文档库 最新最全的文档下载
当前位置:文档库 › 电场和磁场知识点复习

电场和磁场知识点复习

电场和磁场知识点复习
电场和磁场知识点复习

专 题 四 电 场 和 磁 场

知识回扣

(一) 静电场 一、电场力的性质 1、库仑定律

内容:在真空中两个点电荷的相互作用力跟它们的电荷量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上. 表达式:2

2

1r Q Q k

F = [说明] (1)库仑定律适用在真空..中、点电荷...间的相互作用,点电荷在空气中的相互作用也可以应用该定律.

○1对于两个均匀带电绝缘球体,可以将其视为电荷集中于球心的点电荷,r 为两球心之间的距离.

2对于两个带电金属球,要考虑金属表面电荷的重新分布. ○

3库仑力是短程力,在r =10-15

~10-9

m 的范围均有效.所以不能根据公式错误地推论:当r →0时,F →∞,其实,在这样的条件下,两个带电体也已经不能再看做点电荷.

(2)在计算时,知物理量应采用国际单位制单位.此时静电力常量k =9×109N ·m 2/C 2

. (3)2

2

1r Q Q k

F =,可采用两种方法计算: ○

1采用绝对值计算.库仑力的方向由题意判断得出. ○

2Q 1、Q 2带符号计算.此时库仑力F 的正、负符号不表示方向,只表示吸引力和排斥力. (4)库仑力具有力的共性

1两个点电荷之间相互作用的库仑力遵守牛顿第三定律. ○

2库仑力可使带电体产生加速度.例如原子的核外电子绕核运动时,库仑力使核外电子产生向心加速度.

3库仑力可以和其他力平衡. ○

4某个点电荷同时受几个点电荷的作用时,要用平行四边形定则求合力. 2、电场强度

(1)电场强度的大小 ① 定义式: q

F

E =

适用于任何电场,E 与F 、q 无关 ② 点电荷的电场: 2r

Q

k E = Q 为场源电荷的电荷量 ③

匀强电场: d

U

E =

d 为电势差为U 的两点在电场方向上的距离 [说明] ①电场中某点的电场强度的大小与形成电场的电荷电量有关,而与场电荷的电性无关,而电场中各点场强方向由场电荷电性决定.

②如果空间几个电场叠加,则空间某点的电场强度为知电场在该点电场强度的矢量和,应据矢量合成法则——平行四边形定则合成;当各场强方向在同一直线上时,选定正方向后作代数运算合成.

(2)电场强度的方向

与正电荷所受电场力的方向相同。 3、电场线

(1)电场线对电场的描述

①电场线的疏密程度表示了电场的强弱,电场线越密集的地方,电场越强,即场强越大。 ②电场线上任一点的切线方向与电场方向相同。 (2)电场线的基本性质

①静电场中电场线始于正电荷或无穷远,止于负电荷或无穷远.它不封闭,也不在无电荷处中断.

②任意两条电场线不会在无电荷处相交(包括相切) ③沿电场线方向电势逐渐降低 ④电场线总是垂直穿过等势面 (3)几种常见的电场线

匀强电场

等量异种点电荷的电场 等量同种点电荷的电场

点电荷与带电平板

孤立点电荷周围的电场

二、电场能的性质 1、电场力做功的计算

(1)根据电势能的变化与电场力做功的关系计算

电场力做了多少功,就有多少电势能和其他形式的能发生相互转化 (2)应用W=qU AB 计算

①正负号运算法:按照符号规定把电量q 和移动过程的始、终两点的电势U AB 的值代入公式W=qU AB . 符号规定....

是:所移动的电荷若为正电荷,q 取正值;若为负电荷,q 取负值,若移动过程的始点电势A ?高于终点电势B ?,U AB 取正值;若始点电势A ?低于终点电势B ?,U AB 取负值.

②绝对值运算法:公式中的q 和U AB 都取绝对值,即公式变为 W =∣q ∣·∣U AB ∣ 正.、负功判断....:当正(或负)电荷从电势较高的点移动到电势较低的点时,是电场力做正功(或电场力做负功);当正(或负)电荷从电势较低的点移动到电势较高的点时,是电场力做负功(或电场力做正功).

[说明] 采用这种处理方法时,公式中的U AB 是电势差的绝对值||B A ??-,而不是电势的绝对值之差||||B A ??-,由于||B A ??-=||A B ??-,所以,这种处理方法不必计较A 、B 之中哪个是始点哪个是终点. 2、电势和电势差 (1)电势:

①定义

q

E p =

?(与试探电荷无关)

②零电势位置的规定:电场中某一点的电势的数值与零电势的选择有关,即电势的数值决定于零电势的选择.(大地或无穷远默认为零) (2)电势差: 定义 q

W U AB

AB =

(3)电势与电势差的比较:

①电势差是电场中两点间的电势的差值,B A AB U ??-=

②电场中某一点的电势的大小,与选取的参考点有关;电势差的大小,与选取的参考点无关。

③电势和电势差都是标量,单位都是伏特,都有正负值;电势的正负表示该点比参考点的电势大或小;电势差的正负表示两点的电势的高低。 (4)电势相对高低的判断

①利用电场线判断:沿电场线方向电势降低。

②据电场力的功情况判断:有电场力的功计算出电势差,再据电势差的正负判断两点电势的相对高低。

③据电势能的变化情况判断:由电势能的变化情况,结合电荷的正负,即可判断。 3、等势面

(1)等势面的性质:

① 在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ② 电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面。 ③ 等势面越密,电场强度越大 ④ 等势面不相交,不相切 (2)几种常见等势面

注意:①等量同种电荷连线和中线上 连线上:中点电势最小

中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。 ②等量异种电荷连线上和中线上

连线上:由正电荷到负电荷电势逐渐减小。

三、电荷在电场中的运动

1、带电粒子在电场中的运动情况(平衡、加速和减速) 一般利用动能定理求解带电粒子的末速度。

2.带电粒子在电场中的偏转(不计重力,且初速度v 0⊥E ,则带电粒子将在电场中做类平抛运动)

复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。物体的实际运动为这两种运动的合运动。

粒子v 0在电场中做类平抛运动

沿电场方向匀速运动所以有:t v L 0= ①

电子射出电场时,在垂直于电场方向偏移的距离为: 2

2

1at y = ② 粒子在垂直于电场方向的加速度:md

eU

m eE m F a ===

③ 由①②③得:2

021???

?

????

=v L

m d eU y ④ 电子射出电场时沿电场方向的速度不变仍为v 0,而垂直于电场方向的速度:

v L

md eU at v ?=

=⊥ ⑤ 故电子离开电场时的偏转角θ为:2

0tan mdv eUL

v v ==

⊥θ ⑥ 3、示波管的构造与原理

(1)示波器:用来观察电信号随时间变化的电子仪器。其核心部分是示波管

(2)示波管的构造:由电子枪、偏转电极和荧光屏组成(如图)。

(3)原理:利用了电子的惯性小、荧光物质

的荧光特性和人的视觉暂留等,灵敏、直观地显示出电信号随间变化的图线。

(二) 磁场

一、磁场的产生与描述 1.磁场

(1)磁场:磁场是一种特殊的物质存在于磁极和电流周围. (2)磁场的性质:磁场对放入磁场中的磁极和电流有力的作用.

