文档库 最新最全的文档下载
当前位置:文档库 › 乳液聚合合成及生产工艺

乳液聚合合成及生产工艺

乳液聚合合成及生产工艺
乳液聚合合成及生产工艺

乳液聚合

班级:高分0942 姓名:冯会科学号:200910211239

乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。

乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。

乳液聚合的发展

自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。

乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。

随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。

乳液聚合—聚合机理

从历史上看,乳液聚合机理主要有以下三个:

1,1945年W.D.Harkins提出的胶束理论。在当时的情况下,对于乳液聚合机理有两种看法,即机械搅拌形成的单体液滴聚合形成粒子以及单体相与水相界面形成粒子。W.D. Harkins担任美国橡胶研究所的所长,在他的组织下,首先实验证明了普通的机械搅拌不可能使油性苯乙烯形成乳液聚合后大小的聚苯乙烯粒子,同时从能量的角度考虑,理论上普通机械搅拌也不可能提供足够维持那么小粒子所需的表面能。其次,他们做了一个将苯乙烯蒸汽通过含引发剂(H2O2)水溶液的实验,发现也可以形成粒径较大的粒子。他们认为苯乙烯蒸汽与水溶液之间不存在界面,因而,界面形成粒子的说法是错误的。同时由于生成的粒子较大,所以,他们得出结论单体液滴形成的粒子粒径一定很大。在此基础上,W.D. Harkins提出了胶束理论,即当乳化剂分子浓度超过临界胶束浓度时,则从水相中沉淀出来形成胶束。

W.D. Harkins认为乳液聚合后的粒子是胶束中的单体聚合形成的。聚合过程(见图1)是:在单体相与水相之间存在一个扩散层;胶束进入扩散层,单体分子扩散进入胶束;胶束捕获水相中的自由基聚合。

图1

但是,Harkins没有给出其动力学模型,因而,该机理没有引起太多的议论,直到1948年,Smith-Ewart依据Harikins的胶束理论建立了一系列的计算粒子数及聚合动力学模型后,该机理才被广泛讨论,并命名为Harkins胶束成核理论。但是,其原来的说法也被篡改成图2中的说法(也是教科书书中常见的说法),即,取消了界面扩散而代之以单体分子从单体相扩散进入水相,然后,水相中的单体分子扩散进入胶束。这种说法在热力学上是非常有争议的,尤其是象苯乙烯

这种难溶性单体,依靠扩散,它在水相中浓度不可能支持粒子中所需的高单体浓度。另外,Smith-Ewart将乳液聚合动力学分成三个阶段,即成核阶段(Interval I)、等速聚合阶段(Interval II)以及减速聚合阶段(Interval III),聚合动力学模型也主要处理等速聚合阶段的动力学问题。但是,现在的实验结果证明,以前认为的等速阶段可能是实验误差造成的,在绝大多数情况下,聚合过程没有等速过程,而是存在两个最大速度(图3)。

图2图 3 2, Tsai和Fitch的均相成核机理(又称水相发生机理)。这个机理是在1970年代无皂乳液聚合成功后提出的,因为无皂乳液聚合前,体系中没有传统的乳化剂分子,因而胶束成核机理受到了挑战。他们认为,溶解在水相中的单体分子被同在水相中的引发剂分子引发、聚合形成低聚物,这些低聚物在水中的溶解度随分子链的增长而降低,当达到临界链长时便从水相中沉淀出来形成前驱体(precursor),然后,这些前驱体相互凝聚形成稳定的核。其后,聚合过程完全与胶束成核机理相同。顺便提一下,由于有了均相成核机理,所以,前面的胶束成核机理又被称作为异相成核机理。

支持这一机理的唯一实验证据就是光散射结果:在聚合前期,粒子数急剧增加,达到某个峰值后,急剧减少,然后粒子数恒定。

3,Ni Henmei等2001年提出的(亚)微液滴成核机理。如图4所示,他们认为,所有通过聚合方法得到的微粒子,如乳液聚合、沉淀/分散聚合、悬浮聚合、微乳液聚合等等都是由单体(亚)微液滴中单体聚合形成的。在单体相与水相之间的界面受到扰动,或者溶解在水相中的单体由于温度或其他因素变化的影响,溶解度降低,都可产生单体(亚)微液滴(图4 b,II)。这些单体液滴在通常情况下由于Ostwald成熟效应会再次回到单体相(c,IV),但是,在有预先添加的乳化剂分子或者当时形成的表面活性低聚物存在的情况下,这些液滴会

吸附这些分子,或者被这些分子吸收从而得到一定的热力学安定性(d,III)。这时,如果存在短链自由基的话,那么,即可引发单体液滴聚合形成核。单体的传递是依赖于粒子与单体微液滴结合(e,VI),以及粒子与单体相的直接碰撞(V)。另外,该机理还指出,当单体相液滴的粒径减小到界面的扰动不足以产生单体微液滴的情况下,单体液滴可以直接捕获自由基形成粒子。

这个机理支持的实验基础是准静态无皂乳液聚合的实验结果。在非常微弱的搅拌条件下,水相中不能形成微粒子;初始的聚苯乙烯微粒子是在单体与水相的界面形成,然后,沉降到水相中。在聚合一段时间后,界面会形成一层聚合物膜层,阻止了单体向水相中的扩散,粒子生成及其中的聚合因均停止。另外,该机理与化工萃取等的物质传输过程理论也是一致的。

图 4

典型的乳液聚合生产工艺及设备

糊状聚氯乙烯的生产工艺与设备:

聚氯乙烯树脂最古老的生产方法就是远在1931年德国法本公司采用的乳液聚合法,聚氯乙烯的工业化生产甚至在1950年仍然是以乳液法为主要生产方法,悬浮法是后来发展起来的。目前,乳液聚合的聚氯乙稀占聚氯乙稀总量约10%左右。

氯乙烯乳液聚合主要特征是:

(1)聚氯乙烯乳胶粒径一般在0.2μm以下,分散极细,在工业上发展了乳液种子聚合方法,可以达到使乳胶粒径增大的目的。

(2)乳胶粒的数目随乳化剂浓度的变化而急剧变化,但与聚合速率的变化相对而言则很小。

(3)粒子数目与引发剂浓度无关,但反应速度随引发剂浓度的增加而增加。

(4)乳液聚合产物的分子量与相同反应条件下悬浮聚合法产物的分手量相似,主要与反应温度有关。

(5)聚合转化率达到70~80%左右时,一般会有自动加速效应产生(通常称为翘尾巴),从而得到高分子量的高聚物。

氯乙烯种子乳液聚合法的原理:

