文档库 最新最全的文档下载
当前位置:文档库 › 镗刀参数

镗刀参数

镗刀参数
镗刀参数

NBH 2084

u

Stanny - NBH2084 - Boring head

1.选择适合镗孔刀,使微调镗孔,偏移中心量少,较能高速回转切削。

2.选择切削性合适刀片。(精密级)

3.配合切削速度可连成镗孔工作。

PS. 1.使用MC机械镗孔程式应注意主轴定位方向。

2.镗孔工作中,发生震刀现象,可能主轴回转不平横,则应降低回转数,或用可调平衡镗孔头NBJ16S。

3.镗孔孔径,过于粗糙,则应降低进给量增高回转数。

4.镗孔孔径,形成小斜度,则应注意是否预留镗孔量太多。太少使刀片损耗,且进给量不宜太少。

5.最高1600rpm,但应为偏移中心

Vp=D*π*n/1000 D镗孔径Vc 切削速度m/min

N=Vc*1000/π*D f 进给量mm/rev Vf 进给速度mm/min

Vf-n*f n回转速rpm ap 镗孔量

镗孔刀杆MODE NO:

范围

MIX-MAX

深度

Dimensions

Insert/radius

镗刀片NO:

镗孔量

ap

进给量

Mm/rev

切削速度

M/min

螺丝

BOLT NO:

扳手镗孔刀杆

MODE NO:

BJ2008-32 8 11 32 TBGT060102

L 0.05-0.

20

0.05-0.1

0 碳钢

100-200

不锈钢

70-140

铸铁

70-140

150-300

M2-TS2 T6

BJ2008-32

BJ2010-40 10 13 40 TBGT06010

4L 0.10-0.

25

0.07-0.1

5

BJ2010-40

BJ2012-53 12 17 53 TPGH09020

2L 0.05-0.

20

0.05-0.1

0 M2.5-TS25

T8

BJ2012-53

BJ2916-68 16 21 68 TPGH09020

4L 0.10-0.

25

0.07-0.1

BJ2916-68

BJ2020-83 20 130 83

TPGH11030

2L

TPGH11030 4L 0.05-0.

20

0.10-0.

25

0.05-0.1

0.07-0.1

5

M3-TS3 T8

BJ2020-83

BJ2025-96 25 135 96 BJ2025-96 BJ2030-115 30 140 115 BJ2030-115 BJ20-20L 120 280 100+50+BJ20-20L

断屑槽型PCBN和PCD刀片及断屑效果图收藏

断屑槽型PCBN/PCD刀片及断屑效果图收藏! (一)不带断屑槽的PCD/PCBN刀片的切削效果图 一般情况下,车削加工是单刃连续切削加工,如果不采取断屑措施,切削不会自然折断。如下图所示,用不带断屑槽刀片的切削效果。 这样,不仅影响切削质量与生产率,还比较容易发生安全事故。因此,断屑对车削加工十分重要。 (二)带断屑槽的PCD/PCBN刀片的切削效果图

使用断屑槽可以消除切屑缠绕问题,实现高效率、无故障的切削加工,断屑效果如下图。 随着工业技术的发展,难加工材料的应用越来越多,加工中断屑的问题更加突出,诸如现代航空和汽车制造业大量使用轻型铝合金材料,其目的是减轻飞机和汽车的重量,进而降低对驱动功率的需求。由于某些高强度锻造铝合金在切削加工时具有产生有害的缎带形切屑和螺旋形切屑的趋势,因此给加工造成了严重的问题。此类切屑不仅会影响刀具的切削性能,还可能对机床造成损坏,导致在加工过程中不得不频频停机,以清理被切屑堵塞的区域; 铝合金活塞

铝合金型材 铝合金压铸件 铝合金花鼓

铝合金腔体 碳纤维汽车零部件 更多断屑槽型PCBN/PCD刀片可来图/来样加工制造刀具材质也不停的更新换代,而且随着超硬刀具材质的应用,尤其是超硬金刚石和立方氮化硼刀具,普通PCD/PCBN刀片由于没有断屑槽导致切屑过长,给连续加工和工件表面质量带来很大问题,但对于具有超高硬度的PCBN/PCD 刀具,设计和制造断屑槽的难度非常大,目前国内也只有为数不多的企业能够制造PCD/PCBN刀片断屑槽,采用当今世界上较为先进的激光雕琢技术,可在刀具的前刀面上加工立体形状,满足定位、断屑等要求,实现了金刚石刀片的断屑槽制造甚至设计,使得超硬刀具具有真正意义上的三维断屑槽! 华菱超硬PCBN/PCD断屑槽刀片优势:优异的断屑性能,避免切屑缠绕工件或刀具,保证良好的工件表面质量和刀具使用寿命。

