文档库 最新最全的文档下载
当前位置:文档库 › 高一数学(人教新课标A版)对数与对数函数

高一数学(人教新课标A版)对数与对数函数

高一数学(人教新课标A版)对数与对数函数
高一数学(人教新课标A版)对数与对数函数

对数与对数函数

撰稿:江用科审稿:严春梅责编:丁会敏

一、目标认知

学习目标

1.掌握对数的概念、常用对数、对数式与指数式互化,对数的运算性质、换底公式与自然对数;

2.掌握对数函数的概念、图象和性质.

重点

对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用;理解对数函数的定义,掌握对数函数的图象和性质.

难点

正确使用对数的运算性质;底数a对图象的影响及对数函数性质的作用.

二、知识要点梳理

知识点一、对数及其运算

我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.

(一)对数概念:

1.如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底

数,N叫做真数.

2.对数恒等式:

3.对数具有下列性质:

(1)0和负数没有对数,即;

(2)1的对数为0,即;

(3)底的对数等于1,即.

(二)常用对数与自然对数

通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然

对数,.

(三)对数式与指数式的关系

由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.

由此可见a,b,N三个字母在不同的式子中名称可能发生变化.

(四)积、商、幂的对数

已知

(1);

推广:

(2);

(3).

(五)换底公式

同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:

(1)

令log a M=b,则有a b=M,(a b)n=M n,即,即,

即:.

(2) ,令log a M=b,则有a b=M,则有

即,即,即

当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:

.

知识点二、对数函数

1.函数y=log a x(a>0,a≠1)叫做对数函数.

2.在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0

随a的增大而远离x轴.(见图1)

(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R

(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)

(3)当a>1时,

三、规律方法指导

容易产生的错误

(1)对数式log a N=b中各字母的取值范围(a>0 且a11,N>0,b?R)容易记错.

(2)关于对数的运算法则,要注意以下两点:

一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.

二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面

的等式是错误的:

log a(M±N)=log a M±log a N,

log a(M·N)=log a M·log a N,

log a.

(3)解决对数函数y=log a x (a>0且a11)的单调性问题时,忽视对底数a的讨论.

(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.

以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.

经典例题透析

类型一、指数式与对数式互化及其应用

1.将下列指数式与对数式互化:

(1);(2);(3);(4);(5);

(6).

思路点拨:运用对数的定义进行互化.

解:(1);(2);(3);(4);(5);

(6).

总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.

举一反三:

【变式1】求下列各式中x的值:

(1)(2)(3)lg100=x (4)

思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.

解:(1);

(2);

(3)10x=100=102,于是x=2;

(4)由.

类型二、利用对数恒等式化简求值

2.求值:

解:.

总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.

举一反三:

【变式1】求的值(a,b,c∈R+,且不等于1,N>0)

思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.

解:.

类型三、积、商、幂的对数

3.已知lg2=a,lg3=b,用a、b表示下列各式.

(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15

解:(1)原式=lg32=2lg3=2b

(2)原式=lg26=6lg2=6a

(3)原式=lg2+lg3=a+b

(4)原式=lg22+lg3=2a+b

(5)原式=1-lg2=1-a

(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三:

【变式1】求值

(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2

解:

(1)

(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1

(3)原式=2lg5+lg2(1+lg5)+(lg2)2

=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.

【变式2】已知3a=5b=c,,求c的值.

解:由3a=c得:

同理可得

.

【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.

证明:

.

【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.

证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb

即.

类型四、换底公式的运用

4.(1)已知log x y=a,用a表示;

(2)已知log a x=m,log b x=n,log c x=p,求log abc x.

解:(1)原式=;

(2)思路点拨:将条件和结论中的底化为同底.

方法一:a m=x,b n=x,c p=x

∴,

∴;

方法二:.

举一反三:

【变式1】求值:(1);(2);(3).

解:

(1)

(2);

(3)法一:

法二:.

总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.

类型五、对数运算法则的应用

5.求值

(1) log89·log2732

(2)

(3)

(4)(log2125+log425+log85)(log1258+log254+log52)

解:(1)原式=.

(2)原式=

(3)原式=

(4)原式=(log2125+log425+log85)(log1258+log254+log52)

举一反三:

【变式1】求值:

解:

另解:设=m (m>0).∴,

∴,∴,

∴lg2=lgm,∴2=m,即.

【变式2】已知:log23=a,log37=b,求:log4256=?

解:∵∴,

类型六、函数的定义域、值域

求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.

6. 求下列函数的定义域:

(1);(2).

思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.