种子乳液聚合法——在乳液聚合系统中,如果已经有已生成的高聚物胶乳微粒存在,当物料配比和反应条件控制适当时,单体原则上仅在已生成的为了上聚合,而不生成新的微粒,即仅增大原来微粒的体积,而不增加反应体系中微粒的数目,在这种情况下,原来的微粒好似种子,因此这种聚合方法称为“种子乳液聚合法”。

氯乙烯种子乳液聚合法的物料组成;

利用种子乳液聚合法法制造聚氯乙烯糊状树脂常常利用二种规格的乳液作为种子,即第一代种子和第二代种子。所制成的聚合物乳液直径呈双峰分布,这样即可以降低增塑剂的吸收量,又可改善树脂的加工性能。

用不加种子的乳液聚合法制成的乳液称为第一代种子,而在第一代种子的基础上继续聚合所制成的乳液成为第二代种子。

1、制备第一代种子乳液和第二代种子乳液的配方

氯乙烯种子乳液聚合的配方:

2、氯乙烯种子乳液聚合的工艺和设备:

(1)物料准备与配制

十二烷基硫酸钠用软水在50℃下配制并泵送至计量槽待用;

过硫酸钾用软水在不超过30 ℃下配制并泵送至计量槽待用;

氢氧化钠用软水常温下配制并泵送至计量槽待用;

软水及单体泵送至计量槽待用

(2)种子的制备

从计量槽向种子釜中分别加入软水、乳化剂溶液,开动搅拌使其混合;

从计量槽向种子釜加入部分单体,使其充分乳化;

向种子釜夹套通入热水,升温至50℃;

向种子釜加入引发剂,滴加单体并控制滴加速率来控制反应温度;

单体滴加完后保温一段时间,即得到第一代或第二代种子乳液,将种子乳液分别送至乳液贮槽。

(3)种子乳液聚合

软水、乳化剂由计量槽加入聚合釜,用碱液调pH值为9~10.5,再泵送第一、第二代种子进入聚合釜;

聚合系统抽真空并充氮气,反复三次;

规定量的单体由计量槽泵送至聚合釜中,开动搅拌,乳化30min;

聚合釜夹套通热水在1h内均衡地升温至反应温度,反应开始,体系压力下降,此时滴加剩余单体和乳化剂溶液,控制反应温度在(48~52)℃±0.5℃

30万吨年ABS树脂乳液聚合生产车间的实用工艺设计

30万吨/年ABS树脂乳液聚合生产车间的工艺设计 万叶辉涛党鋆 (理工学院材料科学与工程学院高分子072班) 指导老师:营堂

目录 1项目简介 1.1项目名称 (2) 1.2项目容 (2) 1.3设计依据及必要性 (2) 1.4市场前景分析 (2) 1.5产品方案 (2) 1.6技术方案及设备方案 (2) 2生产方法与工艺流程 2.1 生产方法 (4) 2.2 聚合工艺过程 (4) 2.3 工艺流程 (9) 2.4 工艺参数 (10) 2.5 主要设备控制方案 (10) 2.6 安全防护措施 (11) 3物料衡算以及热量横算 3.1物料衡算 (12) 3.2热量衡算 (15) 4 设备工艺计算 4.1釜体的设计 (17) 4.2搅拌器的确定 (18) 4.3各物料进出管口直径确定 (19) 4.4轴密封形式 (19) 4.5流体输送机械的选型设计 (20) 4.6 调节釜的设计 (20) 4.7 单体预乳化罐的设计 (20) 4.8 过滤器的设计 (21) 5参考文献

1项目简介 1.1项目名称: 30万吨/年ABS树脂乳液聚合生产车间的工艺设计。 1.2项目容 1、设计方案简介,选定的工艺流程、主要设备的型式进行简单的论述。 2、对选定的工艺流程进行物料衡算,对某些设备进行热量衡算,为设备的工艺计算提供依据。 3、主要设备的工艺设计计算,包括工艺参数的选定、原材料消耗计算、动力计算、设备的工艺尺寸计算及结构设计;典型辅助设备的选型和计算,包括典型辅助设备的工艺尺寸计算和型号规格的选定。 4、工艺流程图一单线图的形式绘制,标出主要设备、辅助设备和主要工艺参数测量点,并绘制工艺流程草图、PFD、PID图。 1.3设计依据及必要性 依据设计任务书或可行性研究报告的批文,环境影响报告书的批文,技术引进报告的批文以及其他相关性文件等。依据主要原料及物理性质、生产方法、生产能力。 ABS树脂是微黄色固体,有一定的韧性,密度约为1.04~1.06 g/cm3。它抗酸、碱、盐的腐蚀能力比较强,也可在一定程度上耐受有机溶剂溶解。ABS树脂是丙烯腈—丁二烯—苯乙烯的三元共聚物。ABS树脂外观微黄不透明,相对密度1.04。它具有良好尺寸稳定性,突出的耐冲击性、耐热性、介电性、耐磨性,表面光泽性好,易涂装和着色等优点。 ABS树脂可以在-25℃~60℃的环境下表现正常,而且有很好的成型性,加工出的产品表面光洁,易于染色和电镀。因此它可以被用于家电外壳、玩具等日常用品。 1.4市场前景分析: 1997年世界ABS树脂生产能力为556万吨/年,主要产地是亚洲、北美和西欧。亚洲的生产能力占世界总能力的60%以上。目前世界ABS生产能力发展的特点是“西方不振、东方高涨”,未来几年世界新增能力仍主要集中在亚洲地区,韩国、中国和中国省以及马来西亚都将新建或扩建ABS树脂生产装置,虽然亚洲地区的这些新增计划不一定全部实现,但在未来几年还是会有较大的发展。1999年,世界ABS树脂需求量为375、2万吨,1996-2010年的年均需求增长率为2.9%。随着ABS树脂逐渐向高性能、多功能树脂发展,其需求量会大幅增加。 1.5产品方案: 生产能力:ABS树脂30万吨/年; 开工时间:330d/a,24h/d。 1.6技术方案及设备方案:

腈纶的合成及生产工艺

腈纶的合成及生产工艺 腈纶(PAN fiber),学名又称聚丙烯腈纤维,在我国还称为“人造羊毛”,在国外则称为“奥纶”、“开司米纶”。腈纶通常是指用85%以上的丙烯腈与第二和第三单体的共聚物,经湿法纺丝或干法纺丝制得的合成纤维。聚丙烯腈纤维可以用来制作套衫、毛毯、地毯、童装以及诸如旗布、遮阳篷等户外产品,在纺织上有很大的用处。 腈纶的用途 聚丙烯腈纤维是一种高分子长链合成聚合物形成的人造纤维,其丙烯腈含量至少占85%。它表面平滑,具有良好的悬垂性能,可以生产保暖但是很轻的织物。它的弹性和回弹性具佳,并具有优异的耐阳光和耐气候性能。这种纤维可以水洗或干洗。但是聚丙烯腈纤维的强度一般,湿态时强度约降低20%,但是干燥后即行恢复。这是一种疏水性纤维(回潮率为1%),常发生静电和起球现象,其耐磨性能一般。 有着人造羊毛美称的腈纶,又有着便宜的价格,所以成为了羊毛和棉花的最佳替代品。在我国化纤工业中,聚酯纤维主要用于仿棉或仿丝型织物、而仿毛型织物以腈纶为主要原料。腈纶外观蓬松,手感柔软,具有良好的耐光、耐气候、其弹性和保暖性可以和羊毛媲美,深受消费者欢迎。在我国毛纺及人造毛皮所用原料中腈纶占最主要地位。腈纶的优良性能使其在服装、服饰、产业三大领域有广泛的应用。聚丙烯腈纤维根据不同的用途的要求可纯纺或与天然纤维混纺,可与羊毛混纺成毛线,或织成毛毯、地毯等,还可与棉、人造纤维、其他合成纤维混纺,织成各种衣料和室内用品。 腈纶的生产方法及生产工艺 生产方法:聚丙烯腈纤维对原料丙烯腈的纯度要求较高,各种杂质的总含量应低于%。聚合的第二单体主要用丙烯酸甲酯,也可用甲基丙烯酸甲酯,目的是改善可纺性及纤维的手感、柔软性和弹性;第三单体主要是改进纤维的染色性,一般为含有弱酸性染色基团的衣康酸,含强酸性染色基团的丙烯磺酸钠、甲基丙烯磺酸钠、对甲基丙烯酰胺苯磺酸钠,含有碱性染色基团的甲基乙烯吡啶等。 腈纶的主要生产工艺流程:聚合→纺丝→预热→蒸汽牵伸→水洗→烘干→热定形→卷曲→切断→打包。 ①聚合聚合工艺分为以水为介质的悬浮聚合和以溶剂为介质的溶液聚合两类。悬浮聚合所得聚合体以絮状沉淀析出,需再溶解于溶剂中制成纺丝溶液。溶液聚合所用溶

乳液聚合体系及合成工艺

乳液聚合体系及合成工艺 (2007-03-12 14:35:13) 转载 分类:现代水性涂料 一、构成乳液聚合体系的组分 乳液聚合体系的主要组分有单体、乳化剂、引发剂和介质,另外根据需要加入其他组分,如助乳化剂、分子量调节剂、pH缓冲剂、抗冻剂、螯合剂、增塑剂、保护胶体、消泡剂等。 1.单体 (1)在乳液聚合中单体用量一般控制在40%-50%之间。 (2)乳液的最低成膜温度(MFT)主要决定于乳液聚合物的玻璃化温度(Tg),涂料用聚合物乳液的玻璃化温度,一般在15~25度之间,低于室温。 硬单体(玻璃化温度高的单体)有甲基丙烯酸甲酯(Tg 105)、 苯乙烯(Tg 105) 丙烯腈(Tg 100) 氯乙烯(Tg 75) 甲基丙烯酸乙酯(Tg 65) 偏二氯乙烯(Tg 52) 软单体(玻璃化温度低的单体)有丙烯酸-2-乙基己酯(Tg -85) 丙烯酸丁酯(Tg -54) 丙烯酸异丁酯(Tg -17) 丙烯酸乙酯(Tg -22) 丁二烯(Tg -20) 氯二丁烯(Tg -45)

玻璃化温度适中的单体有醋酸乙烯酯(Tg 29) 丙烯酸甲酯(Tg 8) 甲基丙烯酸丁酯(Tg 20) (3)线性聚合物进行交联,以生成网状结构聚合物。有自交联和外交联两种。 二、乳化剂 1。阴离子型、阳离子型、两性和非离子型乳化剂。 2。乳化剂的选择原则: (1)所选择的乳化剂的HLB值应和所要进行反应的乳液聚合体系相匹配。 (2)所选用的离子型乳化剂的三相点应低于反应温度 (3)所选用的非离子型乳化剂的浊点应高于反应温度 (4)对离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能小; 对非离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能大(5)应选用临界胶束浓度尽量小的乳化剂 (6)应选用增溶度大的乳化剂 (7)离子型乳化剂和非离子型乳化剂有协同效应,即两者联合使用比各自单独使用效果都要好。 (8)选择与单体化学结构类似的乳化剂可获得较好的乳化效果 (9)亲水性较大和亲水性较大的乳化剂联合使用时乳化效果较好。 (10)所选用的乳化剂不应干扰聚合反应。 (11)选择乳化剂时应考虑其后的生产工艺和聚合物乳液的应用 (12)所选用的乳化剂应该货源广阔、立足国内,价格低廉。 三、引发剂 热分解引发剂※氧化还原引发剂 四、分散介质

聚合物合成工艺复习

聚合物合成工艺(1~20章) 1、高分子合成工业的任务:将基本有机合成工业生产的单体,经聚合反应 合成高分子化合物,为高分子合成材料成型工业提供基本原料。 2、合成高分子材料有:合成塑料,合成橡胶,合成纤维,涂料,粘合剂,离子交换树脂。 3、合成树脂可以用:(溶液聚合/乳液聚合/悬浮聚合/本体聚合)方法制得; 合成橡胶可以用溶液聚合/乳液聚合方法制得; 、高分子化合物生产过程有: (1)原料准备与精制过程;(2)催化剂(引发剂)配制过程; (3)聚合反应过程; (4)分离过程; (5)聚合物后处理过程;(6)回收过程。 、原料准备与精制过程:包括原料(单体、溶剂、助剂等)贮存、精制、干燥、配制、计量等过程和设备。 、催化剂(引发剂)配制过程:包括催化、引发和助剂的贮存、配制、溶解、调整浓度、计量等过程与设备。 、聚合反应过程:包括以聚合装置为反应中心的有关传热传质的过程与设备。、分离过程:包括未反应单体的分离、脱除溶剂、催化剂,脱除低聚物等过程与设备 、常用分离方法:高真空脱除,蒸汽蒸馏,闪蒸,水洗,离心过滤分离;沉淀分离;喷雾干燥分离。 、聚合物后处理过程:将分离得到的聚合物经进一步处理,得到性能稳定方便使用的产品,包括干燥,造粒,筛分,批混,包装等工序与设备。、回收过程:主要是对回收的单体、溶剂进行精制,然后循环使用。包括离心分离、过滤、分馏、精馏等工序与设备。 、在聚合物生产过程中反应器上的粘结物有何危害如何防止 危害:降低反应器传热效率;影响产品质量。 防止:a.尽可能提高反应器内壁的光洁度;b.使用过程中防止内壁表面造成伤痕;c.聚合釜满釜操作减少液体界面;d.反应物料中加防粘釜剂等。 5、合成树脂与合成橡胶生产上的差别主要表现在分离过程和后处理过程差异很大。 6、如何对聚合物生产流程评价 (1)产品性能的考查;(2)原料路线的考查;(3)能量消耗与利用的考查 (4)生产技术水平的考查;(5)经济性的考查。 7、高分子聚合反应产物的特点是: 1、分子量大小不等,结构亦非完全相同的同系物的混合物; 2、其形态为坚硬的固体物、高粘度熔体或高粘度溶液;