(4)磁场的方向:规定磁场中任意一点的小磁针静止时N极的指向(小磁针N极受力方向).

2、磁感线对磁场的描述

(1)磁感线

①定义:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。

②特点:、不是真实存在的,是人们为了形象描述磁场而假想的;是闭合曲线,磁体的外部是从N极到S极,内部是从S极到N极,在空间中不相交;磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。

(2)几种常见磁场的磁感线

①条形磁铁和蹄形磁铁的磁场

②直线电流的磁场

③环形电流的磁场

④通电螺线管的磁感线与条形磁铁相似,一端相当于北极N,另一端相当于南极S.

3、磁感应强度

磁感应强度是描述磁场大小和方向的物理量,用“B ”表示,是矢量。

(1)大小:

(2)方向:磁场中该处的磁场方向。 (3)单位:特斯拉

(4)匀强磁场:磁感应强度大小、方向处处相同的区域,在匀强磁场中,磁感线互相平行并等距。 二、两种磁场力 1、安培力

(1)安培力大小

θsin BIl F =(其中θ为B 与I 之间的夹角) ①若磁场和电流垂直时:F =BI l ; ②若磁场和电流平行时:F =0. (2)安培力的方向

左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直(或倾斜)穿入手心,伸开四指指向电流方向,拇指所指的方向即为导线所受安培力的方向

[说明] 电流所受的安培力的方向既跟磁场方向垂直,又跟电流方向垂直,所以安培力的方向总是垂直于磁感线和通电导线所确立的平面. 2、磁场对运动电荷的作用力(洛伦兹力) (1)洛伦兹力的大小

θsin qvB f =

①当θ=90°时,qvB f =,此时,电荷受到的洛伦兹力最大;

②当θ=0°或180°时,f =0,即电荷在磁场中平行于磁场方向运动时,电荷不受洛伦兹力作用;

③当v =0时,f =0,说明磁场只对运动的电荷产生力的作用. (2)洛伦兹力的方向

左手定则:伸开左手,使大姆指跟其余四个手指垂直,且处于同一平面内,让磁感线穿入手心,四指指向为正电荷的运动方向(或负电荷运动的反方向),大拇指所指的方向是正电荷(负电荷)所受的洛伦兹力的方向.

[说明] ① 洛伦兹力的方向既与电荷的运动方向垂直,又与磁场方向垂直,所以洛伦兹力

IL

F B =

②洛伦兹力方向总垂直于电荷运动方向,当电荷运动方向发生变化时,洛伦兹力的方向随之变化.

③由于洛伦兹力方向总与电荷运动方向垂直,所以洛伦兹力对电荷不做功. 三、带电粒子在匀强磁场中的运动

1、若带电粒子初速度方向与磁场方向共线,则作匀速直线运动。

2、若带电粒子沿垂直磁场方向射入磁场,即θ=90°时,带电粒子所受洛伦兹力qvB f =,方向总与速度v 方向垂直.洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. (1)其特征方程为:f 洛=F 向 (2)四个基本公式:

向心力公式:R v m Bqv 2= 半径公式:qB

m v

R =

周期和频率公式:f

qB m T 1

2==π 动能公式:m BqR m p mv E K 2)(221222===

注意:带电粒子在匀强磁场中做匀速圆周运动的周期T ,只和粒子的比荷(q /m )有关,与

粒子的速度v 、半径R 的大小无关;也就是说比荷(q /m )相同的带电粒子,在同样的匀强磁场中,T 、f 和ω相同.

四、几种与磁场有关的仪器 1、速度选择器 2、质谱仪 3、回旋加速器 4、磁流体发电机 5、电磁流量计

五、带电粒子在复合场中的运动

1、复合场一般包括重力场、电场和磁场,本专题所说的复合场指的是磁场与电场、磁场与重力场,或者是三场合一.

2、三种场力的特点

(1)重力的大小为mg ,方向竖直向下,重力做功与路径无关,其数值除与带电粒子的质量有关外,还与初、末位置的高度差有关.

(2)电场力的大小为q E ,方向与电场强度E 及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与初、末位置的电势差有关. (3)洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,f =0;当带电粒子的速度与磁场方向垂直时,f =qv B ;洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面.无论带电粒子做什么运动,洛伦兹力都不做功.

3、注意:电子、质子、α粒子、离子等微观粒子在复合场中运动时,一般都不计重力,但质量较大的质点(如带电尘粒)在复合场中运动时,不能忽略重力.

(1)正确分析带电粒子的受力及运动特征是解决问题的前提

①带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及其初始状态的速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析,当带电粒子在复合场中所受合外力为零时,做匀速直线运动(如速度选择题).

②当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.

③当带电粒子所受的合外力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程可能由几种不同的运动阶段所组成.

(2)灵活选用力学规律是解决问题的关键

①当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.

②当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.

③当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或能量守恒定律列方程求解.

[说明] 如果涉及两个带电粒子的碰撞问题,还要根据动量守恒定律列出方程,再与其他方程联立求解.

由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.

分类例析

类型一:电场线、等势面对电场的描述

例1:(2007年高考山东理综卷)如图所示,某区域电场线左右对称分布,M 、N 为对称线上的两点。下列说法正确的是( ) A M 点电势一定高于N 点电势 B M 点好强一定大于N 点场强

C 正电荷在M 点的电势能大重量N 点的电势能

D 将电子从M 点移动到N 点,电场力做正功 类型二:带电粒子的偏转问题

例2:如图所示,水平放置的两平行金属板,板长cm l 10=,两板相距cm d 2=,一束电子以

s

m v 70104?=的初速度从两板中央水平的射入板间,

然后从板间飞出射到距板,45cm L =宽cm D 20=的荧

(1)电子飞入两板前所经历的加速电场的电压是多少?(加速前电子的速度为零)(2)为了使电子能射中荧光屏所有位置,两板间所加电压应取什么范围?

类型三:带电物体在电场力和其他多种力作用下的运动问题

例3:足够长粗糙绝缘板A上放一个质量为m,电量为+q的小滑块B. 用手托住A置于方向水平向左,场强大小为E的匀强电场中,此时A、B均能静止,如图所示。现将绝缘

板A从图中位置P垂直电场线移至位置Q发现小

滑块B相对A发生了运动。为研究方便可以将绝缘

板A的运动简化成先匀加速接着匀减速到静止的

过程。测量发现竖直方向加速的时间为0.8s,减速

的时间为0.2s。P、Q位置高度差为0.5m。已知匀

强电场的场强E=0.3mg/q,A、B之间的动摩擦因数

μ=0.4,g取10m/s2。求:

(1)绝缘板A加速和减速的加速度分别为多大?

(2)滑块B最后停在离出发点水平距离多大处?

