文档库 最新最全的文档下载
当前位置:文档库 › 水轮机

水轮机

水轮机
水轮机

一、简介

(一)、简介

水轮机是水电厂将水轮转换为机械能的重要设备。

1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水流的压能和动能,冲击型利用水流动能。

2、反击式中又分为混流、轴流、斜流和贯流四种;

3、冲击式中又分为水斗、斜击和双击式三种。

1)、混流式:

水流从四周沿径向进入转轮,近似轴向流出

应用水头范围:30m~700m

特点:结构简单、运行稳定且效率高

水流在导叶与转轮之间由径向运动转变为轴向流动

应用水头:3~80m

特点:适用于中低水头,大流量水电站

分类:轴流定桨、轴流转桨

3)、冲击式

转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。

水头范围:300~1700m

适用于高水头,小流量机组。

(二)、水轮机主要类型归类

二、水轮机主要基本参数

1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr(设计水头)流量:Q

转速:f=np/60

出力:N=9.81QHη(Kw)

效率:η

2、水轮机型式代号

混流式:HL

斜流式:XL

轴流转桨式:ZZ

轴流定桨式:ZD

冲击(水斗式):CJ

双击式:SJ

斜击式:XJ

贯流转桨式:GZ

贯流定桨式:GD

对于可逆式,在其代号后增加N 3、混流式水轮机

型号:HL100—LJ—210 HL:代表混流式水轮机100:转轮型号(也称比转速)LJ:立式金属蜗壳

210:转轮直径(210厘米)4、轴流式水轮机

ZZ560—LH—1130

ZZ:轴流转桨式水轮机

560:转轮型号

LH:立式混凝土蜗壳

1130:表示转轮直径为1130厘米5、冲击式水轮机

CJ47—W—170/2X15.0

CJ:冲击式

W:卧轴

170:转轮直径170cm

2:2个喷嘴

15.0:射流直径

三、水轮机主要部件

(一)、组成

引水部件、导水部件、工作部件、泄水部件

1、引水部件

组成:引水室(蜗壳)、座环

作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。

2、导水部件

组成:导叶及其操作机构、顶盖、底环

作用:调节进入转轮的流量和形成转轮所需的环量

3、工作部件

组成:转轮

作用:直接将水流能量转化为旋转的机械能

4、泄水部件

组成:泄水锥、尾水管

作用:引导水流进入下游,尾水管同时还在转轮后形成真空,利用转轮出口到下游尾水之间的位能,恢复转轮出口处的部分动能损失,以提高效率。

(二)、水轮发电机组装置形式

立式和卧式

立式:根据推力头的位置分悬式、全伞式、半伞

(三)、混流式水轮机主要结构

由转轮、主轴、导轴承、主轴密封、座环、蜗壳、顶盖、底环、泄流环(基础环)、止漏环、抗磨板、导叶及其操作机构、机坑里衬、机坑内环形吊车、尾水管等组成。

将水轮机分成三大部分:转动部分、固定部分、埋入部分

1、转动部分

转动部分是机组的核心组成部分,是水能转换成机械能/电能的关键。

转动部分及其相关部件主要包括:转轮、主轴、主轴密封等。

2、转轮

转轮是实现水能转换的主要部件,它将大部分水能转换成转轮的旋转机械能,并通过水轮机主轴传递给发电机。

水轮机的转轮是将水能转换成机械能。

3、主轴

主轴是承受水轮机转动部分的重量及轴向水推力所产生的拉力,同时传递转轮产生的扭矩。

4、转轮拆卸方式

现在立式机组转轮的拆卸可以有三种方式:

下拆:将尾水锥管和底环以及转轮由下方取出;

中拆:即取出一段中间轴并拆除顶盖后,将转轮由水车室取出;

上拆:用传统方式,吊出发电机转子并拆除顶盖后由上方取出转轮。

5、主轴密封

主轴密封是水轮机关键部件之一,水轮机在运行过程中,其主轴密封的安全可靠运行,直接关系到水轮机是否安全运行

分类:平板密封(映站)、端面密封、螺旋(水泵)密封、滑动架密封等。

作用是:有效地阻挡尾水管中的水从主轴与顶盖之间的间隙上溢,防止水轮机导轴承及顶盖被淹,维持轴承和机组的正常运行。

6、检修密封

检修密封是当机组检修、检查或由于主轴密封损坏时投入的一种密封,又称空气围带;

检修密封:当投入时压缩空气进入空气围带,使空气围带的凸出部位抱紧水导旋转油盆与之配合的加工面或大轴法兰,切断尾水以防水淹水车室。

7、固定部分

顶盖、底环、座环、支持环等

8、埋入部分

蜗壳、座环等

9、水轮机导轴承

作用:

一是承受机组在各种工况下运行时通过主轴传过来的径向力

二是维持已调好的轴线位置

10、筒式水导轴承循环方式

筒式瓦的油循环方式是采用自循环,润滑油的自循环工作原理:当机组运行时,安装在大轴上的水导轴承旋转油盆与大轴一起旋转,旋转时油盆中油也跟着旋转,由于离心力的作用,油盆中的油位形成边缘高,中心低的状态,即形成一个抛物面。在压差的作用下,油经固定不动的轴承体圆周外部的进油孔进入瓦面的下环形油槽,由于大轴的转动使油沿轴瓦面上的斜向油沟上移,并流经整个瓦面,使大轴与轴瓦之间的润滑良好,同时带走热量,热油流到上环形油槽经排油管流至冷却器,

热油经冷却后通过进油管进入油盆,以上润滑油的路径为一次工作过程。机组运行时润滑油如此往复进行不停的循环,来满足轴承的运行需要。

11、导水机构

组成:由导水机构由顶盖、底环、导叶、连杆机构和接力器等组成。

作用:

1、是使水流进入转轮之前形成旋转并改变水流的入射角度;

2、当机组出力发生变化时,用来调节流量。

3、正常与事故停机时,用来截断水流。

导叶的转动最终通过接力器和连杆机构来操纵导叶的开关12、顶盖

主要作用:

形成流道并承受相应的流体压力

固定和支撑活动导叶及其连杆机构

支撑水导轴承

支撑并组成机组的密封,包括主轴密封、检修密封、上迷宫环等13、底环

作用:

与顶盖一起形成过流通道

安装导叶下轴承

14、基础环(支持环)

作用

在机组安装时放座环,成为座环的基础。

在水轮机安装及检修时,用来放置转轮。

15、尾水管

尾水管位于转轮的下方是主要的通流部件,作用是引导进出转轮的水流。水泵水轮机作水轮机运行时要求尾水管的断面为缓慢扩散型

16、其他

紧急真空破坏阀:消除抬机现象

补气装置:尾水管十字架补气、尾水短管补气、轴心孔补气

17、埋设管路

埋设管路主要包括

机组排水管路

机组测压管路

压水系统管路

回水排气管路

机组冷却润滑系统管路

18、水轮机气蚀(空化)及磨损

分类:间隙、空腔、翼型、局部

19、水轮机振动

按振动的原因:水力、机械、电磁

按振动方向:轴向和径向

振动允许值:250~375r/min合格为0.10

摆度允许值:250r/min0.05mm/m375r/min0.04mm/m

20、水轮机保护装置

水轮机保护装置是当机组在启停和运行过程中发生危及设备和人身安全的故障时,自动采取保护或联锁措施,防止事故产生和避免事故扩大,从而保证人和设备的安全不受损害或将损害降到最低限度。

保护装置主要包括

振动保护装置

压力保护装置:如转轮上腔水压力、冷却水压力

温度保护装置

导轴承油位保护装置

21调速油压装置作用

水轮发电机调速系统油压装置的作用是为调速系统提供高压力油操作动力,以实现水轮发电机组的开停机、频率和负荷调节。水轮发电机调速系统油压装置压力油的工作过程如下:储存在集油箱常压状态下的透平油通过压油泵增压,被输送到压力油罐。

22水轮发电机的结构

立式水轮发电机一般由转子、定子、机架、轴承、冷却器、制动系统等组成。

1、转子

转子是水轮发电机的旋转部件,位于定子里

面,与定子保持一定的空气间隙。转子通过主轴与下面的水轮机连接。它的作用是产生磁场。它主要由主轴、转子支架、磁轭和磁极等组成。

2、主轴

主轴的作用是中间连接、传递转矩、承受机组转动部分的总量及轴向推力。

3、转子支架

轮毂和轮臂合在一起叫支架。它的作用是连接主轴和磁轭的中间部分,并起到固定磁轭和传递转矩的作用。

4、磁轭

磁轭也叫轮环。它的作用是产生转动惯量和固定磁极,同时也是磁路的一部分。磁轭由扇形磁轭冲片、通风槽片、定位销、拉紧镙杆、磁轭上压板、磁轭键、锁定板、卡键、下压板等组成。

5、磁极

磁极是产生磁场的部件,由袭击铁芯、磁极线圈、阻尼绕组及极靴等组成。磁极线圈由铜线或是铝线制成,立绕再磁极铁心的外表面上,匝与匝之间用石棉纸板绝缘。线圈饶好后经浸胶热压处理,形成坚固的整体。阻尼绕组的作用是当水轮发电机产生振荡时七阻尼作用,使发电机运行稳定。在不对称运行时,它能提高担负不对称负载的能力。而实心磁极因为本身有很好的阻尼作用,故不用在装设阻尼绕组。

水轮机的选型设计说明

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。(4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。 (2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷

三峡工程实现特大型水轮发电机组国产化

三峡工程实现特大型水轮发电机组国产化 一、国家决策:对三峡工程实行重大技术装备国产化 国家高瞻远瞩的重大装备设备国产化,早在三峡工程论证阶段已有安排。依托重点工程实现重大装备国产化是我国政府导向行为。在三峡工程开工前,围绕三峡机电设备国产化、国家对民族工业的扶持政策,组织开展了一系列科研攻关,制定了切实可行的支持鼓励的政策及措施,收到良好的效果。 三峡工程的重大装备科研攻关列入从“六五”到“十五”连续5个国家“五年”计划,我国相关科研机构、院校及机电设备制造厂为此作了充分准备。从1983年三峡工程可行性审查会后,到国家正式批准三峡工程开工,在这十余年的论证中,三峡工程的重大装备前期科研攻关,包括工程专用施工设备、通航设备、电站水轮发电机组设备以及三峡工程输变电成套设备等各项攻关工作一直没有停止。 在上个世纪80年代再次进行三峡工程论证时,原国务院重大装备领导小组办公室将三峡工程机电设备列入国家重大技术装备研制项目,组织XX大电机研究所、XX电机厂(哈电)、东方电机厂(东电)、中国水利水电科学研究院、长江水利委员会、东北输变电设备集团公司、XX电力机械设备制造公司、电力部XX自动化院、清华大学、XX大学、河海大学、华中科技大学、XX大学等单位开展科技攻关,先后建立了高水头水力试验台进行水轮机水力设计与模型试验的研究,建立了1000吨级、3000吨级推力轴承试验台,进行6000吨级推力轴承的计算与试验研究,总结了国内设计制造大型水电机组的经验,配合设计部门和论证小组提出了三峡工程的水轮机和水轮发电机的参数方案,为立足于国内自主设计制造做了大量的技术准备。 1993年7月,国务院三峡工程建设委员会批准了《长江三峡水利枢纽初步设计报告(枢纽工程)》,同年11月起先后邀请国外有设计制造大型水轮发电机组业绩的厂家来华技术交流,中方也曾派出各个代表团到国外考察。通过考察,了解掌握了国外大机组的技术水平

世界最大水轮机——三峡70万千瓦水轮机组研制概况(下

世界最大水轮机 ——三峡70万千瓦水轮机组研制概况 (下) 工程总投资:150亿元以上 工程期限:1996年——2012年 三峡左岸电站厂房,总长度643.7米,跨度39米,高度93.8米,相邻发电机组中心距38.3米。总面积相当于两艘航空母舰甲板面积,足够战斗机在里面起降。 三峡水电站32套70万千瓦发电机组由水轮机、发电机、励磁系统、调速系统、控制系统、主变压器及附属设备组成,设备总重超过

20万吨,多数为超重型特大部件。左岸厂房14套机组有Alstom和VGS两种构型,右岸厂房12套机组和地下厂房6套机组,经过Alstom、哈电、东电完善设计,成功消除了对空化敏感的特殊压力脉动区,使水轮机运行稳定性有了进一步提高。 三峡工程最早建设的左岸14台机组,中标外商都是国际一流企业,但实际制造供货分散在17个国家100多个工厂,又逢制造企业兼并改组,富有经验的原产地只生产一些关键部件,其他部件转移到子公司,甚至关键的定子线棒德国Siemens公司交给巴西生产(2号机组1941个水接头返厂重焊),瑞士ABB磁极装配在西班牙生产(5 号机组磁极返修后,转子才耐压通过),ABB推力头和镜板在意大利生产(5号机组推力头止口与轴领偏心0.3mm,需要修磨放大止口间隙),出现不少质量问题,经过返修最终达到了技术要求。左岸还有55%的部件由国内企业制造,这批机组质量责任在总供货外商,在运行期间逐步进行升级改造。右岸电站12台机组有8台实现国产,地下电站6台机组全部实现国产。总体来说,机组设计制造代表了当今国际先进水平。 三峡水电站由于自然条件和以防洪为主的需要,初期水头61-94米,后期水头为71-113米,每年汛前水库水位降到145米高程,防洪库容221.5亿立方米,水头变幅很大,额定水头80.6米,给水轮机设计增加了难度。每套水轮机组主要由引水管、座环、蜗壳、导水机构、转轮、主轴、下机架、顶盖、转子支架、定子铁芯、定子线圈、尾水管等部件组成。单台机组出力700MW,水轮机转轮名义直径