乳液聚合合成及生产工艺

乳液聚合 班级:高分0942 姓名:冯会科学号:200910211239 乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的发展 自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。 乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。 随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。 乳液聚合—聚合机理

合成工艺学题库-作业题库

第一章 1.试述高分子合成工艺学的主要任务。 2.简述高分子材料的主要类型,主要品种以及发展方向。 3.用方块图表示高分子合成材料的生产过程,说明每一步骤 的主要特点及意义。 4.如何评价生产工艺合理及先进性。 5.开发新产品或新工艺的步骤和需注意的问题有哪些? 第二章 1.简述高分子合成材料的基本原料(即三烯、三苯、乙炔)的来源。 2.简述石油裂解制烯烃的工艺过程。 3.如何由石油原料制得芳烃?并写出其中的主要化学反应及工艺过程。 4.画出C4馏分中制取丁二烯的流程简图,并说明采用两次萃取精馏及简单精馏的目的。 5.简述从三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯),乙炔出发制备高分子材料的主要单体合成路线(可用方程式或图表表示,并注明基本工艺条件)。 6.如何由煤炭路线及石油化工路线生产氯乙烯单体? 7.简述苯乙烯的生产方法。 8.乙烯氯氧化法生产氯乙烯所采用的一步法、二步法及三步

法三种方法之主要差别是什么? 9.试述合成高分子材料所用单体的主要性能,在贮存、运输过程中以及在使用时应注意哪些问题? 10.论述乙烯产量与高分子合成工艺的关系。 第三章 1.自由基聚合过程中反应速度和聚合物分子量与哪些因素有关?工艺过程中如何调节? 2.自由基聚合所用引发剂有哪些类型,它们各有什么特点? 3.引发剂的分解速率与哪些因素有关?引发剂的半衰期的含义是什么?生产中有何作用? 4.引发剂的选择主要根据哪些因素考虑?为什么? 5.举例说明在自由基聚合过程中,调节剂,阻聚剂,缓聚剂的作用。 6.为什么溶剂分子的Cs值比调节剂分子的Cs小的多,而对聚合物分子量的影响往往比调节剂大的多? 7.以苯乙烯的本体聚合为例,说明本体聚合的特点。 8.根据合成高压聚乙烯的工艺条件和工艺过程特点,组织高压聚乙烯的生产工艺流程,并划出流程示意图。 9. 高压聚乙烯分子结构特点是怎样形成的,对聚合物的加工及性能有何影响。

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性 在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。 离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。 离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起到重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一

高聚物合成工艺学重点整理

1.粘釜产生原因、危害及防止措施。 粘釜原因:物理因素:吸附作用;化学因素:粘附作用。 危害:(1)传热系数下降;(2)产生“鱼眼”,使产品质量严重下降;(3)需要清釜,非生产时间加长。 防止措施:(1)釜内金属钝化;(2)添加水相阻聚剂,终止水相中的自由基,例如在明胶为分散剂的体系中加入醇溶黑、亚硝基R盐、甲基蓝或硫化钠等;(3)釜内壁涂极性有机物,防让金属表面发生引发聚合或大分子活性链接触釜壁就被终止聚合而钝化;(4)采用分子中有机成分高的引发剂,如过氧化十二酰. 清釜;(5)提高装料系数,满釜操作。 减少粘釜的方法:目前先进的方法是聚合配方中加入防粘釜剂防粘釜剂的种类很多,(而且生产工厂技术保密,主要是苯胺染料、蒽醌染料等的混合溶液或这些染料与某些有计酸的络合物,一般用量极少,产生明星的作用)此时产生的少量粘釜物用高压水枪冲洗即可(水压>21mpa)达到清釜目的。 2.高分子合成材料的生产过程 答: 1)原料准备与精制过程特点:单体溶剂等可能含有杂质,会影响到聚合物的原子量,进而影响聚合物的性能,须除去杂质意义:为制备良好的聚合物做准备 2)催化剂配制过程特点:催化剂或引发剂的用量在反应中起到至关重要的作用,需仔细调制. 意义:控制反应速率,引发反应 3)聚合反应过程特点:单体反应生成聚合物,调节聚合物的分子量等,制取所需产品意义:控制反应进程,调节聚合物分子量 4)分离过程特点:聚合物众位反应的单体需回收,溶剂,催化剂须除去意义:提纯产品,提高原料利用率 5)聚合物后处理过程特点:聚合物中含有水等;需干燥. 意义:产品易于贮存与运输6)回收过程特点:回收未反应单体与溶剂意义:提高原料利用率,降低成本,防止污染环境 3. 生产单体的原料路线有几条?试比较它们的优缺点? 答:工业上生产的高聚物主要是加聚高聚物和缩聚高聚物。当前主要有两条路线。(1)石油化工路线(石油资源有限))石油化工路线(石油资源有限)石油经开采得油田气和原油。原油经炼制得到石脑油、煤油和柴油等馏分和炼厂气。以此为原料进行高温热裂解可得到裂解气和裂解轻油。裂解气经分离精制可得到乙烯、丙烯、丁烯和丁二烯等。裂解轻油和煤油经重整得到的重整油,经加氢催化重整使之转化为芳烃,经抽提(萃取分离)得到苯、甲苯、二甲苯和萘等芳烃化合物。(2)煤炭路线(资源有限,耗能大))煤炭路线(资源有限,耗能大)煤矿经开采得到煤炭,煤炭经炼焦得煤气、氨、煤焦油和焦炭。煤焦油经分离精制得到苯、甲苯、二甲苯、萘和苯酚等。焦炭与石灰石在高温炉中高温加热得到电石(CaC2),电石与 H2O 反应得到乙炔。炔可以合成氯乙烯、醋酸乙烯和丙烯腈等单体或其他有机原料。(3)其他原料路线)主要是以农副产品或木材工业副产品为基本原料,直接用作单体或经化学加工为单体。本路线原料不足、成本较高,但它也是充分利用自然资源,变废为宝的基础上小量生产某些单体,其出发点是可取的。 4.高压聚乙烯分子结构特点是怎么样形成的,对聚合物的加工性能有何影响? 答:乙烯在高温下按自由基聚合反应的机理进行聚合。高温状况下,PE分子间的距离缩短,且易与自由基碰撞反应,很容易发生本分子链转移,支链过多。 影响:这种PE加工流动性好,.可以采取中空吹塑,注塑,挤出成型等加工方法,具有良好的光学性能,强度,柔顺性,封合性,无毒无味,良好的电绝缘性 5.悬浮聚合与本体聚合相比有那些特点? 答:1) 以水为分散介质,价廉,不需回收,安全,易分离.2)悬浮聚合体粘度低,温度易控制,3)颗粒形态较大,可以制成不同粒径的粒子4)需要一定的机械搅拌和分散剂5)产品不如本体聚合纯净 6)悬浮聚合的操作方式为间歇,本体为连续 6.简述聚氯乙烯PVC悬浮聚合工艺过程 答:1、准备工作:首先将去离子水,分散剂及除引发剂以外的各种助剂,经计量后加于聚反应釜中,然后加剂量的氯乙烯单体, 2、聚合:升温至规定的温度.加入引发剂溶液或分散液,聚合反应随时开