类型四:利用几何关系求解带电粒子在有界匀强磁场中的偏转问题例4:在半径为R的半圆形区域中有一匀强磁场,磁场的方向

垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒

子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)

射入磁场(不计重力影响)。

⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。

⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q

点切线方向的夹角为φ(如图)。求入射粒子的速度。

类型五:带电粒子依次穿过匀强电场和匀强磁场时的偏转问题

例5:如图所示,在坐标系Oxy的第一象限中存在沿y轴正

方向的匀速磁场,场强大小为E。在其它象限中存在匀强磁

场,磁场方向垂直于纸面向里。A是y轴上的一点,它到坐

标原点O的距离为h;C是x轴上的一点,到O的距离为L。

一质量为m,电荷量为q的带负电的粒子以某一初速度沿x

轴方向从A点进入电场区域,继而通过C点进入磁场区域。

并再次通过A点,此时速度方向与y轴正方向成锐角。不

计重力作用。试求:

(1)粒子经过C点速度的大小和方向;

(2)磁感应强度的大小B。

类型六:带电物体在复合场中的运动问题

例6:如图所示的竖直平面内有范围足够大、水平

向左的匀强电场,在虚线的左侧有垂直纸面向里

的匀强磁场,磁感应强度大小为B。一绝缘 形

Q A

E

管杆由两段直杆和一半径为R 的半圆环组成,固定在纸面所在的竖直平面内。PQ 、MN 水平且足够长,半圆环MAP 在磁场边界左侧,P 、M 点在磁场界线上,NMAP 段是光滑的,现有一质量为m 、带电量为+q 的小环套在MN 杆,它所受到的电场力为重力的

2

1

倍。现在M 右侧D 点静止释放小环,小环刚好能到达P 点, (1)求DM 间的距离x 0.

(2)求上述过程中小环第一次通过与O 等高的A 点时弯杆对小环作用力的大小.

(3)若小环与PQ 间的动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等).现将小环移至M 点右侧5R 处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功.

类型七:洛仑兹力方向的不断变化对带电物体圆周运动向心力的影响 例7:用一根长L =0.8m 的轻绳,吊一质量为m =1.0g 的带电小球,放在磁感应强度B =0.1T ,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小球便在垂直于磁场的竖直平面内摆动,当小球第一次摆到低点时,悬线的拉力恰好为零(重力加速度g 取10m/s 2)。试问: (1)小球带何种电荷?电量为多少?

(2)当小球第二次经过最低点时,悬线对小球的拉力多大?

备考演练

1、如图所示,在某水平方向的电场线AB 上(电场线方向未标明),将一受到水平向右恒定拉力的带电粒子(不计重力)在A 点由静止释放,带电粒子沿AB 方向开始运动,经过B 点时的速度恰好为零,则下列结论正确的有( ) A 粒子在A 、B 两点间移动时,恒力做功的数值大于粒子

在AB 两点间电势能差的绝对值

B 可能A 点的电势高于B 点的电势,也可能A 点的电势低于B 点的电势

C A 处的场强可能大于B 处的场强

D 粒子的运动不可能是匀速运动,也不可能是匀加速运动

2、如图所示,在粗糙绝缘水平面上固定两个等量同种电荷P 、Q ,在PQ 连线上的M 点由静止释放一带电滑块,则滑块会由静止开始一直向右运动到PQ 连线上的另一点N 而停下,则滑块由M 到N 的过程中,以下说法正确的是( ) A .滑块受到的电场力一定是先减小后增大 B .滑块的电势能一直减小

C .滑块的动能与电势能之和可能保持不变

D .PM 间距一定小于QN 间距

3、已知如图,带电小球A 、B 的电荷分别为Q A 、Q B ,OA=OB ,都用长L 的丝线悬挂在O 点。静止时A 、B 相距为d 。为使平衡时

AB

间距离减为d/2,可采用以下哪些方法()

A.将小球A、B的质量都增加到原来的2倍

B.将小球B的质量增加到原来的8倍

C.将小球A、B的电荷量都减小到原来的一半

D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍4、如图所示,一电子沿等量异种电荷的中垂线由A→O→B

匀速飞过,电子重力不计,则电子所受另一个力的大小和方

向变化情况是()

A.先变大后变小,方向水平向左

B.先变大后变小,方向水平向右

C.先变小后变大,方向水平向左

D.先变小后变大,方向水平向右

5、如图所示,带箭头的线段表示某一电场中的电场线的分布情况.一带电粒子在电场中运动的轨迹如图中虚线所示.若不考虑其他力,则下列判断中正确的是()

A.若粒子是从A运动到B,则粒子带正电;若粒子是从B运动到A,

则粒子带负电

B.不论粒子是从A运动到B,还是从B运动到A,粒子必带负电

C.若粒子是从B运动到A,则其加速度减小

D.若粒子是从B运动到A,则其速度减小

6、如图所示,虚线a、b、c是电场中的三个等势面,相邻等势面间

的电势差相同,实线为一个带正电的质点仅在电场力作用下,

通过该区域的运动轨迹,P、Q是轨迹上的两点。下列说法

中正确的是( )

A.三个等势面中,等势面a的电势最高

B.带电质点一定是从P点向Q点运动

C.带电质点通过P点时的加速度比通过Q点时小

D.带电质点通过P点时的动能比通过Q点时小

7、带负电的两个点电荷A、B固定在相距10 cm的地方,如果将第三个点电荷C放在AB 连线间距A为 2 cm的地方,C恰好静止不动,则A、B两个点电荷的电荷量之比为_______.AB之间距A为2 cm处的电场强度E=_______.

8、在场强为E,方向竖直向下的匀强电场中,有两个质量均为m的

带电小球,电荷量分别为+2q和-q,两小球用长为L的绝缘细线相连,

另用绝缘细线系住带正电的小球悬挂于O点处于平衡状态,如图所示,

重力加速度为g,则细绳对悬点O的作用力大小为_______.

9、在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N

极向东偏转,由此可知()

A.一定是小磁针正东方向上有一条形磁铁的N极靠近小磁针

B.一定是小磁针正东方向上有一条形磁铁的S极靠近小磁针

C.可能是小磁针正上方有电子流自南向北水平通过

10、如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h 的A 处静止开始下滑,沿轨道ABC 运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的3/4,圆环半径为R ,

斜面倾角为θ=53°,s BC =2R 。若使小球在圆环内能作完整的圆周运动,h 至少为多少?

11、 如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细

杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运

动到达b 端。已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽

略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L/3,求带电小球从

a 到

b 运动过程中克服摩擦力所做的功与电场力所做功的比值。

12、如图所示,两根平行金属导轨间的距离为0.4 m ,导轨平面与水平面的夹角为37°,磁感应强度为0.5 T 的匀强磁场垂直于导轨平面斜向上,两根电阻均为1Ω、重均为0.1 N 的金属杆ab 、cd 水平地放在导轨上,杆与导轨间的动摩擦因数为0.3,导轨的电阻可以忽略.为使ab 杆能静止在导轨上,必须使cd 杆以多大的速率沿斜面向上运动?