刀具断屑原因分析

刀具断屑不可靠的原因分析及解决方法 刀具断屑可靠与否,对正常生产与操作者安全都有着重大影响。在切削加工中,崩碎切屑会飞溅伤人,并易研损机床;而长条带状切屑会缠绕在工件或刀具上,易刮伤工件,引发刀具破损,甚至影响工人安全。对于数控机床(加工中心)等自动化加工机床,由于其刀具数量较多,刀架与刀具联系密切,断屑问题就显得更为重要,只要其中—把刀断屑不可靠,就可能破坏机床的自动循环,甚至破坏整条自动线正常运转,所以在设计、选用或刃磨刀具时,必须考虑刀具断屑的可靠性。而对于数控机床(加工中心)等,并应满足下列要求: 切屑不得缠绕在刀具、工件及其相邻的工具、装备上; 切屑不得飞溅,以保证操作者与观察者的安全; 精加工时,切屑不可划伤工件的已加工表面,影响已加工表面的质量; 保证刀具预定的耐用度,不能过早磨损并竭力防止其破损; 切屑流出时,不妨碍切削液的喷注; 切屑不会划伤机床导轨或其他部件等。 在满足上述要求的基础上,不同刀具对切屑长度还有不同要求。例如一般粗车钢料的最大切屑长度为100mm左右;精车则应稍长。要避免过于细碎的切屑,因为它容易嵌入机床导轨和刀具装置的一些重要部位(如基准面),这样不仅需要附加防护装置,还给清除切屑带来一定的困难。 对于某些不易断屑的刀具,如成形车刀、切槽车刀和切断车刀等,在数控机床(加工中心)等自动化机床上,应保证其稳定的卷屑。 一、切屑形状的分类 根据工件材料、刀具几何参数和切削用量等的具体情况,切屑形状一般有:带状屑、C 形屑、崩碎屑、宝塔状卷屑、发条状卷屑、长紧螺卷屑、螺卷屑等(见图1)。

( l )带状屑(见图1a):高速切削塑性金属材料时,如不采取断屑措施,极易形成带状屑,此形屑连绵不断,常会缠绕在工件或刀具上,易划伤工件表面或打坏刀具的切削刃、甚至伤人,因此应尽量避免形成带状屑。 但有时也希望得到带状屑,以使切屑能顺利排出。例如在立式镗床上镗盲孔时。 (2)C 形屑(见图1 b):车削一般的碳钢、合金钢材料时,如采用带有断屑槽的车刀则易形成C 形屑。C 形屑没有了带状屑的缺点。但C 形屑多数是碰撞在车刀后刀面或工件表面而折断的(见图2)。切屑高频率的碰断和折断会影响切削过程的平稳性,从而影响已加工表面的粗糙度。所以,精加工时一般不希望得到C形屑.而多希望得到长螺卷屑(见图3),使切削过程比较平稳。

