文档库 最新最全的文档下载
当前位置:文档库 › 气体动、热练习题(含答案)

气体动、热练习题(含答案)

气体动、热练习题(含答案)
气体动、热练习题(含答案)

(温度、气体动理论及热力学基础)

1.如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,

气体自由膨胀,当气体达到平衡时,气体的压强为 。

2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于

。 3.已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则

()?

p f v v v 0

d 表

示 ;速率v >v p 的分子的平均速率表达式为 .

4. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?

(氧气分子视为刚性分子,普适气体常量R =8.31 J·mol -1·K -1 )

5. 设以氮气(视为刚性分子理想气体)为工作物质进行卡诺循环,在绝热膨胀过程中气体的体积增大到原来的两倍,求循环的效率.

6. 一瓶氦气和一瓶氮气分子数密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则氦气的温度 氮气的温度,氦气的压强 氮气的压强。(选填:相等、大于、小于)

7. 一定量的理想气体,从a 态出发经过①或②过程到达b 态,

acb 为等温线(如图),则①、②两过程中外界对系统传递的热量

Q 1、Q 2是

(A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0.

(C) Q 1<0,Q 2>0. (D) Q 1>0,Q 2<0.

8.给定理想气体(比热比为γ),从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到2倍.膨

胀后温度T 、压强p 与标准状态时T 0、p 0之关系为 (A) 02

1T T γ

)(=; 0121p p -=γ)

(. (B) 0121T T -=γ)(;02

1

p p γ)(=. (C) 021T T γ-=)(;0121p p -=γ)( (D) 0121T T -=γ)(;02

1p p γ

-=)(.

9.对一定质量的理想气体进行等温压缩.若初始时每立方米体积内气体分子数为1.96×1024,则当压强升高到初始值的两倍时,每立方米体积内气体分子数应为__________.

10.一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的__________倍.

11.一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是_____________________,而随时间不断变化的微观量是_______________________. 12.当氢气和氦气的压强、体积和温度都相等时,求它们的质量比

()()

e H H 2M M 和内能比

()()

e H H 2E E .(将氢气视为刚性双原子分子气体)

13.计算下列一组粒子的平均速率和方均根速率.

14.如果一定量的理想气体,其体积和压强依照2 p a V =的规律变化,其中a 为已知常量.试求: (1) 气体从体积V 1膨胀到V 2所作的功; (2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.

15.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。若图中EDCE 所包围的面积为70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,求BED 过程中系统吸热为多少?

16.关于温度的意义,有下列几种说法: (1) 温度的高低反映物质内部分子运动剧烈程度的不同. (2) 气体的温度是分子平均平动动能的量度.

(3) 从微观上看,气体的温度表示每个气体分子的冷热程度.

(4) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. 这些说法中正确的是

(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4). (D) (1)、(3) 、(4). 17. 在下列说法

(1) 可逆过程一定是平衡过程. (2) 平衡过程一定是可逆的. (3) 不可逆过程一定是非平衡过程. (4) 非平衡过程一定是不可逆的. 中,哪些是正确的?

18. 一个绝热容器,用质量可忽略的绝热板分成体积相等的两部

分.两边分别装入质量相等、温度相同的H 2气和O 2气.开始时绝热板P 固定.然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,试比较两边温

度的高低。

19.如图,一定量的理想气体,由平衡状态A 变到平衡状态B (p A = p B ),则无论经过的是什么过程,系统必然

(A) 对外作正功. (B) 对外作负功. (C) 内能增加. (D) 从外界吸热. (E) 向外界放热.

20.气体分子间的平均距离与压强p 、温度T 的关系为

______________,在压强为 1 atm 、温度为0℃的情况下,气体分子间的平均距离l =________________m .(玻尔兹曼常量k =1.38×10-23 J·K 1) 21.一定量的理想气体,经等温过程从压强P 0增至2P 0,则描述分子运动的下列各量与原来的量值之比:平均自由程

λλ

、平均速率0v v 、平均动能0K K εε 各为多少?