解:(1)因为x2>0,即x≠0,所以函数;

(2)因为4-x>0,即x<4,所以函数.

举一反三:

【变式1】求下列函数的定义域.

(1) y=(2) y=ln(a x-k·2x)(a>0且a11,k?R).

解:(1)因为,所以,

所以函数的定义域为(1,)(,2).

(2)因为a x-k·2x>0,所以()x>k.

[1]当k≤0时,定义域为R;

[2]当k>0时,

(i)若a>2,则函数定义域为(k,+∞);

(ii)若0

(iii)若a=2,则当0

为.

【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.

思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)

的定义域为[,4].

类型七、函数图象问题

7.作出下列函数的图象:

(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.

解:(1)如图(1);(2)如图(2);(3)如图(3).

类型八、对数函数的单调性及其应用

利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.

8. 比较下列各组数中的两个值大小:

(1)log23.4,log28.5

(2)log0.31.8,log0.32.7

(3)log a5.1,log a5.9(a>0且a≠1)

思路点拨:由数形结合的方法或利用函数的单调性来完成.

(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,

所以,log23.4

解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4

解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4

(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;

(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.

解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,

令b1=log a5.1,则,令b2=log a5.9,则

当a>1时,y=a x在R上是增函数,且5.1<5.9

所以,b1

当0

所以,b1>b2,即.

举一反三:

【变式1】(2011 天津理7)已知则()

A.B.C.D.

解析:另,,,在同一坐标系下作出三个函数图像,

由图像可得

又∵为单调递增函数,

故选C.

9. 证明函数上是增函数.

思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.

证明:设,且x1

又∵y=log2x在上是增函数

即f(x1)

∴函数f(x)=log2(x2+1)在上是增函数.

举一反三:

【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.

解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1

∴f(t1)-f(t2)=,

∵01,∴f(t1)

当01或0

10.求函数y=(-x2+2x+3)的值域和单调区间.

解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0

∴y≥=-2,即函数的值域为[-2,+∞.

再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1

∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.

∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.

类型九、函数的奇偶性

11. 判断下列函数的奇偶性.

(1)(2).

(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.

解:由

所以函数的定义域为:(-1,1)关于原点对称

所以函数是奇函数;

总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.

(2)解:

所以函数的定义域为R关于原点对称

即f(-x)=-f(x);所以函数.

总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.

类型十、对数函数性质的综合应用

12.已知函数f(x)=lg(ax2+2x+1).

(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.

思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.

f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,

使u能取遍一切正数的条件是.

解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,

当a=0时,此不等式变为2x+1>0,其解集不是R;

当a≠0时,有a>1.∴a的取值范围为a>1.

(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或

0≤a≤1,

∴a的取值范围为0≤a≤1.

13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.

(1)求S=f(a)的表达式;

(2)求函数f(a)的值域;

(3) 判断函数S=f(a)的单调性,并予以证明;

(4)若S>2,求a的取值范围.

解:(1)依题意有g(x)=log2x(x>0).

并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),

C(a+8,log2(a+8)) (a>1),如图.

∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕

∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).

(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2

=2log2(1+).

由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,

∴0<2log2(1+)<2log2,即0

(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1

(1+)-(1+)=16()=16·,

由a 1>1,a 2>1,且a 2>a 1,∴ a 1+a 2+8>0, +8a 2>0, +8a 1>0, a 1-a 2<0,

∴ 1<1+<1+

,再由函数y=log 2x 在(0,+∞)上是增函数,

于是可得f(a 1)>f(a 2)

∴ S=f(a)在(1,+∞)上是减函数.

(4)由S>2,即得,解之可得:1

学习成果测评

基础达标

一、选择题

1.下列说法中错误的是( )

A.零和负数没有对数

B.任何一个指数式都可化为对数式

C.以10为底的对数叫做常用对数

D.以e 为底的对数叫做自然对数

2.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x=10;④若e=lnx ,则x=e 2,其中

正确的是( )

A.①③

B.②④

C.①②

D.③④

3.下列等式成立的有( )

①;②;③;④;⑤;

A.①②

B.①②③

C.②③④

D.①②③④⑤

4.已知,那么用表示是( )

A. B.

C.

D.

5.(2011 天津文6)设,,,则( ).

A. B.

C.

D.

6.已知,且等于( )

A. B. C. D.

7.函数的图象关于( )

A.轴对称

B.轴对称

C.原点对称

D.直线对称

8.函数的定义域是( )

A. B.

C. D.

9.函数的值域是( )

A. B. C. D.

10.下列函数中,在上为增函数的是( )

A. B.

C. D.

二、填空题

11.3的_________次幂等于8.