铰刀知识

铰刀的基本原理及常见问题通过对影响铰孔质量的主要因素加以分析,结合自身经验,提出在铰孔过程 中对铰孔加工质量的控制。对提高铰孔加工质量有很大帮助,在实践中具有重要意义。 关键词铰孔铰刀铰削用量表面粗糙度加工质量 在机加工中,常会遇到铰孔加工。铰孔是普遍应用的孔的精加工方法之一。因为铰刀的齿数较多,导向性能好,心部的直径大,刀具的刚性好,加工余量较小,切屑的厚度较薄,可以获得IT9~IT7级直径尺寸精度,内孔的表面粗糙度值可以控制在Ra1.6~0.8μm之间。但实际生产中,铰孔加工质量往往不能达到理想的要求。 一、影响铰孔质量的主要因素 (一)铰刀几何参数。铰孔质量的好坏取决于铰刀本身的精度和表面粗糙度。因此,铰刀几何参数的合理选择,决定了被铰孔加工质量的好坏。一是铰刀直径。它是根据被加工孔的公称尺寸和公差以及在铰削过程中被加工孔的扩张量或收缩量决定的。二是铰刀的齿数。一般,铰刀的齿数愈多,铰孔的精度就越高,表面粗糙度值就越低,同时,分布在每个切削刃上的负荷也就小,有利于减少铰刀的磨损。但齿数增多后却降低了刀齿强度,减小了容屑槽。在切削时,切屑就不容易排出。特别是铰深孔和切削余量大时,因容屑槽被切屑堵塞,切削液流不进去,致使铰刀和工件因产生热量而变形,影响加工质量。铰刀的齿数一般都选用偶数。三是切削锥角。它主要是根据不同的加工材料和铰刀的类型来加以选择。四是前角。由于铰削的余量较小,切削仅在刀尖处进行,与刀齿的前倾面很少接触,故前角可以为零,但在铰削塑性较大的材料时,为避免切屑粘滞在刀刃上,前角应取大一些。五是后角。铰刀的后角大,虽然可以提高切削刃的锐利程度,却降低了刀齿强度,在切削过程中容易产生震动和磨损,铰刀直径也随之减小,使铰孔直径达不到要求。六是刃带宽度。它主要是引导铰刀方向和光整孔壁,同时也为了便于测量铰刀的直径。铰刀的齿数越多刃带的积累宽度也大。因此有利于孔壁降低表面粗糙度值,铰刀的直径也不容易变小。但铰刀刃带较宽或积累宽度值过大时,会增加摩擦力矩和切削热,对孔壁的挤压比较严重,容易将孔径涨大,一般选择铰刀的刃带不超过0.25mm。七是铰刀的倒锥量。磨倒锥量是为了避免铰刀校准部分后面摩擦孔壁。 (二)铰削用量。对铰孔而言,铰削用量是很重要的。它对铰削过程中的摩擦切削力,切削热以及切屑瘤的形成和加工精度、表面粗糙度都有极大的影响,因此一定要合理加以选择使用。一是铰削余量。铰削余量不宜留得太大或太小。因为铰削余量留得太小,铰削时不易校正上道工序残留的变形和去掉表面残留的缺陷,使铰孔质量达不到要求。若所留的铰削余量太大,势必加大每一个刀齿的切削负荷,破坏了铰削过程中的稳定性,且增加了切削热,使铰刀的直径胀大,孔径也随之扩张,切屑的形成必然呈撕裂状态,造成加工表面粗糙。二是机铰的切削速度和进给量。铰削速度和进给量要根据加工材料合理选择。进给量不能选得太小,太小时切削厚度可能小于切削刀齿的小圆半径。铰削余量、切削速度、进给量这三个要素是相互影响,当铰削余量较大时,切削速度,进给量就不能选得过高;反之,如果切削速度和进给量选取较小值时,则可适当提高切削速度。

刀片的选择

1.影响数控刀具选择的因素 在选择刀具的类型和规格时,主要考虑以下因素的影响: (1)生产性质 在这里生产性质指的是零件的批量大小,主要从加工成本上考虑对刀具选择的影响。 例如在大量生产时采用特殊刀具,可能是合算的,而在单件或小批量生产时,选择标准刀具更适合一些。 (2)机床类型 完成该工序所用的数控机床对选择的刀具类型(钻、车刀或铣刀)的影响。在能够保证工件系统和刀具系统刚性好的条件下,允许采用高生产率的刀具,例如高速切削车刀和大进给量车刀。 (3)数控加工方案 不同的数控加工方案可以采用不同类型的刀具。例如孔的加工可以用钻及扩孔钻,也可用钻和镗刀来进行加工。 (4)工件的尺寸及外形 工件的尺寸及外形也影响刀具类型和规格的选择,例如特型表面要采用特殊的刀具来加工。 (5)加工表面粗糙度 加工表面粗糙度影响刀具的结构形状和切削用量,例如毛坯粗铣加工时,可采用粗齿铣刀,精铣时最好用细齿铣刀。 (6)加工精度 加工精度影响精加工刀具的类型和结构形状,例如孔的最后加工依据孔的精度可用钻、扩孔钻、铰刀或镗刀来加工。 (7)工件材料 工件材料将决定刀具材料和切削部分几何参数的选择,刀具材料与工件的加工精度、材料硬度等有关。 2.数控刀具的性能要求 由于数控机床具有加工精度高、加工效率高、加工工序集中和零件装夹次数少的特点,对所使用的数控刀具提出了更高的要求。从刀具性能上讲,数控刀具应高于普通机床所使用的刀具。 选择数控刀具时,首先要应优先选用标准刀具,必要时才可选用各种高效率的复合刀具及特殊的专用刀具。在选择标准数控刀具时,应结合实际情况,尽可能选用各种先进刀具,如可转位刀具、整体硬质合金刀具、陶瓷刀具等。 在选择数控机床加工刀具时,还应考虑以下几方面的问题: (1)数控刀具的类型、规格和精度等级应能够满足加工要求,刀具材料应与工件材料相适应。 (2)切削性能好。为适应刀具在粗加工或对难加工材料的工件加工时能采用大的背吃刀量和高进给量,刀具应具有能够承受高速切削和强力切削的性能。同时,同一批刀具在切

