人除氧器,除去软水中的氧气、二氧化碳等气体,除氧后的水由给水泵送人锅筒加热产生蒸汽至分气缸,由分气缸送至各用汽车间。 (二)燃烧器 型号:DNT1200 燃料:天然气燃气热值:8500大卡/Nm3 燃气压力:10KPa 设计燃气量:1470m3/h 燃气温度:≤40℃ 调节范围:30%-110% 由唐山金沙工贸公司生产制造,自动化程度高,操作简单、性能可靠,以西门子PLC为控制核心,人性化编制了启动、运行程序,只要操作启动按钮即可。 采用多头内混与风散相结合的方法,即空气与燃气分两次混合,保证空气与燃料气充分混合,使燃烧平稳、高效;其自动控制系统采用风门调节比例控制技术,该技术将燃烧与计算机数字技术结合在一起,使燃料量与风量准确配比,充分燃烧,达到最佳效果,既节约了能源,又改善了工作环境。有控制更加准确、

DG型高压多级给水泵

长沙三昌泵业有限公司专业生产ZD型高效节能自平衡多级泵,D型系列多级泵,S 型系列双吸泵,DG型系列锅炉给水泵,R型高温热水泵,IH系列化工泵等一系列清水泵,欢迎广大客户前来咨询! DG型高压多级给水泵概述 DG型单级多级离心泵作为高压锅炉给水泵或其它高压给水用,输送介质温度不超过160℃(中压不超过105℃),适用于电厂各种容量机组的单元制及母管道制给水系统。 DG型高压多级给水泵结构特点说明 本型泵是单壳体节段式多级离心泵。其吸入口和吐出口均垂直向上。前段、中段和后段用穿杠联接成一体,各段之间静止结合面主要靠金属面密封外,并没有O 型胶圈作为辅助密封。DGB型高压泵的吸入段、中段、吐出段采用锻件。 DG型高压多级给水泵轴封: 本系列泵轴封采用软填料密封,用冷却水冷却,也可根据用户要要采用机械密封。 DG型高压多级给水泵轴承和平衡装置 DG型中压型泵转子由泵轴两端的滚动轴承来支承。稀油润滑,且用循环水冷却,转子的轴向推力采用平衡盘自动平衡。均衡回水经过均衡回水管返回到泵吸入段。 DG型次高压型泵转子由泵轴两端的滑动轴承来支承。稀油润滑,且用循环水冷却,转子的轴向推力采用平衡盘平衡。在平衡室和前段之间装有回水管。 DG型高压型泵转子由泵两端的滑动轴承来支承。轴承用强制润滑,泵本身配带油系统,转子的轴向推力用平衡盘来平衡。且带有止推轴承,用于承受由于工况变化而产生的残余轴向力,在平衡室体和吸水管之间装有回水管。 DG型高压多级给水泵传动 中压、次高压型泵通过弹性联轴器由电动机驱动。从传动方向看,泵为顺时针方向旋转。 高压型泵通过弹性联轴器由电动机驱动,也可根据用户需要配带齿型联轴器,膜片联轴器,液力偶合器,原动机可采小汽轮机或电动机驱动,从传动方向看,泵为顺时针方向旋转 DG型高压多级给水泵性能范围(设计点) 流量:Q=100~580m3/h(DG高压) Q=36~180m3/h(中压、次高压) 扬程:H=740~2150m(高压) H=409~1056m(次高压) H=270~672m(中压) DG型高压多级给水泵型号说明 例:DG45-80×6 DG——单吸多级锅炉给水泵