水轮机复习知识要点总结

水轮机原理及水力设计 第一章 1、水轮机是一种将河流种蕴藏的水能转换成旋转机械能的原动机,水流流过水轮机时,通过主轴带动发电机或 者发电机的转子将旋转的机械能转换成电能。 2、反击式水轮机转轮区内的水流在通过转轮叶片通道时,始终是连续充满整个转轮的有压流动,当水 流通过水轮机后其动能和势能大部分被转换成转轮的旋转机械能。 3、反击式水轮机包括:混流式水轮机:水流从四周沿径向进入转轮,然后近似的以轴向流出转轮,应用 水头范围较广,约为20~700m,水头较高。 轴流式水轮机:水流在导叶和转轮之间由径向流动变为轴向流动,而在转轮 区 水流保持轴向流动,其应用水头约为3~80m,适用水头较低,根据其转轮叶片在运行中能否转动,可以分为轴流定浆式和轴流转浆式两种。 斜流式水轮机:斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。 贯流式水轮机:根据其发电装置形式不同,分为全贯流式和半贯流式两类。 4、冲击式水轮机的转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已转变成高速自由射流, 该射流冲击水轮机的部分轮叶,并在轮叶的约束下发生流速大小和方向的急剧改变,从而将其动能大部分传递给轮叶,驱动轮叶旋转。 5、冲击式水轮机按射流冲击转轮方式的不同分为:水斗式水轮机、斜击式水轮机、双击式水轮机三种。 6、水头H :水轮机的水头(亦称工作水头),是指水轮机进口和出口截面处单位重量的水流能量差,单位为 m。 7、各种水头:(1)最大水头:H max,是允许水轮机运行的最大净水头。它对水轮机结构的强度设计有决性影 响。 (2)最小水头H mim,是保证水轮机安全、稳定运行的最小净水头。 (3)加权平均水头H a:是在一定期间内(视水库调节性能而定), 所有可能出现的水轮机水头的加权平均值,是水轮机在其附近运 行时间最长的净水头。 (4)设计水头H r:是水轮机发出额定出力时所需要的最小净水头。 &流量:水轮机的流量是指单位时间内通过水轮机某一过流断面的水流体积,常用符号Q表示,常用单 位为m/s。在设计水头下,水轮机以额定转速、额定出力时所对应的水流量常委设计流量。 9、出力P:水轮机出力是水轮机轴端输出的功率,常用符号P表示,常用单位为KW。 P 10、水流的出力:P n= QH=9.81QH(KW)水轮机的效率:t二一由于水轮机在总做中存在能量耗损 P n 所以水轮机的出力P总是小于水流的出力P n,其效率总是小于1. 水轮机的出力P=P n t=9.81OH t(KW)或者是P=M,也2卫其中「是水轮机的旋转速度, 60 rad/s; M是水轮机主轴输出的旋转力矩,N.m ;n是水轮机转速,r/min。 11、水轮机型号:①HL220 —LJ—250,表示转轮型号为220的混流式水轮机,立轴,金属蜗壳,转轮直 径为250cm。 ②ZZ560- LH- 500,表示转轮型号为560的轴流转浆式水轮机,立轴,混凝土蜗壳,转轮 直径为500cm ③GD60—W—300,表示型号为600的贯流定浆式水轮机,卧轴、灯泡式引水,转轮直 径为300cm ④2CJ-20W—120/2 X 10,表示转轮型号为20的水斗式水轮机,一根轴上装有两个转轮,卧轴,转轮直径 为120cm,每个转轮有两个喷嘴,射流直径为20cm 11、水轮机的装置形式:指水轮机主轴的不知形式与引水室形式相结合的总体。 ①反击式水轮机的装置形式:大型机组采用立轴布置形式,水轮机轴与发电机轴直接连接;中高水头混

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

水轮发电机基本知识介绍

水轮发电机基本知识介绍 一. 关于发电机电磁设计 水轮发电机电磁设计的任务是按给定的容量、电压、相数、频率、功率因数、转速等额定值和其他技术要求来确定发电机的有效部分尺寸、电磁负荷、绕组数据及性能参数等。 水轮发电机电气参数的选择,主要依据电力系统对电站电气参数和主接线的要求,同时根据《水轮发电机基本技术条件》、《导体和电器设备选择设计技术规定》等相关规范来选择,当然也要根据具体电站的要求。 在电磁设计过程中考核的几个主要参数:磁密,定、转子线圈温升,短路比,主要电抗,效率,飞轮力矩。 二. 电磁设计需要输入的基本技术数据 (一)额定容量、有功功率、无功功率和功率因数的关系 Φ--发电机输出电流在时间相位上滞后于电压的相位角 额定容量S=√3U N I N =22Q P 有功功率P=√3U N I N cos φ=S ·cos φ 无功功率Q=√3U N I N sin φ=S ·sin φ cos φ= S P (二)发电机的电磁计算需要具备以下基本的额定数据: 功率/容量,功率因数,电压,转速(极数),频率,相数,飞轮力矩(转运惯量) 1. 额定容量(视在功率)或者额定功率(有功功率)

S=φ cos P (kV A / MV A ) P=水轮机额定出力×发电机效率 (kW / MW ) 发电机的容量大小更直接反映发电机的发电能力。有功功率结合功率因数才能完整反映发电机的输出功率能力。 2. 额定功率因数cos φ 发电机有功功率一定时,cos φ的减小,可以提高电力系统稳定运行的功率极限,提高发电机的稳定运行水平;同时由于增大了发电机的容量,发电机造价也增加。相反,提高额定功率因数,可以提高发电机有效材料的利用率,并可提高发电机的效率。近年来由于电力系统容量的增加,系统装设同步调相机和电力电容器来改善其功率因数,以及远距离超高压输电系统使线路对地电容增大,发电机采用快速励磁系统提高稳定性,使发电机额定功率因数有可能提高。 取值:0.8,0.85,0.875,0.9,国内大容量多取0.85~0.9,国外发达国家多取0.9~0.95。 灯泡式水轮发电机由于受结构尺寸限制,功率因数较一般水轮发电机的取值高,以减小气隙长度,提高通风冷却效果。 (1) 一般水轮发电机 GB/T7894-2009 水轮发电机基本技术条件:

世界最大水轮机

世界最大水轮机 三峡70万千瓦水轮机组研制概况 投资:150亿元以上 工程期限:1996年——2012年 工程期限:1996年——2012年 三峡工程最早建设的左岸14台机组,中标外商都是国际一流企业,但实际制造供货分散在17个国家100多个工厂,又逢制造企业兼并改组,富有经验的原产地只生产一些关键部件,其他部件转移到子公司,甚至关键的定子线棒德国Siemens公司交给巴西生产(2号机组1941个水接头返厂重焊),瑞士ABB磁极装配在西班牙生产(5号机组磁极返修后,转子才耐压通过),ABB推力头和镜板在意大利生产(5号机组推力头止口与轴领偏心0.3mm,需要修磨放大止口间隙),出现不少质量问题,经过返修最终达到了技术要求。左岸还有55%的部件由国内企业制造,这批机组质量责任在总供货外商,在运行期间逐步进行升级改造。右岸电站12台机组有8台实现国产,地下电站6台机组全部实现国产。总体来说,机组设计制造代表了当今国际先进水平。 三峡水电站由于自然条件和以防洪为主的需要,初期水头61-94米,后期水头为71-113米,每年汛前水库水位降到145米高程,防洪库容221.5亿立方米,水头变幅很大,额定水头80.6米,给水轮机设计增加了难度。每套水轮机组主要由引水管、座环、蜗壳、导水机构、转轮、主轴、下机架、顶盖、转子支架、定子铁芯、定子线圈、尾水管等部件组成。单台机组出力700MW,水轮机转轮名义直径9.709/10.427m(VGS/Alstom),是当今世界最大的混流式水轮机转轮。机组采用三个导轴承的半伞式结构,推力轴承负荷5050/5520吨,为当今世界之最。发电机额定出力778MVA,功率因数0.9,为提高在高水头下水轮机运行的稳定性,发电机设计最大出力840MVA,可连续运行。发电机额定电压20kV,采用定子绕组水冷、转子空冷的冷却方式。发电机定子机座外径21.42/20.9m,定子铁芯内径18.5/18.8m,铁芯高度3.13/2.95m,单台机组重约7000吨,均为世界之最。

水泵水轮机特点

天荒坪抽水蓄能电站 水泵水轮机特点 华东天荒坪抽水蓄能有限责任公司游光华 浙江安吉313302 摘要天荒坪抽水蓄能电站的水泵水轮机组由挪威KVAERNER公司提供,是我国较早从国外引进的大型可逆式机组,自首台机组投产至今已有7年多。本文总结分析了水泵水轮机7年多的运行中出现了一些问题,以供参考借鉴。 主题词天荒坪抽水蓄能水泵水轮机性能“S”形特性不稳定轴向水推力抬机导叶关闭规律 天荒坪抽水蓄能电站安装有6台300MW水泵水轮机组,为单级、立轴、混流可逆式,额定净水头为526米,运行毛水头(扬程)为526米~610.2米,水轮机安装高程为225米,淹没深度为-70米,是目前国内已投产运行的水头和变幅最大的单级可逆式机组,在国际上也较罕见,为使其达到满意的效率和良好的运行稳定性,设计难度大,没有现成的经验可供借鉴。水泵水轮机的参数如下: 水轮机工况:水泵工况:额定容量:306MW 333MW 最大轴出力(入力):338MW 333MW 额定流量:67.7m3/s 58.80m3/s(最大) 43.00m3/s(最小) 额定转速:500RPM 500RPM 旋向(俯视):顺时针逆时针 转轮水轮机进口直径:4030mm 转轮水轮机出口直径:2045mm

最大瞬态飞逸转速:720 r/min 最大稳态飞逸转速:680 r/min 水泵水轮机及其辅助设备由挪威GE 公司提供。水泵水轮机大修拆卸方式采用中拆方式。首台机组于1998年9月30日投入运行,2000年12月25日所有机组投产,投产以来运行情况表明,机组性能良好,效率较高,但也出现了一些问题,在技术人员的努力下,通过采取措施,相关问题已得到了较好的解决。 1水泵水轮机的性能和结构特点 1.1效率 按照合同规定,水泵水轮机的效率按照模型试验来验收,合同要求水轮机工况的最高效率≥92.20%,加权平均效率≥90.41%,水泵工况最高效率≥ 91.70%,加权平均效率≥ 91.52%。根据模型试验报告,水轮机工况的模型最优效率为90.61%,折算为原型其整个运行范围内的最优效率为92.28%,加权平均效率为90.317%,而水泵工况下模型最优效率为89.84%,折算原型最优效率为92.17%,加权平均效率为92.01%,除水轮机工况加权平均效率略低于保证值0.083%外,其余均达到合同要求。为了检验真机效率,我们于2001年5月在5号机组上进行了部分水头(扬程)的热力法效率试验,测得水轮机工况下在试验平均净水头566.23 m时,机组出力为210~304.06 MW,水轮机最高效率为92.11%,相应机组出力272.00 MW;水泵工况试验平均净扬程为542.09 m,水泵平均效率为88.99%。从上述结果可以看出,水轮机工况的最高效率已接近模型推算值,水泵工况效率偏