加工刀片槽型设计

对采用新型断屑槽的几何参数对断屑性能的影响 Ning Fang Department of Mechanical Engineering, Nanjing Uni6ersity of Aeronautics and Astronautics, Jiangsu 210016, People’s Republic of China 摘要 目前,随着柔性制造系统(FMS)的越来越广泛的应用,计算机集成制造系统(CIMS)等现代技术广泛采用可转位刀具刀片与新型断屑槽。刀片的断屑性能被认为是保证加工过程连续性的重要因素之一。因此,当使用的新型断屑槽时,有必要较为系统和全面地研究断屑的规律。在目前的研究中,已经对非对称断屑槽(AGT)和对称断屑槽(SGT)的断屑性能做了详细的比较。实验结果表明,用AGT 来代替SGT并在加工过程中调查断屑的规律是可行的。采用新型断屑槽时,通过大量的切削实验研究断屑槽的几何参数对刀片断屑性能的影响。通过多元线性回归的方法,建立两个数学模型来模拟的新型断屑槽的断屑性能。该理论模拟结果与给定切削条件下的实验结果相吻合。 关键词:不对称断屑槽;对称断屑槽;刀片;断屑

1.引言 如今,生产自动化随着现代技术的出现而日趋复杂,例如,各种的高速机床,组合机床,数控机床,自动生产线,柔性制造系统(FMS)和计算机集成制造系统(CIMS)等。因此可转位刀片得到广泛的应用。刀片的优良断屑性能被视为维持加工过程的连续性的重要因素之一。 可转位刀片的前刀面上设压切屑槽是断屑的有效方法之一。许多研究人员已对断屑槽的几何参数对刀具刀片的断屑性能的影响进行过研究[1-7]。尽管过去的研究对实验做出了显着贡献,但他们还是存在以下这些缺点: (i) 现存在大量分散而不系统的实验数据。例如,在断屑槽的众多几何参数中只有槽宽和槽深,被认为是影响切屑卷曲半径和断屑的主要因素。 (ii)早期的实验数据已经过时。过去的许多研究活动集中于使用断屑槽宽通常超过3毫米的老式的断屑槽。而新型断屑槽与老式相比有许多不同的几何特征,因此,那些珍贵的研究结果对研究新型断屑槽毫无用处。 (iii)新型断屑槽的设计而产生的问题仍待解决。例如,目前仍然不能确定断屑槽的一些几何参数(如槽底面的高度和凹槽的宽深之比)是否有存在对刀片断屑性能的影响。

【结构设计】结构设计时计算模型参数应如何优化

结构设计时计算模型参数应如何优化在建筑工程设计中,结构计算是至关重要的环节.电算时代,很多工程师由于概念不清晰,工期紧张,或造成安全隐患,或造成严重浪费.因此,笔者根据将以目前市场上应用较为广 泛的PKPM软件为依托,阐述结构计算模型参数的优化要点. 一.上部结构 1、地面粗糙度类别 同等条件下类别A、B、C、D对应的风荷载大小依次递减,个别设计人员区分不清A类-近海海面和海岛、海岸、湖岸及沙漠地区;B类-田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇. 判别有困难时,可依据《荷规》8.2.1条条文说明的半圆影响范围来分类. 2、抗震等级 (1)房屋高度的确定 《抗规》6.1.1注1:房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分). 《异形柱结构规范》3.2.1条文说明对坡屋顶情况作了 如下说明:

对于结构高度处于临界值上的建筑,准确取用其结构高度,直接影响抗震等级和钢筋用量. (2)框架-剪力墙结构按照倾覆力矩来确定抗震等级 工程中常常出现“少墙”的框架结构和“多柱”的剪力墙结构,《高规》8.1.3及其条文说明明确了框架承担的倾覆力矩决定了其按照何种结构类型进行设计,此时要特别注意框架和剪力墙的抗震等级的选取不当可能会造成浪费或未能形成多到防线的有效设置,影响结构安全. 3、活荷载折减 《荷规》5.1.2-2明确了设计墙、柱和基础时均可以进行活荷载折减,只是要特别注意折减系数的选取要依据规范要求,不能对于所有结构都按照软件默认的参数执行. 4、柱配筋计算原则 普通柱按单偏压计算,双偏压校核,异型柱才按双偏压计算.按双偏压计算时柱钢筋用量显著增加. 5、周期折减系数 周期折减系数主要考虑填充墙对结构周期的影响,填充墙越重越多,周期折减系数越小,地震作用越大,墙柱配筋越大.