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

给水控制说明

给水控制说明 根据本机组设计特点及外方要求,本机组给水控制设计了2套控制方式:给水调门控制汽包水位和给水泵控制汽包水位。 1、启动初期建议使用给水调门控制汽包水位(给水旁路调节门或给水主调节门),给水泵控制给水差压,此时应选择PUMP MODE 为DP MODE。 2、在给水调门控制汽包水位时,给水旁路调节门与给水主调节门的切换方法: (1)由给水旁路调节门切换至给水主调节门:解除给水旁路调节门自动,投入主给水调节门自动,然后手动缓慢关闭给水旁路调节门至全关。过程中注意水位变化。 (2)由给水主调节门切换至给水旁路调节门:切除主给水调门自动,投入给水旁路调节门自动,然后手动缓慢关闭主给水调节门至全关。过程中注意水位变化。 3、因给水泵设计出力问题,高负荷时给水调节门接近全开,调节性能差,且给水泵较难满足2MPa以上的差压,因此中、高负荷时建议切换至给水泵调节汽包水位模式,此时给水调门应全开,模式选择PUMP MODE 为FLOW MODE。切换方法:(1)由DP MODE向FLOW MODE切换:汽包水位稳定的情况下,切除给水调门自动和给水泵自动,然后切换PUMP模式为FLOW MODE,然后投入给水泵自动。再输入汽包水位控制目标值,然后手动缓慢开启给水调节门。 (2)由FLOW MODE向DP MODE模式转换:汽包水位稳定的情况下,切除给水泵自动,切换PUMP MODE 为DP MODE,此时不要急于修改差压设定值,应先投入给水调门自动,或手动调节给水调门控制汽包水位,然后小幅度修改给水差压设定值。 (3)如果在FLOW MODE下想要获得较高的给水压差,可以手动将给水调节门缓慢向下关闭一定的开度,以产生节流效果,获得差压,但接近满负荷时由于给水泵出力问题,不要使用此方法,因为接近满负荷时给水泵接近最大转速,获得较高差压与维持水位两者不可兼得。 (4)正常运行阶段,建议使用FLOW MODE,即用给水泵控制水位,给水调门全开。如果使用DP MODE,在高负荷时一定要注意观察给水调门开度和汽泵转速是否达到最高限值。 4、模式切换时最好先将给水泵、给水调节阀的自动全部切掉,然后再切换模式。也可以

热力公司锅炉房安全操作规程完整

热力公司锅炉房安全操作规程 供热站站长职责 一、贯彻执行国家《锅炉安全管理规则》的有关安全生产的法律法规,熟悉掌握锅炉管理知识的整个工艺流程。 二、在主管经理的领导下,执行公司下达的各项生产指标对本站工作全面负责。 三、对锅炉安全生产的各项规章制度的执行情况定期检查,有权制止违章作业,对生产中出现的问题有应急能力和有效处理措施。 四、参与锅炉事故的调查,提出改进的措施和对事故责任者的处理意见,如实填写事故报告。 五、按照中心定期对职工进行技术培训和安全教育,不断提高职工的业务水平与队伍素质。 六、做好职工思想工作,关心职工生活、改善劳动条件努力做到安全文明生产。 供热站副站长职责 一、协助站长把供热站的各项工作搞好,熟悉本行业务,协助站长搞好各项规章制度的贯彻执行。 二、认真学习国家的各项法律法规,带头执行中心的各项规章制度,充分发挥副站长的带头作用。 三、督促检查锅炉及其设备的维修保养和定期检修计划的实施,出现大的问题及时向站主任报告。 四、亲自带领本站的有关人员对环境卫生的打扫,做到安全文明生产,搞好岗位技术练兵,提高工人的技术素质。 五、对锅炉的管理和生产,外网的维修与保养,用户的热情服务,要尽职尽责。 六、各项重大工作要亲临现场,认真填写各项维修保养记录,亲自指挥工人文明施工,带领工人保质保量完成好上级下达的各项任务争当文明供热站。 七、搞好班组和组内团结,提高责任感和操作水平。