13、如图所示,在地面附近有一范围足够大的互

相正交的匀强电场和匀强磁场。磁感应强度为

B ,方向水平并垂直纸面向外。一质量为m 、带

电量为-q 的带电微粒在此区域恰好作速度大小为v 的匀速圆周运动。(重力加速度为

g ) (1)求此区域内电场强度的大小和方向。

(2)若某时刻微粒运动到场中距地面高度为H 的

P 点,速度与水平方向成45°,如图所示。则该微粒至少须经多长时间运动到距地面最高点?最高点距地面多高?

(3)在(2)问中微粒又运动P

点时,突然撤去磁场,同时电场强度大小不变,方向变为水平向右,则该微粒运动中距地面的最大高度是多少?

B

14、一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示。磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.

(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离. (2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是t m

qB 2=

θ。 15、质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示。离子源S 产生带电量为q 的某种正离子,离子产生出来时速度很小,可以看作是静止的。粒子从容器A 下方小孔S 1飘入电势差为U 的加速电场,然后经过小孔S 2和S 3后沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片D 上。

(1)小孔S 1和S 2处的电势比较,哪处的高?q +在小孔

S 1和S 2处的电势能,哪处高?如果容器A 接地且电势为0,则小孔S 1和S 2处的电势各为多少?(设小孔极小,其电势和小孔处的电极板的电势相同) (2)求粒子进入磁场时的速率和粒子在磁场中运动的轨道半径。

(3)如果从容器下方的S 1小孔飘出的是具有不同的质量的带电量为q 的正离子,那么这些粒子打在照相底片的同一位置,还是不同位置?如果是不同位置,那么质量分别为,...3,2,1,+++m m m m 的粒子在照相底片的排布等间距吗?写出说明。

16、 如图所示,在半径为R 的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有

小孔C 与平行金属板M 、N 相通。两板间距离为d ,两板与电动势为E 的电源连接,一带电量为-q 、质量为m 的带电粒子(重力忽略不计),开始时静止于C 点正下方紧靠N 板的

A 点,经电场加速后从C 点进入磁场,并以最

短的时间从C 点射出。已知带电粒子与筒壁的碰撞无电荷量的损失,且碰撞后以原速率返

回。求: (1)筒内磁场的磁感应强度大小;

(2)带电粒子从A 点出发至重新回到A 点射出所经历的时间。

M N

B

17、如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向里和向外,磁场区域右侧

有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向下为正方向建立x 轴。板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略。求:

(1)当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0;

(2)两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上;

例题答案:

例1: AC 例2:(1)

V 31055.4? (2)V U V 364364≤≤-

例3:(1)2

125.1S

m a = 2

25S m

a = (2)0.04m

例4:(1)12qBd v m =

(2)[]

(2)

2(1cos )qBd R d v m R d ?-=+- 例5:(1)l h 2arctan

=α (2)q

mhE

l h l

B 22

2+= 例6:(1)

R 38 (2)gR Bq mg 2

7

417+ (3)mgR 例7:(1)负电荷

gL

B mg 23 (2)6mg

备考演练答案:

1、解析:根据动能定理,恒力做的正功跟电场力做的负功,数值相等,即恒力做功跟电势能之差的绝对值应相等,A 错误;带电粒子从A 点由静止开始向B 运动,经过B 点时速度为零,这表明带电粒子在恒力和电场力作用下先做加速运动后做减速运动,因此粒子的运动不可能是匀速运动。同时表明电场力的方向向左。粒子先做加速运动,说明水平向右的恒力大于水平向左的电场力,后做减速运动,表明后来水平向左的电场力大于水平向右的恒力,因此粒子不可能做匀加速运动,D 选项正确;粒子在B 处受到的电场力比A 处大,因此B 处的场强大于A 处的场强,C 选项错误;如粒子带正电,电场线方向应由B 指向A 、B 点电势高于A 点电势;如粒子带负电,电场线方向应由A 指向B ,A 点电势高于B 点电势。因此,A 、B 两点电势的高低无法判断。答案:BD

点评:此题是动力学观点与电场性质、能量观点等知识点的综合应用判断题目。

2、D (由于地面粗糙,滑块可能最终静止在PQ 连线的中点上、中点的左方或右方,其动能与电势能的总和将减少,所以PM 间距一定小于QN 间距)

3、解:由B 的共点力平衡图知L

d g m F B =,而2

d Q kQ F B

A =,可知3mg L Q kQ d

B A ∝,选BD 4、B 根据电场线分布和平衡条件判断.

5、BC

6、先画出电场线,再根据速度、合力和轨迹的关系,可以判定:质点在各点受的电场力方向是斜向左下方。由于是正电荷,所以电场线方向也沿电场线向左下方。答案仅有D

7、1∶16;0

8、2mg+Eq 先以两球整体作为研究对象,根据平衡条件求出悬线O 对整体的拉力,再由牛顿第三定律即可求出细线对O 点的拉力大小. 9、C

10、解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力

F ,如图可知F =1.25mg ,方向与竖直方向左偏下37o,从图中可知,能否作完整的圆周运动的临界点是能否通过D 点,若恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。

由圆周运动知识得:R v m F D 2= 即:R

v m mg D

225.1=

由动能定理有:2

2

1)37sin 2cot (43)37cos (D

mv R R h mg R R h mg =?++?-

?--θ 联立可求出此时的高度h=10R

点评:用极限法通过分析两个极端(临界)状态,来确定变化范围,是求解“范围类”问题的基本思路和方法。当F 供=F 需时,物体做圆周运动;当F 供>F 需时物体做向心运动; 当F 供

当小球做匀速运动时:qE=f=μqv b B

小球在磁场中做匀速圆周运动时,R

v m B qv b

b 2=

又3L R =

,所以m

qBL v b 3= 小球从a 运动到b 的过程中,由动能定理得:2

2

1b f mv W W =

-电 而m L B q BL qv qEL W b 10222===μ电 所以m

L q B mv W W b f 452212

222==-电

9

4

=

W W f 12、设必须使cd 杆以v 沿斜面向上运动,则有cd 杆切割磁场线,将产生感应电动势E =Blv 在两杆和轨道的闭合回路中产生电流I =R

E 2 ab 杆受到沿斜面向上的安培力

F 安=Bil ab 杆静止时,受力分析如图

根据平衡条件,应有 G sin θ一μG cos θ≤F 安≤G sin θ+μG cos θ 联立以上各式,将数值代人,可解得 1.8 m/s ≤v ≤4.2 m/s

13、(1)带电微粒在做匀速圆周运动,电场力与重力应平衡,因此:mg=Eq 解得:mg

E q

=

方向:竖直向下

(2)粒子作匀速圆周运动,轨道半径为R ,如图所示。

2

v qBv m R

= 最高点与地面的距离:(1cos45)m H H R ?