22.一密封房间的体积为 5×3×3 m 3,室温为20 ℃,室内空气分子热运动的平均平动动能的

总和是多少?如果气体的温度升高 1.0K,而体积不变,则气体的内能变化多少?气体分子的方均根速率增加多少?已知空气的密度ρ=1.29 kg/m 3,摩尔质量M mol =29×10-3 kg /mol ,

p

V O

A B E

D

C

且空气分子可认为是刚性双原子分子.(普适气体常量R =8.31 J·mol -1·K -1)

23.1 mol 的理想气体,完成了由两个等体过程和两个等压过程构成的循环

过程(如图),已知状态1的温度为T 1,状态3的温度为T 3,且状态2和4在同一条等温线上.试求气体在这一循环过程中作的功. 24.试求1 mol 刚性双原子分子理想气体,当温度为T 时的其内能(普适气体常量和玻尔兹曼常量分别用R 和k 表示)

25.容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/2倍,则此时分子平均自由程λ和平均碰撞频率Z 分别为多少?

26.一定量的理想气体,开始时处于压强,体积,温度分别为p 1,V 1,T 1的平衡态,后来变到压强,体积,温度分别为p 2,V 2,T 2的终态.若已知V 2 >V 1,且T 2 =T 1,则以下各种说法中正确的是:

(A) 不论经历的是什么过程,气体对外净作的功一定为正值. (B) 不论经历的是什么过程,气体从外界净吸的热一定为正值.

(C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.

(D) 因未给定气体所经历具体过程,气体对外净作功和净吸热的正负皆无法判断。

27.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在

(A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 28.一定量的理想气体经历acb 过程时吸热1000 J .则经历acbda 过程时,试求系统吸收的热量。

29.一定量理想气体经历的循环过程用V

-T 曲线表示如图.在

一次循环过程中,气体从外界纯吸热的过程是 ,纯放

热的过程是 。

30.从分子动理论导出的压强公式来看, 气体作用在器壁上的压强, 决定于_____ ____和___________.

31.容积为20.0 L(升)的瓶子以速率v =200 m·s -1匀速运动,瓶子中充有质量为100g 的氦气.设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R =8.31 J·mol -1·K -1,玻尔兹曼常量k =1.38×10-23 J·K -1)

32.一氧气瓶的容积为V ,充了气未使用时压强为p 1,温度为T 1;使用后瓶内氧气的质量减少为原来的四分之一,其压强降为p 2,试求此时瓶内氧气的温度T 2及使用前后分子热运动平均速率之比21/v v .

p (×105 Pa) -3 m 3)

---------------------------Page 4 (版权属物理教研室?严禁非法复印!)--------------------------

“气体动、热学”参考答案: 1. 20p 2.

72

3. 分子速率介于0~v p 间的气体分子数占分子总数的百分比 或 速率介

于0~v p 间分子出现的概率;

()()??

∞p

p

f f v v v v v v

v d d

4.

4.81K

5. 24.2%

6. 相等;相等

7. A

8. B

9. 3.92×1024 m -3 10. 1

11. p,V ,T ;分子的速度、动能、动量等 12. 1/2;5/3

13. m/s 8311

15

1

1.≈==

∑∑==i i i N j j v N N v N v ;m/s 7331151

2

122

.≈==∑∑==i i i N j j v N N v N v

14. (1) )(//23123232V V a

W -=

; (2)

2

3212123//.???

?

??=→=-V V T T Const TV 15. (J) 1401003070=+-=+=)(放吸Q W Q

16. A

17. (1)、(4)

18. O 2温度比H 2温度高 19.

(C)

20. 33 ,p kT l l n nkT p /)(=?==-; m 103439

-?.

21.

2

1

0=λλ; 10=v v ; 0K K εε=1 22. 27

10211?≈.N ,

J 10347J 1007623

621???≈=

=-..k k

N kT εε J T R M V T R i E m o l 4101642

5

2?≈??=?=?.ρν

0643213222.)()(≈?→=→=

v dT T

M R

v d M RT v mol mol m/s 23. 312T T T =,

)

()())((3131231131222T T T T R T T T R V V p p W -+=-+=--=νν

24. RT E 25

= 25. 0002

2

21Z Z n n v v =

?==,,0λλ= 26.

D 27. D 28. -200 J

29. B A →;A C B →→

30.