可转位刀片断屑槽的改进设计

可转位刀片断屑槽的改进设计 一、前言 切屑控制是金属切削加工生产中需要研究解决的重要问题。不良的切屑会伤害操作人员,影响已加工零件的表面质量,损坏机床和刀具,增加辅助工时和影响生产率。随着CNC 、FMS 、和CIMS 等各种自动化技术的发展,切屑控制问题变得更加重要,因为不良的切屑将使自动化生产线不能正常运转。切屑控制的基本问题之一是要使切屑可靠折断。目前最常用的方法是用断屑槽断屑。断屑槽断屑是利用材料的加工硬化和受冲击、受挤压而达到破坏强度的原理。由于可转位刀片断屑槽对切屑处理、切削阻力、刀具寿命、加工精度等方面的重要作用,近二十年来断屑槽的槽型也在不断改进之中,相继开发了具有直线刃、折线刃、曲线刃与曲面型、多面型凸起、凹坑型等型面相结合的断屑槽,槽型曲面变得愈来愈复杂,其断屑性能也随之不断改进。研制新型断屑槽型是开发新型刀片,改善刀片切削性能的有效途径之一。 二、断屑槽槽型的改进设计 断屑槽通常可以按用途分为精加工、半精 加工和粗加工用断屑槽。为了改进刀片槽型为M5 的硬质合金可转位刀片在粗车钢、不锈钢、铸铁 时的切削性能,提高刀片使用寿命,对其M5型断屑槽进行了改进设计。图1所示为改进前后的断屑槽槽型。改进设计的要点是采用负倒棱和凹坑组合的断屑槽槽型。因为切削过程中,切屑从刀具前刀面流出时,切屑底层与断屑槽的槽底发生 强烈的摩擦,会产生大量的热量,切削热不断地 从切屑传递到刀片,致使刀片产生磨损。图2所示,在断屑槽底切出一个凹坑可以使刀片与切屑底层的接触面积达到最少,以减少刀片的磨损,提高刀片的使用寿命。5°正前角的负倒棱设计是为了降低切削过程中产生的切削力。 三、改进前后刀片切削性能比较 1. 切削力比较 改进后的M5(New)型断屑槽采用5°正前角的负倒棱,负倒棱的设计是影响切削力的主要因素,其中主要是对轴向力和径向力的影响。图3、图4、图5为改进前后刀片在 V c =150m/min, a p =4mm 车削工件材料为SS1672时切削力分量的对比数据。结果表明:在切削钢、不锈钢时M5(New)和M5比较轴向力和径向力分别降低8%~10 %和12%~14%,切向力基本不变。 (a)M5 (b)M5(New) 图1 (a)M5 (b)M5(New) 图2

加油机器人结构参数优化设计

液压气动与密封/2017年第11期 doi:10.3969/j.issn.1008-0813.2017.11.012 收稿日期:2017-09-07 基金项目:国防科研项目(YX216J021);国家自然科学基金资助项目(51505494) 作者简介:陈雁(1972-),男,重庆人,副教授,博士,主要从事机器人及油料装备理论与技术研究。 0前言 随着科学技术的发展,加油站采用加油机器人作 业将成为未来的发展趋势[1-3]。目前,国外一些公司和学者研发了不同的加油机器人系统[4-7]。国内也有一些学者对加油机器人进行了设计和研究[8-11]。但是,有关对机器人本体结构优化的研究较少,而机器人本体设计和结构参数优化对其工作空间及运动灵活性等都会产生影响,在很大程度上决定了整个机器人性能的优劣,是设计之初必须解决的关键问题。因此,本文设计了一个新型六自由度加油机器人,并对其结构参数优化进行深入研究。 1加油机器人本体结构设计 本文研究的加油机器人为6自由度串联型,包括3 自由度手臂和3自由度手腕两部分,分别用于确定末端执行器的位置和姿态。其结构简图如图1所示。 手臂主要用来完成加油机器人末端执行机构的定位,使得末端执行器可以达到工作空间内的任意位置。确定末端执行器的空间位置,需要直角坐标系中 对应三个坐标轴的3个坐标参数,而手臂的运动不受加油对象的约束,故手臂机构需要3个自由度即可。手腕的主要作用是确定末端执行器的方位,至少需要有俯仰自由度和旋转自由度,但手腕及末端执行器会受到汽车油箱门等的约束,为提高加油机器人的灵巧性,因此,手腕机构采用3 个自由度。 图1加油机器人基本构型 2加油机器人结构参数优化设计 加油机器人的结构参数,主要包括连杆的长度和 转角范围等。其结构参数的优化设计是根据加油作业要求和作业对象分布空间,利用优化方法进行尺寸分析与计算。2.1任务空间 任务空间是指根据作业需求加油机器人末端应到达的位置所形成的空间。根据常见汽车加油口位置、 加油机器人结构参数优化设计 陈雁,阎思达,陈文卓,马振利,黎波 (陆军勤务学院油料系,重庆401331) 摘要:加油机器人结构和控制比一般工业机器人要求更高,其结构尺寸的确定,直接影响到作业任务的可行性、安全性和完成质量。为了使加油机器人能够灵活高效地进行作业,根据汽车加油站加油作业要求以及汽车油箱口分布空间,以工作空间为约束条件,建立优化设计的数学模型,并利用Matlab 优化工具箱进行了机器人本体结构参数优化设计。关键词:加油机器人;优化设计;工作空间;Matlab 中图分类号:TP24 文献标志码:A 文章编号:1008-0813(2017)11-0038-04 Optimization Design on Structure Parameter of Refueling Robot CHEN Yan ,YAN Si-da ,CHEN Wen-zhuo ,MA Zhen-li ,LI Bo (Department of Petroleum,Army Logistics University of PLA,Chongqing 401331,China) Abstract :The structure and control of the refueling robot is more complex than that of the general industrial robot.Its structural size influ-ence the size of the robot's working space directly.Its structural size is directly affected by the feasibility,safety and quality of the task.In or-der to refuel flexibly and efficiently,according to the requirements of the refueling operation of the automobile gas station and the distribu-tion space of the automobile fuel tank,the mathematical model of the optimized design is established with the working space as the con-straint condition,and the optimization design of the robot structure parameters is carried out by using the Matlab optimization toolbox.Key words :refueling robot;optimized design;working space;Matlab 38 万方数据