12.若,则x=_________;若log2003(x2-1)=0,则x=_________.

13.(1)=_______;

(2) 若_______;

(3)=_______;

(4)_______;

(5)=_______;

14.函数的定义域是__________.

15.函数是___________(奇、偶)函数.

三、解答题

16.已知函数,判断的奇偶性和单调性.

17.已知函数,

(1)求的定义域;

(2)判断的奇偶性.

18.已知函数的定义域为,值域为,求的值.

能力提升

一、选择题

1.设a,b,c为正数,且3a=4b=6c,则有( )

A. B. C. D.

2.已知,那么a的取值范围是( )

A. B. C. D.或a>1

3.图中曲线是对数函数y=log a x的图象,已知a值取,则相应于C1,C2,C3,C4的a值依次

为( )

A. B.

C. D.

4.(2011 重庆理5)下列区间中,函数在其上为增函数的是

A. B. C. D.

5.设偶函数f(x)=log a|x-b|在(-∞,0)上是增函数,则f(a+1)与f(b+2)的大小关系是( )

A.f(a+1)=f(b+2)

B.f(a+1)>f(b+2)

C.f(a+1)

D.不能确定

6.设方程2x+x-3=0的根为,方程log2x+x-3=0的根为,则的值是( )

A.1

B.2

C.3

D.6

二、填空题

7.已知函数y=log a(kx2+4kx+3),若函数的定义域为R,则k的取值范围是__________;若函数的值域

为R,则k的取值范围是________.

8.(2011 辽宁理9)设函数f(x)=则满足f(x)≤2的x的取值范围是

A.[-1,2]B.[0,2]

C.[1,+)D.[0,+).

9.已知a=0.33,b=30.3,c=log30.3,d=log0.33,则a,b,c,d的大小关系是______.

三、解答题

10.设log a c,log b c是方程x2-3x+1=0的两根,求的值.

11.设

1)判断f(x)的单调性,并给出证明;

2)若f(x)的反函数为f-1(x),证明f-1(x)=0有唯一解;

3)解关于x的不等式.

12.光线通过一块玻璃板,其强度要损失10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a,通过x块玻璃板以后强度值为y.

1)试写出y关于x的函数关系式;

2)通过多少块玻璃板以后,光线强度减弱到原来的以下.

答案与解析

基础达标

一、选择题

1.B

2.C

3.B

4.A

5. D

6.D

7.C

8.A

9.C10.D

二、填空题

11.;12.-13,;13. (1)1;(2)12;(3)-3;(4)2;(5)4;

14.由解得;

15.奇,

为奇函数.

三、解答题

16.(1),

∴是奇函数

(2),且,

则,

∴为增函数.

17.(1)∵,∴,

又由得,

∴的定义域为.

(2)∵的定义域不关于原点对称,∴为非奇非偶函数.

18.由,得,即

∵,即

由,得,由根与系数的关系得,解得

.

能力提升

一、选择题

1.设3a=4b=6c=k,则a=log3k,b=log4k,c=log6k,

∴,同理,,

而,∴,即.

2.当a>1时,由知,故a>1;

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

人教版数学高一-必修一训练 .1对数函数的图象及性质(教师版)

(本栏目内容,在学生用书中以活页形式分册装订!) 一、选择题(每小题5分,共20分) 1.若某对数函数的图象过点(4,2),则该对数函数的解析式为( ) A .y =log 2x B .y =2log 4x C .y =log 2x 或y =2log 4x D .不确定 解析: 由对数函数的概念可设该函数的解析式为y =log a x (a >0,且a ≠1,x >0),则2=log a 4=log a 22=2log a 2,即log a 2=1,a =2.故所求解析式为y =log 2x .故选A. 答案: A 2.已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2 D .3 解析: f (a )=log 2(a +1)=1 ∴a +1=2 ∴a =1.故选B. 答案: B 3.已知函数f (x )=a x (a >0,a ≠1)的反函数为g (x ),且满足g (2)<0,则函数g (x +1)的图象是下图中的( ) 解析: 由y =a x 解得x =log a y , ∴g (x )=log a x . 又∵g (2)<0,∴0