分子数密度n ,分子的平均平动动能kt ε

31. T J mv T R i E ??==?=?20002

1

22ν

=6.42 K ; 410676?≈?=?.V T R p ν Pa ;

22103312-?≈?=?.T k i

k νε J

32. 1224p p T =;212

12p p v v

=

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

10 气体动理论习题详解

习题十 一、选择题 1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ] (A )0 ()Nf v dv ∞ ? ; (B ) 20 1 ()2 mv f v dv ∞? ; (C )20 1 ()2 mv Nf v dv ∞? ; (D )0 1 ()2 mvf v dv ∞? 。 答案:B 解:根据速率分布函数()f v 的统计意义即可得出。()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。 2.下列对最概然速率p v 的表述中,不正确的是 [ ] (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。 3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ] (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A rms v =222222221 ,16 H O H H H O O O T T T M M M T M ===,所以答案A 正确。 4.如下图所示,若在某个过程中,一定量的理想气体的 热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ] (A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。 答案:C

大学物理讲义(第10章气体动理论)第六节

§10.6能量按自由度均分定理 理想气体的内能和摩尔热容 在前几节中研究大量气体分子的无规则运动时,我们只考虑了分子的平动,对单原子分子来说,因为可被看作质点,平动是其唯一的运动形式.平动能是它的全部能量.但实际上,气体分子可以是双原子和多原子分子,它们不仅有平动,还有转动和分子内部原子的振动,气体分子无规则运动的能量应包括所有这些运动形式的能量,为了研究气体分子无规则运动的能量所遵从的统计规律,并进而计算理想气体的内能,需要首先引入自由度的概念. (关于自由度的概念在刚体部分已作介绍) 一、自由度 二、分子的自由度 气体分子的情况比较复杂.按气体分子的结构可分为单原子分子、双原子分子和多原子分子.单原子分子可看作自由质点,有3个自由度.在双原子分子中,如果原子间的位置保持不变(称刚性双原子分子),那么,这分子就可看作由保持一定距离的两个质点构成,这时有5个自由度,其中3个平动自由度,2个转动自由度.多原子分子中,整个分子看作自由刚体,即这些原子间的相互位置不变,其自由度数为6,其中3个属平动自由度,3个属转动自由度.事实上,双原子或多原子的气体分子一般不是完全刚性的,原子间的距离在原子间的相互作用下,要发生变化,分子内部要出现振动,因此,除平动自由度和转动自由度外,还有振动自由度.但在常温下,振动自由度可以不予考虑. 一般地说,如果分子由n 个原子组成,则这个分子最多有3n 个自由度,其中3个平动,3个转动,其余3n-6个为振动自由度. 三、能量按自由度均分定理 在§ 10.3中已经证明了理想气体分子的平均平动能是 kT m 2 3212=υ=ε平 因平动有3个自由度,所以分子的平动动能可表示为三个自由度上的平均平动动能之和,即 22222 1212121z y x m m m m υ+υ+υ=υ 又按统计假说,在平衡态下,大量气体分子沿各个方向运动的机会均等,由此可知 kT m m m m z y x z y x 2 121312121213122222222 =υ=υ=υ=υ?υ=υ=υ=υ)(

气体动理论剖析

1
质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是
?
A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp
?
?
?
正确答案: C 我的答案:C 得分: 9.1 分
2
一定量某理想气体按
=恒量的规律膨胀,则膨胀后理想气体的温度
?
A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定
?
?
?
正确答案: A 我的答案:A 得分: 9.1 分
3
在标准状态下,任何理想气体每立方米中含有的分子数都等于

? A、
? ? B、
? ? C、
? ? D、
?
正确答案: C 我的答案:A 得分: 0.0 分
4
有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央, 则另一边应装入同一温度的氧气的质量 为
?
A、0.16 kg B、0.8 kg
?