司炉班长岗位责任制 司炉班长是锅炉班生产的直接组织者,对全班生产任务的完成和所属设备安全,经济运行负直接责任,其职责是: 一、接受车间指挥和调度、领导、组织全班同志开展技术革新活动提高操作技术水平。 二、组织召开安全和质量分析,及时解决生产上存在的问题,防止人身、设备和质量事故的发生。 三、以身作则、大胆管理、严格执行车间纪律及锅炉房的各项规章制度,搞好班内人员调配作好劳动考勤。 四、按定期检修制度和检修规程,组织检修工进行检修及保养。 五、设备出现缺陷和事故苗头时,要一面组织检修工排除,一面向车间领导报告。 六、配合车间工会搞好职工思想工作。 司炉工安全操作规程 一、认真执行国家劳动局《热水锅炉安全监察规程》做到锅炉安全运行,杜绝人身事故发生。 二、司炉工必须经过安全技术培训,熟悉设备性能和工艺,持有经劳动部门签发的合格工作证才能上岗操作。 三、锅炉运行时三大安全附件必须齐全、灵敏、可靠,值班人员不得擅自离开岗位,按巡逻检查路线进行检查,不准超温、超压、超负荷运行。 四、锅炉点火应做以下事项: 1、对机械转动部分进行冷态试运转; 2、检查水位及各附件阀门; 3、升温要缓慢; 4、起压后应巡视安全附件是否灵敏可靠。 五、观察炉膛燃烧时必须佩带防护镜,不准人体正对火门。

锅炉给水泵DG85-80X9

DG85-80X9型卧式锅炉给水泵概述: DG85-80X9型卧式锅炉给水泵供输送清水及物理化学性质类似于水的液体之用。该泵扬程为H:720米,流量Q:85m3/h。液体的最高温度不得超过80℃,广泛应用于矿山排水、工厂及城市给水之用。使用温度T:80℃+80℃。 DG85-80X9型卧式锅炉给水泵产品结构说明 DG85-80X9型卧式锅炉给水泵为多级分段式,其吸入口位于进水段上,成水平方向,吐出口在水段上垂直向上,其扬程可根据使用需要而增减水泵级数。多级离心泵装配良好与否,对性能影响关系很大,尤其是各个叶轮的口出与导翼的进出中心,其中稍有偏差即将使水泵的流量减少,扬程降低效率差,故在检修装配时务必注意。 DG85-80X9型卧式锅炉给水泵主要零件有:进水段、中段、出水段、叶轮、导翼挡板、出水段导翼、轴、密封环、平衡环、轴套、尾盖及轴承体。进水段、中段、导叶挡板、出水段导翼、出水段及尾盖均为铸铁制成,共同形成泵的工作室。 叶轮为优质铸铁制成,内有叶片,液体沿轴向单侧进入,由于叶轮前后受压不等,必然存在轴向力,此轴向力由平衡盘来承担,叶轮制造时经静平衡试验。 轴为优质炭素钢制成,中间装有叶轮,用键、轴套及轴套螺母固定在轴上。轴的一端装联轴器部件,与电机直接连接。 密封环为铸铁制成,防止水泵高压水漏回进水部分,分别固定在进水段与中段之上,为易损件,磨损后可用备件更换。 平衡环为铸铁制成,固定在出水段上,它与平衡共同组成平衡装置。

平衡盘为耐磨铸铁制成,装在轴上,位于出水段与尾盖之间,平衡轴向力。 轴套为铸铁制成,位于填料室处,作固定叶轮和保护泵轴入用,为易损件,磨损后可用备件更换。 轴承是单列向心球轴承,采用钙基润滑脂润滑。 填料起密封作用,防止空气进入和大量液体漏出,填料密封由进水段和尾盖上的填料室,填料压盖,填料环及填料等组成,少量高压水流入填料室中起水封作用。填料的松紧程度必须适当,不可太紧亦不可太松,以液体能一滴一滴的渗出为准。如果填料太紧,轴套容易发热,同时耗费功率。填料太松,由于液体流失要降低水泵的效率。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

天然气锅炉基本操作规程(新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 天然气锅炉基本操作规程(新版)

天然气锅炉基本操作规程(新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 一、总则 1、本规程是用于指导锅炉房、正常运行的技术文件和依据,它包括职责、管理范围、运行原理、操作守则、维护管理等相关内容。 2、本规程适用于锅炉房操作运行员工及管理、技术和维护人员。 3、锅炉房操作人员,应进行相关岗位的培训,应达到懂原理、会操作、能诊断、可排故,同时还可进行简单的维护管理,保证处理效果。 4、特别提示:不认真阅读本规程或违规进行操作,将可能造成事故或损失。 二、职责 1、锅炉房员工应保证站内所有设施的完好,并处于良好的运行工作状态,发现故障及时排除,不得带病工作,不得违章作业。 2、严格执行本规程和公司相关规定,尽职尽责搞好本职工作,实现安全运行,达到废水处理要求效果。