腈纶的合成及生产工艺

腈纶的合成及生产工艺腈纶(PAN fiber),学名又称聚丙烯腈纤维,在我国还称为“人造羊毛”,在国外则称为“奥纶”、“开司米纶”。腈纶通常是指用85%以上的丙烯腈与第二和第三单体的共聚物,经湿法纺丝或干法纺丝制得的合成纤维。聚丙烯腈纤维可以用来制作套衫、毛毯、地毯、童装以及诸如旗布、遮阳篷等户外产品,在纺织上有很大的用处。 腈纶的用途 聚丙烯腈纤维是一种高分子长链合成聚合物形成的人造纤维,其丙烯腈含量至少占85%。它表面平滑,具有良好的悬垂性能,可以生产保暖但是很轻的织物。它的弹性和回弹性具佳,并具有优异的耐阳光和耐气候性能。这种纤维可以水洗或干洗。但是聚丙烯腈纤维的强度一般,湿态时强度约降低20%,但是干燥后即行恢复。这是一种疏水性纤维(回潮率为1%),常发生静电和起球现象,其耐磨性能一般。 有着人造羊毛美称的腈纶,又有着便宜的价格,所以成为了羊毛和棉花的最佳替代品。在我国化纤工业中,聚酯纤维主要用于仿棉或仿丝型织物、而仿毛型织物以腈纶为主要原料。腈纶外观蓬松,手感柔软,具有良好的耐光、耐气候、其弹性和保暖性可以和羊毛媲美,深受消费者欢迎。在我国毛纺及人造毛皮所用原料中腈纶占最主要地位。腈纶的优良性能使其在服装、服饰、产业三大领域有广泛的应用。聚丙烯腈纤维根据不同的用途的要求可纯纺或与天然纤维混纺,可与羊毛混纺成毛线,或织成毛毯、地毯等,还可与棉、人造纤维、其他合成纤维混纺,织成各种衣料和室内用品。 腈纶的生产方法及生产工艺 生产方法:聚丙烯腈纤维对原料丙烯腈的纯度要求较高,各种杂质的总含量应低于%。聚合的第二单体主要用丙烯酸甲酯,也可用甲基丙烯酸甲酯,目的是改善可纺性及纤维的手感、柔软性和弹性;第三单体主要是改进纤维的染色性,一般为含有弱酸性染色基团的衣康酸,含强酸性染色基团的丙烯磺酸钠、甲基丙烯磺酸钠、对甲基丙烯酰胺苯磺酸钠,含有碱性染色基团的甲基乙烯吡啶等。 腈纶的主要生产工艺流程:聚合→纺丝→预热→蒸汽牵伸→水洗→烘干→热定形→卷曲→切断→打包。

聚合物合成工艺

第一章绪论 4. 20世纪50年代,谁发现了可用于高密度聚乙烯和立构规整聚丙烯的合成催化剂?这些催化剂的基本成分是什么? 5. 21世纪高分子科学与工程学科的重要发展方向是什么? 6. 简要说明聚合物合成的生产步骤。 第二章合成聚合物的原料路线 4. 石脑油的裂解-催化重整可以获得哪些重要芳烃原材料?其中的加 氢工艺是为了除去哪些有害物质? 5. 什么是C4馏分?如何通过C4馏分制备1,3-丁二烯? 10. 从动、植物体内获得的原料路线有哪些?你认为哪些原料路线具有很好的前景。 第三章自由基本体聚合过程及合成工艺 17. 用过氧化二苯甲酰作引发剂,苯乙烯在60℃进行本体聚合,试计算正常引发反应、向引发剂转移反应、向单体转移反应三部分在聚合度倒数中各占多少百分比?对聚合度各有什么影响,计算时选用下列数据:[I]=0.04mol/L,f=0.8,k d=2.0×10-6s-1,k p=176L/mol·s,k t=3.6×107 L/mol·s,ρ(60℃)=0.887g/mL,C I=0.05,C M=0.85×10-4。 18. 为了改进聚氯乙烯的性能,常将氯乙烯(M1)与醋酸乙烯(M2)共聚 得到以氯乙烯为主的氯醋共聚物。已知在60℃下上述共聚体系的r1=1.68, r2=0.23,试具体说明要合成含氯乙烯质量分数为80%的组成均匀的氯醋共聚物应采用何种聚合工艺? 第四章自由基溶液聚合过程及合成工艺 9. 苯乙烯在60℃以过氧化二叔丁基为引发剂,苯为溶剂进行自由基溶液聚合。当苯乙烯的浓度为1mol/L,引发剂浓度为0.0lmol/L时,引发剂分解和形成聚合物的初速率分别为4×1011mol/(L·s)和1.5×

苯丙乳液配方及原理

苯丙乳液生产配方 苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯:218.8kg; 并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg),进行预乳 化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。 (3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成

保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; ?2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。 目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合 被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途: ?(1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。 ?(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。(3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。 乳液聚合技术较本体聚合、溶液聚合、悬浮聚合相比较,有许多重要特点、优点,既可制备高分子量的聚合物,又有高的聚合反应速率。反应体系易散热,有利于聚合反应的控制。生产设备和工艺简单,操作方便,灵活性大,代表了环境保护技术的发展方向,很多场合下,聚合物乳液可直接利用。因此,近年来乳液聚合技术发展很快,特别是在聚合技术上派生、发展了多种新技术、新方法。?