水力发电与水轮机简介

troduction of hydro-electric power and hydraulicturbines Power may be developed from water by three fundamental processes : by action of its weight, of its pressure, or of its velocity, or by a combination of any or all three. In modern practice the Pelton or impulse wheel is the only type which obtains power by a single process the action of one or more high-velocity jets. This type of wheel is usually found in high-head developments. Faraday had shown that when a coil is rotat ed in a magnetic field electricity is generated. Thus, in order to produce electrical ener gy, it is necessary that we should produce mechanical energy, which can be used to rot ate the coil. The mechanical energy is produced by running a prime mover by the ene rgy of fuels or flowing water. This mechanical power is converted into electrical powe r by electric generator which is directly coupled to the shaft of turbine and is thus run by turbine. The electrical power, which is consequently obtaind at the terminals of the generator, is then transited to the area where it is to be used for doing work.he plant or machinery which is required to produce electricity is collectiv ely known as power plant. The building, in the entire machinery along with other aux iliary units is installed, is known as power house. Keywords hydraulic turbines hydro-electric power classification of hydel plants head scheme There has been practically no increase in the efficiency of hydraulic turbines sinc e about 1925, when maximum efficiencies reached 93% or more. As far as maximum efficiency is concerned, the hydraulic turbine has about reached the practicable limit o f development. Nevertheless, in recent years, there has been a rapid and marked increa se in the physical size and horsepower capacity of individual units. In addition, there has been considerable research into the cause and prevention of cavitation, which allows the advantages of higher specific speeds to be obtained at hig her heads than formerly were considered advisable. The net effect of this progress wit h larger units, higher specific speed, and simplification and improvements in design h as been to retain for the hydraulic turbine the important place which it has

大型水轮发电机的低成本设计研究

大型水轮发电机的低成本设计研究 摘要:目前,随着中国的不断发展壮大,在大型水电产品的发展中也取得了优 异的成绩,并在世界各地中占据领先的地位,拥有一定的技术水平。大型水轮发 电机产品在我国乃至世界各地的应用都是非常重要的,尤其是在水资源非常丰富 的国家,其发挥着巨大的作用。但是,我们也要考虑到与经济问题,使得大型水 轮发电机的设计符合经济发展的要求。因此,本文主要研究大型水轮发电机系统 的低成本结构设计方案,阐述相关的设计步骤以及实际中的过程等,从而可以设 计出低成本,高效率的结构方案,并不断的优化设计,使得大型水轮发电机的结 构设计的质量和效率得到充分的保障。 关键词:大型水轮发电机;低成本;设计方案;研究分析 1、前言 中国在各个地区都有丰富的水资源,这对水电行业的快速发展是非常重要的,发挥着决定性的作用,以此为基础,才能使得大型水轮发动机的效率得到保证。 随着一大批一大批的大型水利工程的完成,其在中国水电开发的发展中的意义可 想而知,有效地提高了大型水利工程的工作效率,促进我国水利工程事业的不断 进步与发展。同时,相应的水电单位也在不断的面临大型和超大型的发展。但是 目前,根据国内水利工程协会的统计,在中国,大型水轮发电机的成本过高,需 要对其进行低成本的设计,从而使得其的发展符合当今经济的发展状况,创造出 更加优秀的工程项目。 2、大型水轮发电机低成本设计的技术问题分析 2.1定子铁芯的热膨胀 随着我国的科学技术的不断发展壮大,大型水轮发电机的容量也随之被不断 的改善,逐渐扩大,相应定子铁心的直径也在增大,这就会涉及到成本问题。并 且相应的定子铁心的数量已经从之前的几米增长到了十多米,这样不断的增加很 有可能超过20m。相对直径成倍增加,势必会造成成本的增加,我们在设计时一 定要考虑到成本问题,与实际相结合,制定有效合理的设计方案。大型水轮发电 机的定子铁芯,铁芯温度一般会上升至50度,然后核心径向膨胀将达到11mm,所以干扰的半径方向的核心和基础是2mm,我们一定要按照一定的标准进行设计,促使定子铁芯在其中充分发挥自身的作用,达到良好的作用效果。 2.2定子铁芯的压缩质量 在实际的大型水利发电机的运行过程中,定子铁芯的压缩质量是非常重要, 我们在对其进行设计时,一定既要保证其的质量又要节约成本,使得大型水利发 动机可以正常工作,既达到理想的效果又能节约成本。虽然大型水轮发电机可以 自由膨胀,但随着不断的使用,相应的轴向铁心面积的压力会大幅度的下降,相 应的定子铁心会发生翘曲,所以在设计中我们要充分考虑到这方面的问题,避免 长时间使用出现问题。 2.3定子铁芯的开裂的 定子铁芯的结构是装配在襟翼上的,所以在低成本的大型水轮发动机的设计中,我们一定要注意定子铁心的核心位置,避免将相应的环节分布不均匀,从而 导致难以预测的挤压压力,使得定子铁芯受到的压力对大型水轮发动机的设计产 生不利的影响,如在很大程度上加剧了翘曲的情况等等。 2.4转子支架的刚度与轮盘结构的设计 大型水轮发电机的转子支架的结构设计在整个设计过程中也是非常重要的,