?
C、1.6 kg D、3.2 kg
?
正确答案: C 我的答案:C 得分: 9.1 分
5
若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为
?
A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT)
?
?
?
正确答案: B 我的答案:C 得分: 0.0 分
6
一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是
? A、
? ? B、

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案 一、选择题 1、答案:B 解:根据速率分布函数() f v的统计意义即可得出。() f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf) (表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。 2、答案:A 解:根据() f v的统计意义和 p v的定义知,后面三个选项的说法都是对的,而只有 A不正确,气体分子可能具有的最大速率不是 p v,而可能是趋于无穷大,所以答案A正确。 3、答案:A rms v=据题意得2222 2222 1 , 16 H O H H H O O O T T T M M M T M ===,所以答案A正确。 4、由理想气体分子的压强公式 2 3k p nε =可得压强之比为: A p∶ B p∶ C p=n A kA ε∶n B kB ε∶n C kC ε=1∶1∶1 5、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT ν=代入内能公式 2 i E RT ν =可得2 i E pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C。 6、解:理想气体状态方程PV RT ν =,内能 2 i U RT ν =(0 m M ν=)。由两式得 2 U i P V =,A、B两种容积两种气体的压强相同,A中,3 i=;B中,5 i=,所以答案A正确。 7、由理想气体物态方程 'm pV RT M =可知正确答案选D。 8、由理想气体物态方程pV NkT =可得气体的分子总数可以表示为 PV N kT =,故答案选C。 9、理想气体温度公式2 13 22 k m kT ευ ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。温度越高,分子的平均平动动能越大,分子热运动越剧烈。因此,温度反映的是气体分子无规则热运动的剧烈程度。

第10章 气体动理论

思考题 10-1 一定量的某种理想气体,当温度恒定时,其压强随体积的减小而增大;当体积恒定时,其压强随温度的升高而增大,从微观角度来看,压强增大的原因各是什么?(根据公式nkT p =) 10-2 试用气体动理论说明道尔顿分压定律. (根据公式nkT p =) 10-3 试用气体动理论解释阿伏伽德罗定律. (根据公式nkT p =) 10-4 地球大气层上层的电离层中,电离气体的温度可达到2000K ,离子数密度不过是1011m -3,这个温度是什么意思?一块锡放到该处会不会熔化?(分清温度和热量) 10-5 1mol 氢气与1mol 氦气的温度相同,则两种气体分子的平均平动动能是否相同?两种气体分子的平均动能是否相同?内能是否相等?(根据自由度、能量均分定理以及内能同温度的关系解释) 10-6 速率分布函数f (v )的物理意义是什么?说明下列各式的物理意义: (1)()f d υυ;(2)()Nf d υυ;(3) 2 1 ()f d υυ υυ?;(4)21 ()Nf d υ υυυ? 10-7 气体分子的平均速率、最概然速率和方均根速率的意义有何不同? 10-8 若某气体分子的自由度是i ,能否说每个分子的能量都等于2 ikT ?(根据统计的特征来解释) 10-9 将沿铁路运行的火车、在海面上航行的轮船视为质点,它们的自由度各为多少?若把在空中飞行的飞机视为刚体,自由度为多少?(1,2,4) 10-10 一绝热敞口容器中盛有某种液体,液体蒸发过程中会导致液体温度的下降,试利用气体动理论解释其原因.(温度的微观本质是分子热运动剧烈程度的量度,气体的分子的平均平动动能与气体温度成正比。液体蒸发时一些平动动能较大的分子离开液体,导致分

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

气体动理论(附答案)

气体动理论 一、填空题 1. (本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ= 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。(1 atm = 1.013×105 Pa) 答案:495m/s 2. (本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。则 (1)每个分子作用于器壁的冲量ΔP=_____________; (2)每秒碰在器壁单位面积上的分子数n0=___________; (3)作用在器壁上的压强p=_____________; 答案:1.2×10-24kgm/s ×1028m-2s-1 4×103Pa 3. (本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。

(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。) 答案::121 2.4×10-23 4. (本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。 答案:62.5% 5. (本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时, (1)一个分子的平均动能为_______。 (2)一个摩尔氧气分子的转动动能总和为________。 答案:ikT RT 6. (本题5分)图示的两条曲线分别表示氦、氢两种气体在相同温度T时分子按速率的分布,其中

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

气体动理论(复习)