=++

解得:(1m mv H H Bq =+

该微粒运动周期为:Bq m T π2=

运动到最高点所用时间为:3384m

t T Bq

π== (3)设粒子升高度为h ,由动能定理得:0

2

cot45mgh Eqh mv --1

=0-2

解得:22

4mv v h mg Eq g =+=2()

微粒离地面最大高度为:2

4v H g

+

点评:此题考查了带电粒子在重力场、电场和磁场三场并存情况的分析,需要进行准确的动力学分析,综合应用知识求解。 14、(1)离子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为r ,则据牛顿第二定律可得:

r v m Bqv 2= ,解得Bq

m v

r =

如图所示,离了回到屏S 上的位置A 与O 点的距离为:AO =2r 所以Bq

mv

AO 2=

(2)当离子到位置P 时,圆心角:t m

Bq r vt ==α 因为θα2=,所以t m

qB

2=

θ. 15、(1)由于电荷量为带正电的粒子,从容器下方的S 1小孔飘入电势差为U 的加速电场,要被加速,S 1和S 2处的电势比较,S 1处的高,从小孔S 1到S 2电场力做正功,电势能减小,所以粒子在小孔S 1处的电势能高于在S 2处。如果容器A 接地且电势为0,而小孔S 1和S 2处的电势差为U ,所以小孔S 1和S 2处的电势各为0和-U 。

(2)设从容器下方的S 1小孔飘出的是具有不同的质量的电荷量为q +的粒子,到达S 2的速度为v ,经S 3进入射入磁场区,根据能量守恒,有

qU mv =221 v=m

qU 2 设粒子在洛伦兹力作用下做匀速圆周运动的半径为R ,由洛伦兹力公式和牛顿定律得:

qBv R

v m =2 q Um

B qB

mv R 21=

=

(3)在磁场中偏转距离d=q

Um

B qB

mv R 222

2=

=

由于是具有不同的质量的粒子,所以距离d 不同,这些粒子打在照相底片的不同位置。从

上式可以看出,在磁场中偏转距离d 与质量的平方根成正比,所以质量分别为,...3,2,1,+++m m m m 的粒子在照相底片的排布间距不等。

点评:此题是与质谱仪相关的一道习题,考查了学生对基本物理模型的理解和掌握。 16、(1)带电粒子从C 孔进入,与筒壁碰撞2次再从C 孔射出经历的时间为最短。 由qE =1

2 mv 2 粒子由C 孔进入磁场,在磁场中做匀速圆周运动的速率为v =

2qE

m

由r =mv qB 由几何关系有Rcot30°= r 得B =1R

2mE

3q

(2)粒子从A →C 的加速度为a =qE /md 由d =at 12/2,粒子从A →C 的时间为t 1=

2d

a

=d 2m qE

粒子在磁场中运动的时间为t 2=T /2=πm /qB 得t 2=πR 3m 2qE

求得t =2t 1+t 2=

m

qE

(22d +3

2

πR )点评:此题是电场、磁场和碰撞有机结合在一起的题目,需要对带电粒子的运动有一个准确的分析和求解。

17、(1)根据动能定理,得2

0012

eU mv =

解得0v =

(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有mv

r d eB

=

< 而212

eU mv =由此即可解得22

2d eB U m <

点评:此题是电场中加速、两有界磁场结合一起的题目,需要对带电粒子的运动进行分析

和讨论,对临界情况有一准确的判断,从而得出正确的结论。

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

磁场知识点归纳总结

? 本章共有四个概念、两个公式、两个定则。 五个概念:磁场、磁感线、磁感强度、匀强磁场 两个公式:安培力 F=BIl (Il⊥B) 洛伦兹力 f =qvB (v⊥B) 两个定则: 安培定则——判断电流的磁场方向 左手定则——判断磁场力的方向 1.磁场 ⑴永磁体周围有磁场。 ⑵电流周围有磁场(奥斯特实验)。 分子电流假说: 物质微粒内部存在着环形分子电流。 磁现象的电本质:磁体的磁场和电流的磁场都是由电荷的运动产生的。 ⑶在变化的电场周围空间产生磁场(麦克斯韦) 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用 3.磁感应强度 : (定义式) 适用条件: l 很小(检验电流元),且 l⊥B 。磁感应强度是矢量。 单位是特斯拉,符号 1T=1N/(A m) 方向:规定为小磁针在该点静止时N极的指向 4. 磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。磁感线都是闭合曲线。(2)要熟记常见的几种磁场的磁感线: (3)安培定则(右手螺旋定则): 对直导线,四指指磁感线环绕方向; 对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 (4)地磁场:地球的磁场与条形磁体的磁场相似。 主要特点是:地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下;在赤道表面上,距离地球表面相等的各点磁感应强度相等,且水平向北. ?如图所示,a、b是直线电流的磁场,c、d是环形电流的磁场,e、f是螺线管电流的磁场,试在各图中补画出电流方向或磁感线方向. 3、如图所示,一束带电粒子沿着水平方向平行地飞过磁针上方时,磁针的S极向纸内偏转,则这束带电粒子可能是 ( BC ) A.向右飞行的正离子束 B.向左飞行的正离子束 max F B Il = S N

大学物理静电场知识点总结

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 012 14q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑? n i i 3 3i 1 0i q 11 dq E r E r 44r r (3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定

理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑ ?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与

电场知识点归纳总结归纳经典

电场知识 点总结 电荷库仑定律 一、库仑定律:22 12112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112 =F F . 电场电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E =; ②电场强度的方向:与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差电势 知识点: 1.电势差B A AB AB q W U ??-== 2.电场力做功:)(B A AB AB q qU W ??-== 3.电势:q W U AO AO A ==? 4.电势能:?εq = (1)对于正电荷,电势越高,电势能越大

(2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε?-=电 W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行

初中电与磁知识点归纳

电与磁 单元知识梳理 影响受力方向的 原理 因素 电动机 结构 能量转换 影响感应电流方向的因素 电磁效应现象 能量转换 原理 发电机 结构 能量转化 一、磁现象: 1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性) 2、磁体: 定义:具有磁性的物质 分类:永磁体分为 天然磁体、人造磁体 3、磁极:定义:磁体上磁性最强的部分叫磁极。(磁体两端最强中间最弱) 种类:水平面自由转动的磁体.指南的磁极叫南极(S ).指北的磁极叫北极(N ) 作用规律:同名磁极相互排斥.异名磁极相互吸引。 说明:最早的指南针叫司南 。一个永磁体分成多部分后.每一部分仍存在两个磁极。两物体相互吸引要考虑六种情况.两物体相互排斥要考虑四种情况。 4、磁化: ① 定义:使原来没有磁性的物体获得磁性的过程。 磁铁之所以吸引铁钉是因为铁钉被磁化后.铁钉与磁铁的接触部分间形成 异名磁极.异名磁极相互吸引的结果。