结构参数优化设计(新)

腿部机械结构参数的优化设计 腿节长度的确定 根据最后出来的总体机构,该四足仿生机器人每条腿都有肩、大腿、小腿部分的 腿节,为方便表达,进行了如图的标示: L 1、L 2、L 3——分别为腿部中肩部分、大腿部分、小腿部分的腿节长度 α、β、γ——肩关节、大腿关节、小腿关节的转角 为实现腿部机构运动时具有一定的灵活性,只具有一定的腿节数是不够的,其中各腿节的长度对总体的运动性能影响是很大的,在确定腿部总体尺寸后,对每个腿节的合理的比例分配的是相当的重要的。以下通过分析腿节长度对腿部跨度的影响、对抬腿高度的影响、对腿部足端运动空间的影响、对腿部运动灵活性的影响来确定各腿节的长度尺寸。 1. 腿节长度对腿部跨度的影响 Θ

图中为仿生机器人腿部运动的某一瞬间,机构在空间中处于某一个位置,以坐标方程记录足端的运动轨迹: x 跨度、y 跨度、z 跨度分别表示足端在已设坐标系中沿x 轴、y 轴、z 轴方向的跨度 x 跨度=U;(1) y 跨度=H cos θ;(2) z 跨度=H sin θ。(3) 根据三角函数变形,用上L 1、L 2、L 3的腿节长度来表达U 和H U= L 1cos α+ L 2cos (α+β)+ L 3cos (α+β-γ)(4) H= L 1sin α+ L 2sin (α+β)+ L 3sin (α+β-γ)(5) 1.1各腿节长度对腿部在X 方向上的跨度的影响 根据(1)(4)得到 x 跨度=U= L 1cos α+ L 2cos (α+β)+ L 3cos (α+β-γ) 再用x 跨度分别对L 1、 L 2 、L 3进行求导,即可得到跨度对不同腿节长度的敏感程度,得: 1 x L ??跨度= cos α, 2 x L ??跨度= cos (α+β), 3 x L ??跨度= cos (α+β-γ) 根据以上三个式子,比较大小可知,敏感程度由转角幅度的要求来确定,首先确定α、β、γ的变化范围: α=20度~60度 β=40度~110度 γ=30度~100度 腿部足端跨度最值可根据各关节的转角来实现(只要转角在满足要求的范围内),

特固克车刀片 断屑槽对应应用和特点资料

特固克数控刀具(车刀片)槽形 FA 应用和特点:(1)超精加工 (2)钢、不锈钢、耐热合金 (3)断屑好 FA 应用和特点:(1)精加工 (2)特殊材质 (3)低速、小切深、断屑好FG 应用和特点:(1)精、半精加工 (2)钢、不锈钢和铸铁 (3)低切削力 SF 应用和特点:(1)精加工 (2)不锈钢和耐热合金加工 (3)低切削力 FX 应用和特点:(1)软钢精加工 (2)窄槽设计,理想断屑 (3)低切削力

FC 应用和特点:(1)完美精加工 (2)低碳钢和低碳合金钢 (3)外圆和端面车削断屑良好 FM 应用和特点:(1)钢件加工 (2)三维切削槽型使断屑槽更佳 (3)从半精加工到半中等加工,适用范围广的解决方案MC 应用和特点:(1)中等加工 (2)钢和铸铁 (3)高强度前角 (4)中等车削加工时断屑好 FT 应用和特点:(1)钢件加工 (2)齿状断屑槽,良好的排屑性能 (3)半精到中等加工 (4)适用汽车零部件加工 PC 应用和特点:(1)中等到半精加工 (2)钢件和汽车零部件加工 (3)高强度前角