聚合物合成工艺学习题

名词解释 Ziegler-Natta催化剂:中文译名“齐格勒-纳塔”催化剂,由三乙基铝与四氯化钛组成,是一种优良的定向聚合催化剂。催化剂又称触媒,可以组合成Ziegler-Natta触媒的化合物种类相当多,Ziegler-Natta触媒可由下列的化合物组合而成:周期表中第IV到第VIII族的过渡金属化合物,和周期表中第I到第III族的金属所组成的有机金属化合物。其中过渡金属化合物为触媒,而有机金属化合物为助触媒。 爆炸极限:可燃物质与空气或氧气必须在一定浓度范围内均匀混合,形成预混气,遇火源才会发生爆炸,这个浓度范围成为爆炸极限,或爆炸浓度极限 逐步加成反应:某些单体的官能团可按逐步反应的机理相互加成而获得聚合物,但又不会析出小分子副产物,这种反应称为逐步加成聚合反应。 界面缩聚:两种单体分别溶解在水及与水不相混溶的有机溶剂中,在常温常压下,在水和有机溶剂的界面进行缩聚反应的方法。 工程塑料:是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。 表面活性剂:是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 乳化剂:能降低互不相溶的液体间的界面张力,使之形成乳浊液的物质。乳化剂是乳浊液的稳定剂,是一类表面活性剂 HBL值:用来衡量表面活性剂分子中的亲水部分和亲油部分对其性质所作贡献大小的物理量。 种子乳液聚合:单体原则上仅在已生成的微粒上聚合,而不形成新的微粒,即仅增加原来微粒的体积,而不增加反应体系中微粒的数目。

核-壳聚合:两种单体进行共聚合时,如果一种单体首先进行乳液聚合,然后加入第二种单体再次进行乳液聚合,则前一种单体聚合形成乳胶粒子的核心,好似种子,后一种单体则形成乳胶粒子的外壳。 金属茂催化剂:由过渡金属锆(Zr)与两个环戊二烯基或环戊二烯取代基及两个氯原子(或甲基)形成的有机金属络合物和助催化剂甲基铝氯烷组成。 Phillips催化剂活化处理:400~800℃温度下,于干燥空气中进行活化,使铬原子处于Cr+6状态。 熔融指数:热塑性塑料在一定温度和压力下,熔体在10分钟内通过标准毛细管的重量值,以(g/min)为单位。 聚合反应的操作方式:间歇聚合:分批生产,适于小批量生产;连续聚合:自动化程度高,质量稳定,适合大批量生产。聚合反应器:管式、塔式、釜式、特殊形式;反应热排除方式:夹套冷却、内冷管冷却、反应物料部分闪蒸、反应介质预冷、回流冷凝器冷却等。 1、聚合反应釜中搅拌器的形式有哪些?适用范围如何? ①常用搅拌器的形式有平桨式、旋桨式、涡轮式、锚式以及螺带式等; ②涡轮式和旋桨式搅拌器适于低粘度流体的搅拌;平桨式和锚式搅拌器适于高粘度流体的搅拌;螺带式搅拌器具有刮反应器壁的作用,特别适用于粘度很高流动性差的合成橡胶溶液聚合反应釜的搅拌。 2、简述合成树脂与合成橡胶生产过程的主要区别。 —合成橡胶生产中所用的聚合方法主要限于自由基聚合反应的乳液聚合法和离子与配位聚合反应的溶液聚合法两种。而合成树脂的聚合方法则是多种的。合成树脂与合成橡胶由于在性质上的不同,生产上的差别主要表现在分离过程和后处理过程差异很大:①分离过程的差异:合成树脂,通常是将合成树脂溶液逐渐加入第二种非溶剂中,而此溶剂和原来的溶剂是可以混溶的,在沉淀

聚丙烯腈纤维及其合成工艺(DOC)

聚丙烯腈纤维及其合成工艺 摘要:聚丙烯腈纤维由聚丙烯腈或丙烯腈含量大于85%质量百分比)的丙烯腈共聚物制成的合成纤维。丙烯腈的聚合属于自由基型链式反应,通常有丙烯腈经自由基引发剂引发聚合而成。其聚合方法根据所用溶剂(介质)的不同,可分为均相溶液聚合(一步法)和非均相溶液聚合(二步法)。 关键词:聚丙烯腈纤维;合成工艺;均相溶液聚合;水相沉淀聚合 刖言 聚丙烯腈纤维的商品名是腈纶,由聚丙烯腈或丙烯腈含量大于85%(质量百 分比)的丙烯腈共聚物制成的合成纤维。聚丙烯腈纤维的性能极似羊毛,弹性较好,伸长20%寸回弹率仍可保持65%蓬松卷曲而柔软,保暖性比羊毛高15% 强度比羊毛高1?2.5倍,有合成羊毛之称。因为聚丙烯腈纤维具有柔软、膨松、不易染、色泽鲜艳、耐光、抗菌、不怕虫蛀等优点,根据不同的用途的要求,可纯纺或与天然纤维混纺,其纺织品被广泛地用于服装、装饰等领域。 二、聚丙烯腈的结构和特性 1、聚丙烯腈的结构 聚丙烯腈自问世,因其严重的发脆、熔点高,当加热到280?290 r还未熔 融就开始分解无法进行纺丝的缺点,应用受到限制。使用第二单体与丙烯腈共聚,聚合物分子间作用力降低,克服了脆性并改善了柔性和弹性,使聚丙烯腈成为重要的合成纤维品种。以后随着第三单体的引入,进一步改善了纤维的染色性,这样聚丙烯腈的生产才得到迅速发展。常用的第二单体有丙烯酸甲酯(CH2 = CH-COOCH甲基丙烯酸甲酯[CH2C(CH)COOGH、醋酸乙烯酯(CH2= CHOOCQ等中性单体,第三单体有丙烯磺酸[CH2= C(SOH)-CH3]、丙烯酸(CH k= CHCOOH)衣康酸(CH M CHCOOH C OOH等。例:由丙烯腈、丙烯酸甲酯和丙烯磺酸聚合成的聚丙烯腈纤维的结构如下: CH2——CH CH? CH CH CN COOCH3 第一单体第二单体 CH^SOjKa 第三单悻