②钢和软铁的磁化:软铁被磁化后.磁性容易消失.称为软磁材料。钢被磁化后.磁性能长期保持.称为硬磁性材料。 所以制造永磁体使用钢 .制造电磁铁的铁芯使用软铁。 5、物体是否具有磁性的判断方法: ①根据磁体的吸铁性判断。②根据磁体的指向性判断。③根据磁体相互作用规律判断。④根据磁极的磁性最强判断。 二、磁场: 1、定义:磁体周围存在着的物质.它是一种看不见、摸不着的特殊物质。 磁场看不见、摸不着我们可以根据它所产生的作用来认识它。这里使用的是转换法。通过电流的效应认识电流也运用了这种方法。 2.基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。 3.方向规定:在磁场中某点.小磁针静止时北极所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。 4、磁感应线: ①定义:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。 ②方向:磁体周围的磁感线都是从磁体的北极出来.回到磁体的南极。 ③典型磁感线: ④说明:A 、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线.不是客观存在的。但磁场客观存在。 B 、用磁感线描述磁场的方法叫建立理想模型法。 C 、磁感线是封闭的曲线。 D 、磁感线立体的分布在磁体周围.而不是平面的。 E 、磁感线不相交。 F 、磁感线的疏密程度表示磁场的强弱。 5、磁极受力:在磁场中的某点.北极所受磁力的方向跟该点的磁场方向一致.南极所受磁力的方向跟该点的磁场方向相反。 6、分类: Ι、地磁场: ① 定义:在地球周围的空间里存在的磁场.磁针指南北是因为受到地磁场的作用。 ② 磁极:地磁场的北极在地理的南极附近.地磁场的南极在地理的北极附近。 ③ 磁偏角:首先由我国宋代的沈括发现。 三、电流的磁场 N S

高中物理:静电场知识点归纳

高中物理:静电场知识点归纳 一、电荷及电荷守恒定律 1. 元电荷、点电荷 (1) 元电荷:e=1.6×10-19C,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同。 (2) 点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷。 2. 静电场 (1) 定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质。 (2) 基本性质:对放入其中的电荷有力的作用。 3. 电荷守恒定律 (1) 内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。 (2) 起电方式:摩擦起电、接触起电、感应起电。 (3) 带电实质:物体带电的实质是得失电子。 二、库仑定律 1. 内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比。作用力的方向在它们的连线上。 2. 表达式:,式中k=9.0×109N·m2/C2,叫静电力常量。 3. 适用条件:真空中的点电荷。 三、电场强度、点电荷的场强 1. 定义:放入电场中某点的电荷受到的电场力F与它的电荷量q的比值。 2. 定义式:

3. 点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度: 4. 方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向。 5. 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则。 四、电场线 1. 定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱。 2. 特点 ①电场线从正电荷或无限远出发,终止于无限远或负电荷. ②电场线不相交,也不相切,更不能认为电场就是电荷在电场中的运动轨迹. ③同一幅图中,场强大的地方电场线较密,场强小的地方电场线较疏. 五、匀强电场 电场中各点场强大小处处相等,方向相同,匀强电场的电场线是一些平行的等间距的平行线. 六、电势能、电势 1. 电势能 (1) 电场力做功的特点: 电场力做功与路径无关,只与初、末位置有关。 (2) 电势能 ①定义:与重力势能一样,电荷在电场中也具有势能,这种势能叫电势能,规定零

磁场知识点总结

磁场知识点总结 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。 电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。 磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布 与条形磁铁周围的磁场分布情况相似。 3.指南针 放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角 地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 说明: ①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。 ③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。 规定: 在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。

确定磁场方向的方法是: 将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N 极的指向即为该点的磁场方向。 磁体磁场: 可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场: 利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线 在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。 (1)磁感线上每一点切线方向跟该点磁场方向相同。 (2)磁感线特点 (1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。 (2)磁感线上每一点的切线方向就是该点的磁场方向。 (3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。 以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场 说明: ①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。 ②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。 四、几种常见磁场 1通电直导线周围的磁场 (1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。

电场知识点总结

高考物理复习《电场》1、三种起电方式对比表

4、库仑定律的内容、公式及条件 6、电场强度的性质

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平板 + 孤立点电荷周围的电场 区别 公式 物理含义 引入过程 使用范围 q F E = 是电场强度大小的定义式 由比值法引入,E 与F 、q 无关,反映某点电场的性质 适用于一切电场 2r kQ E = 是真空中点电荷场强的决定式 由q F E =和库仑定律导出 真空中的点电荷 电场线的特征:(1)电场线是用来形象地描述电场分布的一簇曲线,实验虽然可以模拟 电场线的形状,但电场线不是真实存在的,是一种假想线, (2)在静电场中,电场线起始于正电荷或无限远,终止于无限远或负电荷,不形成闭合曲线; (3)电场线上每一点的切线方向都跟该点的场强方向一致; (4)电场线密处电场强,电场线疏处电场弱, (5)电场线在空间无电荷处不相交。 常见电场线如下图所示

对比点电荷、等量同种电荷、等量异种电荷电场的特点

10、等势面

(1)在电场中移动带电粒子时电场力做功及电势能变化的情况。 ①把正电荷从高电势处移到低电势处时,电场力做正功,电势能减少; ②把正电荷从低电势处移到高电势处时,电场力做负功,电势能增加; ③把正电荷从高电势处移到低电势处时,电场力做负功,电势能增加; ④把正电荷从低电势处移到高电势处时,电场力做正功,电势能减少; (2)电加速。 带电粒子质量为m ,带电量为q ,在静电场中静止开始仅在电场力作用下做加速运动,经过电势差U 后所获得的速度v 0可由动能定理来求得。即 20mv 2 1qU = (3)电偏转 带电粒子质量为m ,带电量为q ,以初速度v 0沿垂直于电场方向射入匀强电声,仅在电场力作用下做电偏转运动。其运动类型为类平抛运动,若偏转电场的极板长度为L ,极板间距为d ,偏转电压为U 。则相应的偏转距离y 和偏转角度θ可由如下所示的类平抛运动的规律 电势能 1.定义:因电场对电荷有作用力而产生的由电荷相对位置决定的能量叫电势能。 2.电势能具有相对性,通常取无穷远处或大地为电势能的零点。

高二物理磁场重要知识点整理有答案(精品文档)

物理重要知识点整理——磁场 一.基本概念: 1.磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。 磁场的方向:规定磁场中任意一点小磁针N 极受力的方向(或者小磁针静止时N 极的指向)就是那一点的磁场方向。 2.磁感线:磁感线不是真实存在的,是人为画上去的。曲线的疏密能代表磁场的强弱,磁感线越密的地方磁场越强,磁感线从N 极进来,S 极进去,磁感线都是闭合曲线且磁感线不相交。 .几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。 b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场 a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 b.所有磁感线都通过内部,内密外疏 (4)通电螺线管 a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向。 b. 通电螺线管的磁场相当于条形磁铁的磁场。 例1下列说法正确的是( ) A .通过某平面的磁感线条数为零,则此平面处的磁感应强度一定为零 B .空间各点磁感应强度的方向就是该点磁场方向 C .两平行放置的异名磁极间的磁场为匀强磁场 D .磁感应强度为零,则通过该处的某面积的磁感线条数不一定为零 【解析】 磁感应强度反映磁场的强弱和方向,它的方向就是该处磁场的方向,故B 正确.通过某平面的磁感线条数为零,可能是因为平面与磁感线平行,而磁感应强度可能不为零,故A 错误.只有近距离的两异名磁极间才是匀强磁场,故C 错误.若某处磁感应强度为零,说明该处无磁场,通过该处的某面积的磁感线条数一定为零,故D 错.【答案】 B 3.磁通量:磁感应强度B 与面积S 的乘积,叫做穿过这个面的磁通量。 物理意义:表示穿过一个面的磁感线条数。 定义:BS =Φ θcos BS =Φ(θ为B 与S 间的夹角) 例1关于磁通量,下列说法正确的是( ) A .磁通量不仅有大小而且有方向,是矢量 B .在匀强磁场中,a 线圈面积比b 线圈面积大,则穿过a 线圈的磁通量一定比穿过b 线圈的大