水轮机调节基础知识

水轮机调节基础知识 1、反应电能质量指标:电压和频率。 2、水轮机调节:在电力系统中,为了使水轮发电机组的供电频率稳定在某一规定的范围内而进行的调节。 3、水轮机调节系统由调节对象和调速器组成。调节对象有引水系统、水轮机、发电机和电力系统。。 4、Kf 越大,或者δf 越小,或者转速死区越小,离心摆的灵敏度越高。 5、系统越稳定:TW 越小、TA 越大、en 越大、TD 越大、bp 越大 6、Tw 大则应增加bt 以减小水击。,Ta 小则应增加bt 以减小转速变化值。 7、水轮机调节的途径:改变导叶开度或喷针行程,方法是利用调速器按负荷变化引起的机组转速或频率的偏差调整水轮机导叶或喷针开度使水轮机动力距和发电机阻力距及时回复平衡从而使转速和频率保持在规定范围内。 8、水轮机调节的特点:自动调节系统、一个复杂非线性控制系统、有较长引水管道开启或关闭导叶时压水管道产生水击、随电力系统容量的扩大和自动化水平的提高对水轮机调速器的稳定性,速度性,准确性要求高。 9、调速系统的组成:被控对象,测量元件,液压放大元件,反馈控制元件。 10、引导阀的作用:把转动套的位移量的变化变转变为压力油的流量的变化,去控制辅助接力器活塞的运动。 11、硬反馈又称调差机构或永态转差机构,输出信号与输入信号成比例的反馈称为硬反馈或比例反馈。用于实现机组有差调节,以保证并网运行的机组合理地分配负荷。 12、软反馈又称缓冲装置或暂态转差机构或校正元件,只在调节过程中存在,调节过程结束后,反馈位移自动消失,这种反馈称为软反馈或暂态反馈。作用是提高调节系统的稳定性和改善调节系统的品质。 13、硬反馈的作用:实现机组有差调节保证并网运行的机组合理非配负荷。 14、硬反馈的组成:反馈椎体、反馈框架、螺母、螺杆、转轴、传动杆件。 15、软反馈的作用:提高调节系统的稳定性,改善调节系统的品质。 16、缓冲装置的组成:壳体,主动活塞组件,从动活塞组件,针塞组件,弹簧盒组件。 17、 18、调差机构的作用:用于改变机组静特性斜率,确定并列运行机组之间负荷的分配,防止负荷在并列运行机组之间来回窜动。 19、调差机构的组成:螺母,螺杆,反馈框架,转轴 20、转速调整机构的作用:当机组单机运行时用于改变机组转速,当机组并列于无穷大电网运行时用于改变机组所带的负荷。 21、转速调整机构的组成:手轮、螺杆、螺母。 22、调节系统的静特性:统节系统处于平衡状态时机组转速与发电机出力之间的关系。 23、调节规律的输出信号接力器位移y 与输入信号转速x 之间的关系称为调节规律。PI :比 例积分型S K K S G I P PI /)(+=,PID 比例积分微分型s K s K K s G D I P PID ++=/)( 24、 bp 与调节系统的构造有关,与机组特性和运行水头无关。 ep 与两者都有关。 25、调速器的典型环节:比例环节、积分环节、理想微分环节、实际微分环节、惯性环节。 26、按元件结构不同分为:手动、电动、机械液压型、电气液压型、微机调速器; 27、按容量分为:特小型、中小型、大型调速器; 28、按执行机构不同分为:单调节(混流,轴流定浆式)、双调节调速器(轴流转浆,贯流转浆,冲击式); 29、按调节规律:PI 型,PID 型 30、按所有油压装置和主接力器设置情况分为:整体式和分离式。 31、离心摆工作原理:当离心摆在额定转速时,如果转速增加则离心力增大,重块外张使转动套升高;反之则转动套下降,这样,离心摆转速的变化就以转动套位置的高低反映出来 32、离心摆的作用:将机组转速偏差信号按比例装换成装套的位移信号,传递给引导阀。 33、离心摆静特性:离心摆静态方程式表示在稳定工况时,离心摆的转速几乎与转动套行程

水轮机选择(经典)

第四章水轮机选择 §4.1 水轮机的标准系列 由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。 一、反击式水轮机的系列型谱 表4—1、4—2、4—3、4—4中给出了轴流式、混流式水轮机转轮的参数。 1)、水轮机的使用型号规定一律采用统一的比转速代号。 2)、每一种型号水轮机规定了适用水头范围。水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。 二、水斗式水轮机转轮参数 表4—5,系列型谱尚未形成 三、水轮机转轮尺寸系列表(表4—6) 四、水轮发电机标准同步转速(表4—7) 五、水轮机系列应用范围图 为纵座标绘制某一系列水轮机应用范围。 以H为横座标,N 单 1、根据H r、N r→范围→D1,n。 2、水轮机吸出高度的确定H s:根据h s~H的关系曲线确定。 由H r→h s,H s=h s-▽/900