聚合物合成工艺学—聚丙烯腈—

石油化工学院 聚合物合成工艺学课程论文 论文名称:聚丙烯腈纤维文献综述 姓名:章耀华 学号: 041203230 专业:化学工程与工艺 指导老师:江献财、英晓光

聚丙烯腈纤维文献综述 摘要:腈纶工业始于20世纪50年代,经过多年的发展,腈纶的用途已经多种多样。其产量大,价格便宜,质量堪比羊毛、棉花,在纺织行业中有着举足轻重的地位。本文将从聚丙烯腈的结构与性质,合成工艺进行简单的描述。 关键词:聚丙烯腈结构与性质合成工艺 引言 腈纶(PAN fiber),学名又称聚丙烯腈纤维,腈纶通常是指用85%以上的丙烯腈与第二和第三单体的共聚物,经湿法纺丝或干法纺丝制得的合成纤维。聚丙烯腈纤维可以用来制作套衫、毛毯、地毯、童装以及诸如旗布、遮阳篷等户外产品,在纺织上有很大的用处。腈纶在化学纤维中需求量一直身居显赫,并能保持此位置而抵住涤纶、尼龙汲取烯烃类纤维的强烈竞争,原因在于腈纶具有诸多非常有用而重要的优势。腈纶的优良性能使其在服装、服饰、产业三大领域有广泛的应用。腈纶通过化学和物理改性,制成不少新的变性纤维,扩大了腈纶在民用和工业的用途,所以腈纶是一种有发展前途的纤维。 1 聚丙烯腈纤维的结构与性质 1.1 结构 聚丙烯腈自问世,因严重的发脆、熔点高,当加热到280~290℃还未熔融就开始分解无法进行纺丝的缺点,应用受到限制。使用第二单体与丙烯腈共聚,聚合物分子间作用力降低,克服了脆性并改善了柔性和弹性,使聚丙烯腈成为重要的合成纤维品种。以后随着第三单体的引入,进一步改善了纤维的染色性,这样聚丙烯腈的生产才得到迅速发展。一般的腈纶是丙烯腈重量比高于85%的共聚体。常用的第二单体有丙烯酸甲酯(CH2=CH-COOCH3)、甲基丙烯酸甲酯[CH2C(CH3)COOCH3]、醋酸乙烯酯(CH2=CHOOCCH3)等单体,第三单体有丙烯磺酸[CH2=C(SO3H)-CH3]、丙烯酸(CH2=CHCOOH)、衣康酸(CH2=CHCOOHCH2COOH)等。例:由丙烯腈、丙烯酸甲酯和丙烯磺酸聚合成的聚丙烯腈纤维的结构如下: 1.2 性质 1.2.1 聚丙烯腈纤维的化学性质 腈纶对化学药品的稳定性良好,但在浓硫酸、浓硝酸、浓磷酸的作用下会溶解。耐碱性比锦纶差,在热稀碱、冷浓碱溶液中会变黄,在热浓碱溶液中会立即被破坏。 1.2.2 聚丙烯腈纤维的物理性质 聚丙烯腈为白色粉末状物质,密度为1.14~1.15g/cm2,在220℃~230℃软化的同时发生分解,聚丙烯腈中-CN的存在,使它具有优良的耐光性。成纤聚丙烯腈的分子量通常在10000以上,而且要求分子量分散性较小。 1.2.3 聚丙烯腈纤维的热学性能 腈纶具有特殊的热收缩性,将纤维热拉伸1.1~1.6倍后骤然冷却,则纤维的伸长暂时不能恢复,若在松弛状态下高温处理,则纤维会相应地发生大幅度回缩,这种性质称为腈纶的热弹性。腈纶有两个玻璃化温度,分别为80℃~100℃和140℃~150℃,无明显的熔点,

乳液聚合方法在材料制备上的应用

聚合方法在材料制备上的应用及发展 材料的合成与制备首先是单体通过聚合反应合成聚合物,然后通过相应的加工工艺制备成所需的材料或产品。聚合反应常需要通过一定的聚合方法来实施,根据聚合物的性能指标以及应用环境条件等要求,常用的聚合方法有本体聚合、溶液聚合、悬浮聚合、乳液聚合以及固相聚合、熔融聚合、界面聚合等等,不同的聚合反方法有不同的工艺及设备要求,所得的聚合物产物在纯度、分子量、物态及性能等方面也各有差异。如本体聚合体系中仅有单体和引发剂组成,产物纯净后处理简单,可直接用模板模具成型,如有机玻璃的制备;溶液聚合是将单体和引发剂均溶于适当的溶剂中的聚合方法,体系得粘度较低,具有传热散热快、反应条件容易控制,可避免局部过热,减少凝胶效应等特点适应于聚合物溶液直接使用的场合,如涂料、胶粘剂等;悬浮聚合是单体以小液滴状悬浮在水中进行的聚合方法,,其特点是以水作为反应介质,为了让非水溶性的单体能在水中很好地分散需要使用分散剂,所以悬浮聚合体系一般由单体、油溶性引发剂、分散剂以及水组成,悬浮聚合的产物一般以直径为0.05~2mm的颗粒沉淀出来,后处理简单方便生产成本低,但产物中常带有少量分散剂残留物;乳液聚合是在乳化剂的作用下,单体分散在水中形成乳液状态的聚合方法,体系由单体、水溶性引发剂、乳化剂和水组成,由于是以水为介质,具有环保安全、乳胶粘度低、便于传热、管道输送和连续生产等特点,同时聚合速度快,可在较低的温度下进行聚合,且产物分子量高,所得乳胶可直接用于涂料,粘结剂,以及纸张、织物、皮革的处理剂等众多领域,乳液聚合因其生产过程中安全、环保等特点深受人们的广泛重视,下面主要以乳液聚合为例就聚合方法在材料制备上的应用及进展进行

《高聚物合成工艺学》试题

《高聚物合成工艺学》试卷二 一.名词解释(21分) 1.反相悬浮聚合 2.互穿网络聚合物IPN 3.硅橡胶 4.脱灰 5.热固性 6. 种子聚合 7. 聚酯纤维 二.填空(20分) 1.三大合成材料是指:,,。 2.高分子合成工业中用自离子聚合反应机理生产的聚合物主要采用有:,,,四种聚合方法来实施。 3.低温丁苯橡胶乳液聚合过程中主要的影响因素是,。常采 用的控制乳液胶粒的粒径。 4.ABS用那三个单体聚合:,,。分散相常采用,聚合方法。连续相常采用,聚合方法。 5.在聚氯乙烯聚合生产中,主要采用手段控制聚合物分子量。 6.评价高聚物耐热性两个重要指标是:,。