3、做好运行工作记录和,接受公司相关部门的检查。 三、管理范围 锅炉房内供暖系统、生活热水系统,包括各循环泵、压力阀、压力表、补水灌、换热灌、软水系统、天然气表、配电柜等。 四、生活热水工艺过程和功能原理 (一)锅炉开机操作 1、操作人员首先要具备司炉资格,做到持证操作。操作负责人应认真阅读设备使用说明书,熟练掌握安全操作知识及方法。 2、每次开机前要检查燃气阀门是否打开,否则燃烧器不工作。 3、燃烧机启动后,风机先预吹扫30—50秒后,再开燃气阀;即建立火焰。(具体燃烧过程参看燃烧机使用说明书) 4、燃烧机的启停是由锅炉控制器根据温度的变化来发出启停指令的,(此功能为全自动)操作员应经常观察温度的变化若出现异常现象就立即停机、停火。 5、锅炉在运行过程中操作人员应随时观察水位,特别要保证补水箱满水。操作人员应每周对锅炉进行一次排放污水(每周一早班进行),保证锅炉水质。 6、锅炉在运行过程中一旦有异常现象操作人员应立即停机,处理

DG45-80X10型次高压卧式锅炉给水泵

DG45-80X10型次高压卧式锅炉给水泵概述: DG45-80型次高压锅炉给水泵为卧式多级单吸节段式离心泵,其系列锅炉给水泵是专为更新改造的新系列工业蒸汽锅炉配套的高效节能产品,不仅适用于中、低压锅炉给水,也适用于工厂、城市高扬程输水。 DG45-80X10型次高压卧式锅炉给水泵参数范围: 流量Q45m3/s; 扬程H800m; DG45-80X10型次高压卧式锅炉给水泵型号说明: 例:DG45-80×10; DG-单吸、多级锅炉给水泵; 45-流量(m3/h); 80-泵单级扬程(m); 10-泵级数。 DG45-80X10型次高压卧式锅炉给水泵主要零部件材质: 一般材质为铸钢 进、出水段:ZG230-450 中段:ZG230-450 导叶:ZG 叶轮:ZG230 主轴:40Cr 密封环:QT450

轴套:HT250 平衡盘:ZG2Cr13 平衡环:锡青铜 DG45-80X10型次高压卧式锅炉给水泵旋转方向: 从电机端看,锅炉给水泵为顺时针方向旋转。 DG45-80X10型次高压卧式锅炉给水泵结构型式: 泵体与泵盖构成叶轮的工作室,在进、出水法兰上制有安装真空表和压力表的管螺孔,泵体下部制有放余水的管螺孔。 叶轮为单吸闭式,设置平衡盘平衡绝大部分轴向力,同时设有推力轴承来承受可能残存的小部分轴向推力,轴承的布置使轴处于稳定的拉杆状态。叶轮在装配前均须作严格的静平衡校验,以保证运行的平稳。 泵轴由两个巴氏合金滑动轴承支承,轴承装在泵悬架中的轴承体内,用稀油润滑。在泵体上设有密封环,可以提高泵的容积效率,另一方面也可以避免高压水回流入吸入室,扰乱进水流场,可以保证水泵的吸入性能。 轴封一般为软填料密封,水泵工作时可引少量介质至填料函处,也可外接冷却润滑水,起水封及冷却润滑作用。按用户的需要,可以将填料密封改为机械密封。泵壳可在轴线处轴向拆开,DG型泵吸入口垂直向上,吐出口垂直向上,与轴心线垂直。从驱动端方向看,水泵旋向为顺时针方向,根据用户需要也可生产逆时针方向旋转的,用户可在定货时特别提出。

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

相关文档