(4)中等车削加工时断屑好 VF 应用和特点:(1)细长工件加工 (2)降低震动 (3)钢和不锈钢 (4)大前角降低切削力 ML 应用和特点:(1)中轻加工 (2)不锈钢、钢和铝合金 (3)大前角设计、降低切削力和减少积屑瘤的产生MP 应用和特点:(1)中等加工 (2)钢和不锈钢 (3)大前角提供稳定的加工条件 MM 应用和特点:(1)钢和不锈钢一般加工 (2)正前脚提供优异的排屑能力 EM 应用和特点:(1)中等加工 (2)不锈钢 (3)锋利刃口获得低切削力 MT

刀具断屑原因分析和解决方案【干货】

刀具断屑原因分析和解决方案【干货】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、切屑形状的分类 (1)带状屑:高速切削塑性金属材料时,如不采取断屑措施,极易形成带状屑,此形屑连绵不断,常会缠绕在工件或刀具上,易划伤工件表面或打坏刀具的切削刃、甚至伤人,因此应尽量避免形成带状屑。 但有时也希望得到带状屑,以使切屑能顺利排出。例如在立式镗床上镗盲孔时。 (2)C 形屑:车削一般的碳钢、合金钢材料时,如采用带有断屑槽的车刀则易形成C 形屑。C 形屑没有了带状屑的缺点。但C 形屑多数是碰撞在车刀后刀面或工件表面而折断的。切屑高频率的碰断和折断会影响切削过程的平稳性,从而影响已加工表面的粗糙度。所以,精加工时一般不希望得到C形屑.而多希望得到长螺卷屑,使切削过程比较平稳。(3)发条状卷屑:在重型车床上用大切深、大进给量车削钢件进,切屑又宽又厚,若形成C 形屑则容易损伤切削刃,基至会飞崩伤人。所以通常将断屑槽的槽底圆弧半径加大,使切屑成发条状在加工表面上碰撞折断,并靠其自重坠落。 (4)长紧卷屑:长紧卷屑形成过程比较平稳,清理也方便,在普通车床上是一种比较好的屑形。 (5)宝塔状卷屑:数控加工、机床或自动线加工时,希望得到此形屑,因为这样的切屑不会缠绕在刀具和工件上。而且清理也方便。

(6)崩碎屑:在车削铸铁、脆黄铜、铸青铜等脆性材料时,极易形成针状或碎片状的崩碎屑,既易飞溅伤人、又易研损机床。若采用卷屑措施,则可使切屑连成短卷状。 总之,切削加工的具体条件不同,希望得到切屑的形状也不同,但不论什么形状的切屑,都要断屑可靠。 几种常用的断屑方法 (一)利用断屑槽: 如前所述,断屑槽不仅对切屑起附加变形的作用.而且还能实现控制切屑的卷曲与折断。只要断屑槽的形状、尺寸及断屑槽与主切削刃的倾斜角合适,断屑则是可靠的。不论是焊接式刀具还是机夹式刀具,是重磨式刀具还是不重磨式刀具都可采用。 为了适用不同的切削用量范围。硬质合金可转位刀片上压制有多种形状及不同尺寸的断屑槽,便于选用,这样既经济又简便。这种方法是切削加工中应首选的方法,也是应用广泛的方法。不足之处是刀具合理几何参数的确定,受到断屑要求的牵制 (二)利用断屑器 在车刀前刀面上装一个挡屑板1,切屑沿刀具的前面流出时,因受挡屑板1 所阻而弯曲折断。断屑器的参数Ln和α可按需要设计和调整,以保证在给定的切削条件下,断屑稳定可靠。松开螺钉3 , 在弹簧4 的作用下,可使挡屑板1 和压板2 一起抬起,便于挡屑板调整和刀片的快速转位与更换。这种断屑器常用于大、中型机床的刀具上。 (三)利用在工件表面上的预先开槽的方法: 按工件直径大小不同,预先在被加工表面上沿工件轴向开出一条或数条沟槽,其深度略小于切削深度,使切出的切屑形成薄弱截面,从而折断。这样,既保证了可靠的断屑,又不影响工件已加工表面的粗糙度。即使加工韧性较大的材料时,断屑效果也很好。例如在精镗韧性