高二物理磁场相关知识点归纳

高二物理磁场相关知识点归纳 为了方便高二的同学们更好地学习掌握物理知识,小编在这里整理了高二物理磁场相关知识点归纳,供大家参考学习,希望能对大家有帮助! 第十章磁场 一、磁场: 1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场; 3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向; 二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向; 1、磁感线是人们为了描述磁场而人为假设的线; 2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极; 3、磁感线是封闭曲线; 三、安培定则: 1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向; 3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向; 四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极); 五、磁感应强度:磁感应强度是描述磁场强弱的物理量。 1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A。m 六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。2、定义式 F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

静电场知识点总结

第一章静电场知识点概括 【考点1】电场的力的性质 1.库仑定律:■ (1)公式:F =kQ q ..(2)适用条件:真空中的点电荷。 2. F E=— q用比值法定义电场强度E,与试探电荷q无关;适用于一切电场 Q E=V r 适用于点电荷 U E =一 d 适用于匀强电场 3. (1)意义:形象直观的描述电场的一种工具 (2)定义:如果在电场中画出一些曲线,使曲线上每一点的切线方向跟该点的场强方向一致,这样的曲线就叫做电场线。 说明:a.电场线不是真实存在的曲线。 b.静电场的电场线从正电荷出发,终止于负电荷(或从正电荷出发终止于无穷远,或来自于 无穷远终止于负电荷)。 J c.电场线上每一点的切线方向与该点的场强方向相同。 d.电场线的疏密表示场强的大小,场强为零的区域,不存在电场线。 e.任何两条电场线都不会相交。 f.任何一条电场线都不会闭合。 g.沿着电场线的方向电势是降低的。 【典例1】如图所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的 圆心,?MOP =60° ,电荷量相等、符号相反的两个点电荷分别置于M、N两点,这 时O点电场强度的大小为E I;若将N点处的点电荷移至P点,则O点的场强大小变为 E2,E i与E2之比为() A.1 : 2 B.2: 1 C. 2:3 方法提炼:求解该类问题时首先根据点电荷场强公式得出每一个点电荷产生的场强的大小和方向,再依据平行四边形定则进行合成。

【考点2】电场的能的性质 1.电势能E P、电势「、电势差U (1)电场力做功与路径无关,故引入电势能,W A B= E pA- E PB (2)电势的定义式:;:=E P q (3)电势差:UAB = ;:A -订 (4)电场力做功和电势差的关系:W A^= qU AB 沿着电场线方向电势降低,或电势降低最快的方向就是电场强度的方向。 2.电场力做功 定义:电荷q在电场中由一点A移动到另一点B时,电场力所做的功W AB简称电功。 公式:W AB ^ qU AB 说明:1.电场力做功与路径无关,由q、U AB决定。 2.电功是标量,,电场力可做正功,可做负功,两点间的电势差也可正可负。 3?应用W A^qU AB时的两种思路 < (1)可将q、U AB连同正负号一同代入,所得的正负号即为功的正负; (2)将q、U AB的绝对值代入,功的正负依据电场力的方向和位移(或运动) 方向来判断。 ‘4.求电场力做功的方法:①由公式W A^qU AB来计算。 ②由公式W = F COS来计算,只适用与恒力做功。 彳 ③由电场力做功和电势能的变化关系W AB=E P A - E pB L④由动能定理W电场力+ W其他力=E k 【典例2]如图所示,Xoy平面内有一匀强电场,场强为E,方向未知,电场线跟X轴的负方向夹角为

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A m)=1kg/(A s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 + N S 地球磁场 条形磁铁 蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变)。水平面对磁铁的摩擦力大小为______。 解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩 擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。 例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转 解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈 靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。 F 2

电场强度知识点总结细致

第一章 章节复习总结 一、电场基本规律 1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体, 或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19 C ——密立根测得e 的值。 2、库伦定律 (1)定律内容:真空..中两个静止点电荷..... 之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:2 21r Q kQ F = k=9.0×109N ·m 2/C 2 ——静电力常量 (3)适用条件:真空中静止的点电荷。 二、电场力的性质 1、电场的基本性质:电场对放入其中电荷有力的作用。 2、电场强度E (1)定义:电荷在电场中某点受到的电场力F 与电荷的带电量q 的比值,就叫做该点的 电场强度。 (2)定义式:q F E = E 与F 、q 无关,只由电场本身决定。 (3)电场强度是矢量:大小:单位电荷受到的电场力。 方向:规定正电荷受力方向,负电荷受力与E 的方向相反。 (4)单位:N/C,V/m 1N/C=1V/m (5)其他的电场强度公式 ○ 1点电荷的场强公式:2 r kQ E =——Q 场源电荷 ○2匀强电场场强公式:d U E =——d 沿电场方向两点间距离 (6)场强的叠加:遵循平行四边形法则 3、电场线 (1)意义:形象直观描述电场强弱和方向理性模型,实际上是不存在的 (2)电场线的特点: ○ 1电场线起于正(无穷远),止于(无穷远)负电荷 ○ 2不封闭,不相交,不相切 ○ 3沿电场线电势降低,且电势降低最快。一条电场线无法判断场强大小,可以判断电势高低。 ○ 4电场线垂直于等势面,静电平衡导体,电场线垂直于导体表面 (3)几种特殊电场的电场线

静电场知识点总结归纳

静电场知识点总结 一、点电荷和库仑定律 1.如何理解电荷量、元电荷、点电荷和试探电荷? (1)电荷量是物体带电的多少,电荷量只能是元电荷的整数倍. (2)元电荷不是电子,也不是质子,而是最小的电荷量数值,电子和质子带有最小的电荷量,即e=1.6×10-19 C,是密立根通过油滴实验测定的。 (3)点电荷要求“线度远小于研究范围的空间尺度”,是一种理想化的模型,对其带电荷量无限制. (4)试探电荷要求放入电场后对原来的电场不产生影响,且要求在其占据的空间内场强“相同”,故其应为带电荷量“足够小”的点电荷. 2.库仑定律 (1)适用条件:真空中的点电荷 (2)库仑力的方向:同种电荷相互排斥,为斥力;异种电荷相互吸引,为引力. 二、库仑力作用下的平衡问题 1.分析库仑力作用下的平衡问题的思路(与以往的受力分析一样,不过多了个电场力) (1)确定研究对象.如果有几个物体相互作用时,要依据题意,适当选取“整体法”或“隔离法”,一般是先整体后隔离. (2)对研究对象进行受力分析. 有些点电荷如电子、质子等可不考虑重力,而尘埃、液滴等一般需考虑重力.具体视题目要求来定。 (3)列平衡方程(F合=0或F x=0,F y=0,即水平和竖直方向合力分别为0). 2.三个自由点电荷的平衡问题 (1)条件:三个点电荷放置于于一条直线上,且接触面光滑不固定,有如下结论 (2)规律:“三点共线”——三个点电荷分布在同一直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷的电荷量最小; “近小远大”——中间电荷靠近电荷量较小的电荷. 三、场强的三个表达式的比较及场强的叠加 电场为矢量,叠加需要平行四边形定则。 四、对电场线的进一步认识 1.点电荷的电场线的分布特点 (1)离点电荷越近,电场线越密集,场强越强. (2)若以点电荷为球心作一个球面,电场线处处与球面垂直,在此球面上场强大小处处相等,方向各不相同. 2.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(线)上,场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线的中点).