三.判断(10分) 1.聚合反应釜中搅拌器只起到加速传热的作用。() 2.水油比是指反应体系中水的用量与单体重量之比。() 3.HDPE常用高压聚合生产工艺。() 4.热塑性酚醛树脂不需加入固化剂即可在加热的条件下固化。() 5.聚四氟乙烯常采用本体聚合工艺生产。() 6.顺丁橡胶的分子量越大,分子量分布越窄,其力学性能越好,但是加工性能越差。() 7.聚苯乙烯的聚合可以是本体聚合、悬浮聚合、乳液聚合和溶液聚合。() 8.浅色剂只有将带色杂质变为浅色或无色物质,改善纤维白度的作用。() 9.在乳液聚合过程中,搅拌强度太高,会使乳胶粒子数目减少,乳胶粒直径增大及聚合反应速率降低,同时会使乳液产生凝胶,甚至导致破乳。() 10.悬浮聚合体系一般是由单体、引发剂、水和分散剂四个基本部分组成。() 四.简答(25分) 1.简述石油裂解制烯烃的工艺流程。 2.简述本体聚合的特点。 3.简述悬浮聚合过程的影响因素。 4.聚氨酯泡沫塑料的生产工艺有一步法和两步法两种,对比两种方法的特点。 5. 试比较高温和低温丁苯配方的主要区别。 五.问答(24分)

第三章 自基聚合生产工艺

第三章自由基聚合生产工艺 本章主要内容: 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.2 悬浮聚合生产工艺 3.3 溶液聚合生产工艺 3.4 乳液聚合生产工艺 重点:自由基聚合工艺基础 难点:无 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.1.1 自由基聚合工艺基础 自由基聚合反应定义 单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。 ?单体类型: 主要是乙烯基单体、二烯烃类单体 ?聚合物特点:碳-碳为主链的线形高聚物、无定形聚合物;T g低于室温的常温为弹性体用作橡胶;T g高于室温的常温为塑性体(合成树脂)用作塑料、合成纤维、涂料。 自由基聚合反应的特点 ①整个聚合过程分为链引发、链增长、链终止,各步反应速率和活化能相差很 大; ②高分子瞬间形成,而产品的相对分子质量不随时间变化; ③体系内始终由单体和高聚物组成,产物不能分离; ④反应连锁进行,转化率随时间的延长而增加; ⑤反应是不可逆的。 自由基聚合反应的分类

按参加反应的单体种类分为: 自由基均聚合:只有一种单体参加的自由基聚合反应。常见的有:LDPE、PMMA、PVC、PV AC、PS等 自由基共聚合:两种以上单体同时参加的自由聚合反应。常见的有:乙丙橡胶、丁苯橡胶、丁腈橡胶、SBS 、ABS等 自由基聚合反应的重要地位 最典型;最常见;最成熟;经自由基聚合获得的高聚物产量占总产量的60%以上,占热塑性树脂的80% 自由基聚合反应的实施方法 本体聚合、乳液聚合、悬浮聚合、溶液聚合; 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 自由基聚合引发剂 除了苯乙烯本体聚合是热引发聚合,其他单体在工业上都是在引发剂引发聚合。 ?引发剂种类 主要有三大类:过氧化物类、偶氮化合物类、氧化还原引发体系 过氧化物类: 通式R-O-O-H 或R-O-O-R,R——为烷基、芳基、酰基、碳酸酯基、磺酰基。分子中含有—O—O—键,受热后断裂成相应的两个自由基,初级自由基主要用来引发单体,成为单体自由基,此外,还发生副反应。 偶氮类: 偶氮二异丁腈(AIBN)、偶氮二异庚腈(A VBN) 氧化还原引发体系: 特点:氧化-还原体系产生自由基的过程是单电子转移过程,即一个电子由一个

腈纶的用途和生产方法及工艺

B线项目 腈纶的用途和生产方法及工艺 摘要: 腈纶工业始于20世纪50年代,先后经历了快速发展期,缓慢期,进入21世纪发展速度呈现螺旋上升的趋势,在发达国家产量逐渐降低,而发展中国家产量不断走高。腈纶的用途多种多样,它产量大,价格便宜,质量堪比羊毛、棉花。在纺织行业中有着举足轻重的地位。腈纶的生产工艺也多种多样,而氯化锌一步法又是其中比较成熟的工艺。 关键字:腈纶腈纶用途腈纶生产腈纶生产工艺 腈纶,学名又称聚丙烯腈纤维,在我国还称为“人造羊毛”,在国外则称为“奥纶”、“开司米纶”。腈纶通常是指用85%以上的丙烯腈与第二和第三单体的共聚物,经湿法纺丝或干法纺丝制得的合成纤维。聚丙烯腈纤维可以用来制作套衫、毛毯、地毯、童装以及诸如旗布、遮阳篷等户外产品,在纺织上有很大的用处。腈纶在化学纤维中需求量一直身居显赫,并能保持此位置而抵住涤纶、

尼龙汲取烯烃类纤维的强烈竞争,原因在于腈纶具有诸多非常有用而重要的优势。腈纶的优良性能使其在服装、服饰、产业三大领域有广泛的应用。所以了解一下腈纶的用途和它的发展简史以及生产方法和生产工艺,对于化工从业人员来说是非常必要的。 腈纶的用途 聚丙烯腈纤维是一种高分子长链合成聚合物形成的人造纤维,其丙烯腈含量至少占85%。它表面平滑,具有良好的悬垂性能,可以生产保暖但是很轻的织物。它的弹性和回弹性具佳,并具有优异的耐阳光和耐气候性能。这种纤维可以水洗或干洗。但是聚丙烯腈纤维的强度一般,湿态时强度约降低20%,但是干燥后即行恢复。这是一种疏水性纤维(回潮率为1%),常发生静电和起球现象,其耐磨性能一般。 有着人造羊毛美称的腈纶,又有着便宜的价格,所以成为了羊毛和棉花的最佳替代品。在我国化纤工业中,聚酯纤维主要用于仿棉或仿丝型织物、而仿毛型织物以腈纶为主要原料。腈纶外观蓬松,手感柔软,具有良好的耐光、耐气候、其弹性和保暖性可以和羊毛媲美,深受消费者欢迎。在我国毛纺及人造毛皮所用原料中腈纶占最主要地位。腈纶的优良性能使其在服装、服饰、产业三大领域有广泛的应用。聚丙烯腈纤维根据不同的用途的要求可纯纺或与天然纤维混纺,可与羊毛混纺成毛线,或织成毛毯、地毯等,还可与棉、人造纤维、其他合成纤维混纺,织成各种衣料和室内用品。 腈纶的发展历史

相关文档