刀具断屑不断削的原因分析及解决方法

刀具断屑不断削的原因分析及解决方法[机械工程] 刀具断屑可靠与否,对正常生产与操作者安全都有着重大影响。在切削加工中,崩碎切屑会飞溅伤人,并易研损机床;而长条带状切屑会缠绕在工件或刀具上,易刮伤工件,引发刀具破损,甚至影响工人安全。对于数控机床(加工中心)等自动化加工机床,由于其刀具数量较多,刀架与刀具联系密切,断屑问题就显得更为重要,只要其中—把刀断屑不可靠,就可能破坏机床的自动循环,甚至破坏整条自动线正常运转,所以在设计、选用或刃磨刀具时,必须考虑刀具断屑的可靠性。而对于数控机床(加工中心)等,并应满足下列要求: 切屑不得缠绕在刀具、工件及其相邻的工具、装备上; 切屑不得飞溅,以保证操作者与观察者的安全; 精加工时,切屑不可划伤工件的已加工表面,影响已加工表面的质量; 保证刀具预定的耐用度,不能过早磨损并竭力防止其破损; 切屑流出时,不妨碍切削液的喷注; 切屑不会划伤机床导轨或其他部件等。 在满足上述要求的基础上,不同刀具对切屑长度还有不同要求。例如一般粗车钢料的最大切屑长度为100mm左右;精车则应稍长。要避免过于细碎的切屑,因为它容易嵌入机床导轨和刀具装置的一些重要部位(如基准面),这样不仅需要附加防护装置,还给清除切屑带来一定的困难。 对于某些不易断屑的刀具,如成形车刀、切槽车刀和切断车刀等,在数控机床(加工中心)等自动化机床上,应保证其稳定的卷屑。 一、切屑形状的分类 根据工件材料、刀具几何参数和切削用量等的具体情况,切屑形状一般有:带状屑、C 形屑、崩碎屑、宝塔状卷屑、发条状卷屑、长紧螺卷屑、螺卷屑等(见图1)。 ( l )带状屑(见图1a):高速切削塑性金属材料时,如不采取断屑措施,极易形成带状屑,此形屑连绵不断,常会缠绕在工件或刀具上,易划伤工件表面或打坏刀具的切削刃、甚至伤人,因此应尽量避免形成带状屑。 但有时也希望得到带状屑,以使切屑能顺利排出。例如在立式镗床上镗盲孔时。 (2)C 形屑(见图1 b):车削一般的碳钢、合金钢材料时,如采用带有断屑槽的车刀则易形成C 形屑。C 形屑没有了带状屑的缺点。但C 形屑多数是碰撞在车刀后刀面或工件表面而折断的(见图2)。切屑高频率的碰断和折断会影响切削过程的平稳性,从而影响已加工表面的粗糙度。所以,精加工时一般不希望得到C形屑.而多希望得到长螺卷屑(见图3) ,使切削过程比较平稳。 (3 )发条状卷屑(见图1f):在重型车床上用大切深、大进给量车削钢件进,切屑又宽又厚,若形成C 形屑则容易损伤切削刃,基至会飞崩伤人。所以通常将断屑槽的槽底圆弧半径加大,使切屑成发条状(见图4 )在加工表面上碰撞折断,并靠其自重坠 落。

铰刀易产生问题及解决办法

在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。 问题产生的原因 孔径增大,误差大 铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。 孔径缩小 铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合格。 铰出的内孔不圆 铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。 孔的内表面有明显的棱面 铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工件表面有气孔、砂眼;主轴摆差过大。 内孔表面粗糙度值高 切削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太小,局部表面未铰到;铰刀切削部分摆差超差、刃口不锋利,表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损;铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料关系,不适用于零度前角或负前角铰刀。 铰刀的使用寿命低 铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。 铰出的孔位置精度超差 导向套磨损;导向套底端距工件太远;导向套长度短、精度差;主轴轴承松动。 铰刀刀齿崩刃 铰孔余量过大;工件材料硬度过高;切削刃摆差过大,切削负荷不均匀;铰刀主偏角太小,使切削宽度增大;铰深孔或盲孔时,切屑太多,又未及时清除;刃磨时刀齿已磨裂。 铰刀柄部折断 铰孔余量过大;铰锥孔时,粗精铰削余量分配及切削用量选择不合适;铰刀刀齿容屑空间小,切屑堵塞。 铰孔后孔的中心线不直 铰孔前的钻孔偏斜,特别是孔径较小时,由于铰刀刚性较差,不能纠正原有的弯曲度;铰刀主偏角过大;导向不良,使铰刀在铰削中易偏离方向;切削部分倒锥过大;铰刀在断续孔中部间隙处位移;手铰孔时,在一个方向上用力过大,迫使铰刀向一端偏斜,破坏了铰孔的垂直度。 解决措施 孔径增大,误差大 根据具体情况适当减小铰刀外径;降低切削速度;适当调整进给量或减少加工余量;适当减小主偏角;校直或报废弯曲的不能用的铰刀;用油石仔细修整到合格;控制摆差在允

相关文档