A.????22,2 B .[-1,1] C.????12,2 D.? ???-∞,22∪[2,+∞) 解析: 函数f (x )=2log 12 x 在(0,+∞)为减函数, 则-1≤2log 12 x ≤1, 可得-12≤log 12x ≤12 , 解得22 ≤x ≤ 2.故选A. 答案: A 二、填空题(每小题5分,共10分) 5.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(3,1),则a =________. 解析: 函数f (x )的反函数为y =log a x ,由题意,log a 3=1, ∴a =3. 答案: 3 6.设g (x )=????? e x (x ≤0)ln x (x >0),则g ????g ????12=________. 解析: g ????12=ln 12 <0, g ????ln 12=eln 12=12 , ∴g ????g ????12=12 . 答案: 12 三、解答题(每小题10分,共20分) 7.求下列函数的定义域: (1)f (x )=log 2(9-x 2); (2)f (x )=log (5-x )(2x -3); (3)f (x )=2x +3x -1 log 2(3x -1). 解析: (1)由对数真数大于零,得9-x 2>0,即-3<x <3,∴所求定义域为{x |-3<x <3}.

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

人教A版数学必修一高一数指数函数、对数函数

高一数指数函数、对数函数 一、选择题:(每小题6分, 共36分) 1.化简3458log 4log 5log 8log 9???的结果是( ) A .1 B . 3 2 C .2 D .3 2.函数1)2(log ++=x y a 的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.已知a <0,则a 2 ,a )2 1 ( ,a 2.0的大小关系是( ) A .a 2.0 1,实数x ,y 满足log a y+x =0,则y 关于x 的函数图象大致是( )

二、填空题:(每小题6分,共18分) 7.函数:26x x y --=单调增区间是__________________________ 8.四个数:23.0,3.0log 2,3.02,0)2 (π的由小到大的顺序为____________________ 9.计算: 3 75754 log 3 1log 9 log 2log ??=__________________________ 三.解答题: 10.(15)已知函数.)3 1 ()(x x f =当]1,1[-∈x 时,求3)(2)(2+-x f x f 的取值范围。 11.(15)求函数) (2 6ln x x y --=的单调区间。

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

对数函数-人教版高中数学

知识图谱 -对数函数-指对数比较大小对数函数的概念与对数函数有关的三要素问题与对数函数有关的单调性问题与对数函数有关的奇偶性问题指对数比较大小指对数比较大小的运用第04讲_对数函数 错题回顾 对数函数 知识精讲 一.对数函数的定义 ()叫做对数函数,它的定义域为,值域是.注意以下几个方面: 1.定义域:因为对数函数由指数函数变化而来,对数函数的自变量恰好是指数函数的函数值的取值范围,所以对数函数的定义域是; 2.对数函数的底数:对数函数的底数且; 3.形式上的严格性:在对数函数的定义表达式中的表达式中, 前面的系数必须是,自变量在真数的位置上,否则不是对数函数; 二.对数函数的图像与性质

过定点,图像都在一、四象限 对于相同的,函数与的图象关于轴对称. 当时, 当时, 在上是增函数当时,;当时, 在上是减函数 三.对数函数与指数函数的关系 1.定义:一般的,设函数的值域是,若找得到一个函数 在每一处都等于,这样的函数叫做函数的反函数,记作.反函数的定义域、值域分别是函数的值域、定义域. 2.对数函数与指数函数图像关于直线对称.互为反函数.3.指数方程和对数方程主要有以下几种类型: (定义法) (转化法) (取对数法) 三点剖析 一.方法点拨 1.利用对数函数的单调性比较大小

(1)如果两对数的底数相同,由对数函数的单调性(底数为增函数,为减函数)比较大小; (2)如果两对数的底数和真数均不相同,通常引入中间值进行比较;(3)如果两对数的底数不同而真数相同,如与的比较() ①当时,曲线比的图像(在第一象限内)上升得慢, 即当时,;当时,,即在第一象限内, 越大图像越靠近轴; ②当时,曲线比的图像(在第一象限内)下降得快, 即当时,;当时,,即在第四象限内,越 小图像越靠近轴. 题模精讲 题模一对数函数的概念 例1.1、 下列函数是对数函数的是() A、B、 C、D、 例1.2、

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

高中数学 对数教案 新人教版必修1

对数及对数函数 一、教学目标 1.对数及对数运算性质 2.对数函数 3.对数换底公式 二、考点、热点回顾 1.对数及对数运算性质 (1)对数概念 由对数的定义,N b N a a b log =?=. 但是应注意其中的字母必须满足条件: .0,1,0>≠>N a a (2)对数恒等式 由对数定义,当1,0≠>a a 时,若N a b =,则N b a log =,因此有N a N a =log .等式a a N a =log 叫 做对数恒等式. (3)对数的运算性质 ;log log )(log N M MN a a a += N M N M a a a log log log -=; M n M a n a log log =. 必须注意上述运算性质的条件是0>a ,且.0,0,1>>≠N M a 应避免发生下列错误:;log log )(log N M MN a a a ?= N M N M a a a log log log =; N M N M a a a log log )(log ±=±; M n M a n a log )(log =. (3)如果把运算分等级,“加”、“减”为一级运算,“乘”、“除”为二级运算,“乘方”、“开方”为三级运算,则通过取对数,可以把运算降低一个等级,即把二级运算转化为一级运算,把三级运算转化为二级运算. 例1 计算下列各式的值: (1)128log 8; (2)81log 27 (3)81log 3 3 ; (4))32(log ) 32(+-