高二物理电场知识点整理(人教版)

高二物理电场知识点整理 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 ④光电效应——在光的照射下使物体发射出电子效应——在光的照射下使物体发射出电子 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F 最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;

而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律 ②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。 计算方法: ①带正负计算,为正表示斥力;为负表示引力。 ②一般电荷用绝对值计算,方向由电性异、同判断 三个自由点电荷平衡问题,静电场的典型问题,它们均处于平衡状态时的规律。 ①“三点共线,两同夹异,两大夹小”②中间电荷靠近另两个中电量较小的。 ③中间点电荷的平衡求间距,两边之一平衡求中间点电荷的电量,关系式为或 ④q1、q3固定时,q2的平衡位置具有唯一性,且与q2的电量多少,电性正负无关。 三、电场: 1、存在于带电体周围的传递电荷之间相互作用的特殊媒介物质.电荷间的作用总是通过电场进行的。 电场:只要电荷存在它周围就存在电场,电场是客观存在的,它具有力和能的特性。力(电场强度);能(磁通量) 。若电荷不动周围的是静电场,若电荷运动周围不单有电场而且产生磁场, 2、电场的基本性质-------①是对放入其中的电荷有力的作用。②能使放入电场中的导体产生静电感应现象 3、电场可以由存在的电荷产生,也可以由变化的磁场产生。 四、电场强度(E)——描述电场力特性的物理量。(矢量) 1.定义:放入电场中某一点的电荷受到的电场力F跟它的电量q的比值叫做该点的电场强度,表示该处电场的强弱 2.求E的规律及方法(有如下5种): ①E=(定义普遍适用)单位是:N/C或V/m;“描述自身的物理量”统统不能说××正比,××反比(下同) ②(导出式,真空中的点电荷,其中Q是产生该电场的电荷)

高中物理磁场知识点

高中物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在 该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之 间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在 自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流, 分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示 磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外 不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成 磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷电流产生磁场,磁场对运动电荷电流有磁场力的作用,所有的磁现象都可 以归结为运动电荷电流通过磁场而发生相互作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就 是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方 向都跟该点磁场方向一致。 2.磁感线的特点:

1在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 2磁感线是闭合曲线。 3磁感线不相交。 4磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: 1条形磁铁。 2通电直导线。①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方 向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。 3环形电流磁场:①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大 拇指的方向就是环形导线中心轴线的磁感线方向。②所有磁感线都通过内部,内密外疏。 4通电螺线管:①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直 的大拇指的方向就是螺线管内部磁场的磁感线方向;②通电螺线管的磁场相当于条形磁铁 的磁场。 五、磁感应强度 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度 l的乘积Il的比值叫做通电导线处的磁感应强度。 2.定义式: 3.单位:特斯拉T,1T=1N/A.m 4.磁感应强度是矢量,其方向就是对应处磁场方向。 5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电 流强度的大小、导线的长短等因素无关。 6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2 面积上的磁感线条数跟那里的磁感应强度一致。 7.匀强磁场: 1磁感应强度的大小和方向处处相等的磁场叫匀强磁场。 2匀强磁场的磁感线是均匀且平行的一组直线。

磁场知识点汇总

磁场知识点汇总 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

磁场知识点汇总 一、 磁场 二、 ⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。 三、 ⒉磁场(磁感应强度)的方向规定为磁场中小磁针N 极的受力方向(磁感线的切 线方向)。 四、 ⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。 五、 磁感线 六、 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 七、 ⒉磁感线是闭合曲线?? ?→→极 极磁体的内部极 极磁体的外部N S S N 八、 ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方 向。 九、 ⒋任何两条磁感线都不会相交,也不能相切。 十、 安培定则是用来确定电流方向与磁场方向关系的法则 十一、 弯曲的四指代表???)()(环形电流或通电螺线管电流的方向 直线电流磁感线的环绕方向 十二、 安培分子电流假说揭示了磁现象的电本质,即磁体的磁场和电流的磁场一 样,都是由电荷的运动产生的。 十三、 几种常见磁场 十四、 ⒈直线电流的磁场:无磁极,非匀强,距导线越远处磁场越弱 十五、 ⒉通电螺线管的磁场:管外磁感线分布与条形磁铁类似,管内为匀强磁 场。 十六、 ⒊地磁场(与条形磁铁磁场类似)

十七、 ⑴地磁场N 极在地球南极附近,S 极在地球北极附近。 十八、 地磁场B 的水平分量总是从地球南极指向北极,而竖直分量南北相反,在 南半球垂直地面向上,在北半球垂直地面向下 十九、 ⑵在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平 向北。 二十、 二十一、 磁感应强度:⑴定义式LI F B = (定义B 时,B I ⊥)⑵B 为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则。 二十二、 磁通量 二十三、 ⒈定义一:φ=BS ,S 是与磁场方向垂直的面积,即φ=B ⊥S ,如果平面与磁 场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积⊥S 二十四、 ⒉定义二:表示穿过某一面积磁感线条数 二十五、 磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或 穿出。 二十六、 当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф1-ф2(ф1为正向磁感线条数,ф2为反向磁感线条数。) 二十七、 安培力大小 二十八、 ⒈公式BLI F =sin θ(θ为B 与I 夹角)[]BLI F ,0∈ 二十九、 ⒉通电导线与磁场方向垂直时,安培力最大BIL F = 三十、 ⒊通电导线平行于磁场方向时,安培力0=F 三十一、 ⒋B 对放入的通电导线来说是外磁场的磁感应强度 三十二、 ⒌式中的L 为导线垂直于磁场方向的有效长度。例如,半径为r 的半圆形 导线与磁场B 垂直放置,导线的的等效长度为2r ,安培力BIr F 2=。

电场知识点归纳总结 (1)

电场知识点总结 电荷 库仑定律 一、库仑定律:2212112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112 =F F . 电场 电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E = ; ②电场强度的方向: 与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差 电势 知识点: 1.电势差B A AB AB q W U ??-== 2.电场力做功:)(B A AB AB q qU W ??-== 3.电势:q W U AO AO A = =?

4. 电势能:?εq = (1)对于正电荷,电势越高,电势能越大 (2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε?-=电 W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡 等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行

相关文档
相关文档 最新文档