第六章气体动理论 §6-1 气体状态方程 【基本内容】 热力学系统:由大量分子组成的物质(气体、液体、固体)称为热力学系统,系统以外其它物体称为外界。 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、气体状态方程 1、宏观量与微观量 宏观量:表征大量分子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别分子状况的物理量(如分子的大小、质量、速度等)。 2、热力学过程、平衡态与平衡过程 热力学过程:是系统状态经过一系列变化到另一状态的经历。 平衡态:是热力学系统在不受外界影响的条件下,宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、理想气体的状态方程 (1)理想气体的状态方程 是理想气体在任一平衡态下,各状态参量之间的函数关系: (2)气体压强与温度的关系 P=nkT 玻尔兹曼常数k=R/N A=1.38×10-23J/K,啊伏加德罗常数N A =6.028×1023/mol。 ρ=nm 分子数密度n=N/V,ρ——气体质量密度,m——气体分子质量。 1/ 7

2 / 7 二、理想气体的压强 1、理想气体的微观假设 关于分子个体力学性质的假设:(a )分子本身的大小比起它们之间的距离可忽略不计。(b )除了分子碰撞瞬间外,分子之间的相互作用以忽略。(c )分子之间以及分子与器壁间的碰撞是完全弹性的。关于分子集体之间性质的假设——统计假设:(a )分子按位置的分布是均匀的,即分子沿空间各个方向运动的数目相等。(b )分子按速度方向的分布是均匀的,即分子沿空间各个方向运动的机会相等。2、理想气体的压强公式 分子的平均平动动能:22 1v m t =ε 3、压强的统计意义 P 是统计平均值,是对时间、对大量分子、对面积求平均的效果。 三、理想气体的温度 1、分子平均平动动能与温度的关系 温度的意义:气体的温度是分子平均平动动能的量度;温度标志物质内部分子无规则运动的剧烈程度。 2、方均根速率2v 方均根速率:是气体分子热运动时,速度的平均值。 四、分子间的碰撞 1、平均碰撞频率 是一个分子在单位时间内与其它分子碰撞的平均次数。 d :分子有效直径,v :分子平均速率,n :分子数密度。 2、平均自由程 是一个分子在连续两次碰撞之间,自由运动路程的平均值。 五、能量均分定律 1、自由度 决定物体在空间位置所需要独立坐标的数目,称为该物体的自由度。 i=t+r t :平动自由度,i :转动自由度。 单原子分子t=3、r=0、i=3;刚性双原子分子t=3、r=2、i=5;刚性多原子分子t=3、r=3、i=62、能量均分定律

第10章 气体动理论

第10章 气体动理论 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为ρ, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来 瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 T10-1-2图 T 10-1-3图

气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。 若此理想气体的压强为x 10 14 Pa 。试估计太阳的温度。(已知氢原子的质量 m = x 10-27 kg ,太阳半径 R = x 108 m,太阳质量 M = x 1030 kg ) 8-2 目前已可获得x 10 -10 Pa 的高真空,在此压强下温度为 27C 的1cm 3 体积内有多少个气体分子 8-3 容积V = 1 m 3 的容器内混有 N =x 1023 个氢气分子和 N 2=x 10 23 个 氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和; (2)混合气体 的压强。 解: ( 1) 3 3 QQ QQ Q t kT(N 1 N 2) 1.38 10 400 5 10 4.14 10 J 2 2 23 23 3 (2) p n i kT 1.38 10 400 5 10 2.76 10 Pa 8-4 储有1mol 氧气、容积为1 m 的容器以v =10 m/s 的速率运动。设 容器突然停止,其中氧气的 80%勺机械运动动能转化为气体分子热运动动 能。 问气体的温度及压强各升高多少(将氧气分子视为刚性分子) 解:1mol 氧气的质量M 32 10 3 kg , i 5 解:n —M m Vm M (4/3) n 3 m P nk (4/3) R 3 m Mk 1.15 107 K 解:N nV —V kT 1.013 10 10 23 1.38 10 300 10 6 4 3 2.45 10 /cm

由题意得^Mv280% - R T T 6.2 10 2K 2 2

6气体动理论习题

六、气体动理论习题 6-1 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 6-2 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法. 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 6-3 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 2 8642150 24083062041021++++?+?+?+?+?= =∑∑i i i N V N V 7.2141 890== 1s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6.25= 1s m -? 6-5 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度, N 为系统总分子数).

相关文档