§4.2水轮机的选择 一、水轮机选择的意义、原则、内容 1、意义 水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。 2、原则 (1)、充分考虑电站特点(水文水能、电力系统技术条件,电站总体布置)。 (2)、有利于降低电站投资、运行费、缩短工期,提前发电 (3)、提高水电站总效率,多发电 (4)、便于管理、检修、维护,运行安全可靠,设备经久耐用 (5)、优先考虑套用机组 3、内容 (1)、确定机组台数及单机容量 (2)、选择水轮机型式(型号) (3)、确定水轮机转轮直径D1、n、H s、Z a;Z0、d0 (4)、绘制水轮机运转特性曲线

水轮机作业

第1章 概论 (一) 单项选择题 1.水轮机的工作水头是( )。 (A )水电站上、下游水位差 (B )水轮机进口断面和出口断面单位重量水流的能量差 2.水轮机的效率是( )。 (A )水轮发电机出力与水流出力之比 (B )水轮机出力与水流出力之比 3.反击式水轮机是靠( )做功的。 (A )水流的动能 (B )水流的动能与势能 4. 冲击式水轮机转轮是( )。 (A )整周进水的 (B )部分圆周进水的 5.喷嘴是( )水轮机的部件。 (A )反击式 (B )冲击式 (二)填空题 1.水电站中通过 把水能转变成旋转机械能,再通过 把旋转机械能转变成电能。 2.水轮机分为 和 两大类。 3.轴流式水轮机分为 和 两种。 4.水轮机主轴的布置形式有 和 两种。 5.冲击式水轮机有 、 和 三种。 (三)计算题 1.某水轮机的水头为18.6m ,流量为1130m 3/s ,水轮机的出力为180MW ,若发电机效率97.0=g η,求水轮机的效率和机组的出力g P 。 2.某水轮机蜗壳进口压力表的读数为a P 310650?,压力表中心高程为887m ,压力表所在钢管内径D = 6.0m ,电站下游水位为884m ,水轮机流量Q = 290 m 3/s ,若水轮机的效率%92=η,求水轮机的工作水头与出力。 第2章 水轮机的工作原理 (一) 单项选择题 1.水轮机中水流的绝对速度在轴面上的投影是( )。 (A )轴向分量z v (B )轴面分量m v 2.水轮机中水流的轴面分量m v 与相对速度的轴面分量m w ( )。 (A )相等 (B )不相等 3.水轮机输出有效功率的必要条件是( )。 (A )进口环量必须大于0 (B )进口环量必须大于出口环量 4.无撞击进口是指水流的( )与叶片进口骨线的切线方向一致。 (A )绝对速度 (B )相对速度 5.法向出口是指( )。 (A )出口水流的绝对速度是轴向的 (B )出口水流的绝对速度与圆周方向垂直 (二)填空题 1.水轮机转轮中的水流运动是 和 的合成。 2.水轮机轴面上所观察到的水流速度分量是 和 。

水轮机复习题

水轮机训练(一) 一、选择题 1.水轮机的效率η() (A)>1; (B)<1; (C)=1; (D)≤1。 2.水轮机是实现()转换的主要部件。 (A)水能;(B)电能;(C)动能;(D)机械能。 3.水斗式水轮机属于()水头水轮机。 (A)低;(B)高; (C)中;(D)中高。 4.可逆式水力机组主要作用是() (A)调频;(B)调相;(C)生产季节性电能;(D)削峰添谷。 5.目前水头大于700m时,惟一可采用的一种机型是()。 (A)混流式水轮机;(B)轴流转浆式水轮机;(C)斜流式水轮机;(D)水斗式水轮机。6.水斗式水轮机与混流式水轮机相比较,其特点是()。 (A)适用高水头,打流量;(B)平均效率高;(C)应用水头范围窄;(D)结构简单,工程造价低。 7.水斗试水轮机喷管相当于反击型水轮机的()。 (A)导水机构;(B)导叶操作机构;(C)导叶;(D)泻水锥。 8.反击式水轮机能量转换主要是()。 (A)水流动能的转换;(B)水流势能的转换;(C)水流压力的转换;(D)水头损失和压力的转换。 9.属于水轮机排水部分的是()。 (A)尾水管;(B)导轴承;(C)止漏装置;(D)蜗壳。 10.水轮机的设计水头是()。 (A)水轮机正常运行水头;(B)水轮机发出额定出力的最低水头;(C)水轮机发出最大出力的最低水头;(D)保证水轮机安全、稳定运行的最低工作水头。 11.ZD510-LH-180属于()水轮机。 (A)轴流转桨式;(B)轴流定桨式;(C)混流式;(D)斜流式。 12.SF表示()。 (A)水轮发电机;(B)气轮发电机;(C)立式发电机;(D)卧式发电机。 13.不属于反击式水轮机的是()。

相关文档
相关文档 最新文档