例2 求下列各式中x 的值: (1)()1)123(log 2122=-+-x x x ; (2)0)](log [log log 345=x . 例3 计算:(1);3272log 3272log 2 2 -++ (2) 2 lg 72.0lg 22 lg 23lg +++; (3)5lg 9lg 4lg -+. (4771.03lg ,3010.02lg ==) 例4 已知 6321243==y x ,求 y x 2 3+的值. 例5 已知关于x 的函数a x a x x f lg 84lg )(2 +-=有最大值4,求实数a 及)(x f 取得大值时x 的值. 例6 已知x 、y 、z ()()+∞∈,11,0Y ,且.0lg lg lg =++z y x

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高一数学上册对数知识点

2019 高一数学上册对数知识点 如果a的x次方等于N (a>0,且a不等于1),那么数x 叫做以 a 为底N 的对数(logarithm ),记作x=logaN 。其中,a叫做对数的底数,N叫做真数。接下来我们一起来看看高一数学上册对数知识点。 2019 高一数学上册对数知识点 1、对数的概念 (1)对数的定义: 如果ax=N(a>0且a z 1),那么数x叫做以a为底N的对数,记作x=logaN ,其中a叫做对数的底数,N叫做真数.当a=10 时叫常用对数. 记作x=lg_N ,当a=e 时叫自然对数,记作x=ln_N.(2)对数的常用关系式(a ,b,c,d 均大于0 且不等于1): ① loga1=0. ② logaa=1. ③对数恒等式:alogaN=N. 二、解题方法 1. 在运用性质logaMn=nlogaM 时,要特别注意条件,在无M>0 的条件下应为logaMn=nloga|M|(n € N*,且n为偶数). 2. 对数值取正、负值的规律: 当a>1 且b>1 ,或00; 3. 对数函数的定义域及单调性:

在对数式中,真数必须大于0,所以对数函数y=logax 的定义域应为{x|x>0}. 对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按01 进行分类讨论. 4. 对数式的化简与求值的常用思路 (1) 先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并. (2) 先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算. 小编为大家提供的高一数学上册对数知识点,大家仔细阅读了吗?最后祝同学们学习进步。

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

人教版数学高一-人教版必修1练习 对数与对数运算

第二章 基本初等函数(Ⅰ) 2.2 对数函数 2.2.1 对数与对数运算 A 级 基础巩固 一、选择题 1.若log x 5 y =6,则x ,y 之间的关系正确的是( ) A .x 6=5 y B .y =x 6 5 C .x 5=y 6 D .y =x 5 6 解析:将对数式化为指数式得x 6=5 y . 答案:A A .x =1 9 B .x = 33 C .x = 3 D .x =9 解析:因为=2-2,所以log 3x =-2, 所以x =3-2=1 9. 答案:A 3.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )

A .①③ B .②④ C .①② D .③④ 解析:因为lg 10=1,所以lg(lg 10)=0,故①正确; 因为ln e =1,所以ln(ln e)=0,故②正确; 由lg x =10,得1010=x ,故x ≠100,故③错误; 由e =ln x ,得e e =x ,故x ≠e 2,所以④错误. 答案:C 4.log 849log 27的值是( ) A .2 B.32 C .1 D.2 3 解析:log 849log 27=log 272log 223÷log 2 7=2 3. 答案:D 5.已知lg 2=a ,lg 3=b ,则lg 12=( ) A .a 2+b B .2a +b C .a +2b D .a +b 2 解析:lg 12=lg 4+lg 3=2lg 2+lg 3=2a +b . 答案:B 二、填空题 6.已知m >0,且10x =lg (10m )+lg 1 m ,则x =________. 解析:因为lg(10m )+lg 1 m =lg ? ????10m ·1m =lg 10=1,所以10x =1,得x =0. 答案:0 7.方程lg x +lg (x -1)=1-lg 5的根是________.

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

相关文档
相关文档 最新文档