文档库 最新最全的文档下载
当前位置:文档库 › (完整版)正余弦典型例题及详细答案

(完整版)正余弦典型例题及详细答案

(完整版)正余弦典型例题及详细答案
(完整版)正余弦典型例题及详细答案

正余弦典型例题及详细答案

一、解答题(题型注释)

1.

(1

(2

【答案】(1(2

【解析】

试题分析:(1

(2)利用(1

.

试题解析:(1

(2

考点:正余弦定理的综合应用及面积公式.

2

(1

(2.

【答案】(1(2

【解析】

试题分析:(1)利用正弦定理,化简得

(2)由余弦定理得

试题解析:

(1

(2)由余弦定理得,又,∴

=”

考点:解三角形,正余弦定理,基本不等式.

3

(1

(2

【答案】(1(2

【解析】

试题分析:(1)

2分

4分

6分

10分

12分 考点:

1.正弦定理解三角形;

2.三角恒等变形.

4.已知A 、B 、C 为三角形ABC

的三内角,其对应边分别为a ,b ,c ,若有2acosC=2b+c 成立.

(1)求A 的大小;(2

ABC 的面积. 【答案】(1(2 【解析】

试题分析:(1)利用正弦定理边化角的功能,化为

得关于角A 的余弦值,从而求出角A ;(2A .

试题解析:(1)

(2

即:,∴.故得:

考点:正弦定理,余弦定理,三角形两边一夹角的面积公式,化归与转化的数学思想.

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

垂径定理经典练习题.

圆垂径定理专题练习题 1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧. 2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( ) A.3 cm B.4 cm C.5 cm D.6 cm 3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5 4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___. 5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E. (1)请写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE的长. 6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )

A.4 B.5 C.6 D.8 7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的 直径为____. 8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3 千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区, 如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米? 9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____. 10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm, 则EF=____cm. 11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

2021年高考数学一轮复习题型归纳与高效训练试题:4.5 正弦定理和余弦定理(原卷版)文

『高考复习·精推资源』『题型归纳·高效训练』

高考复习·归纳训练

2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题4.5 正弦定理和余弦定理 目录 一、题型全归纳 (1) 题型一利用正、余弦定理解三角形 (1) 类型一用正弦定理解三角形 (2) 类型二用余弦定理解三角形 (2) 类型三综合利用正、余弦定理解三角形 (3) 题型二利用正、余弦定理边角互化 (5) 题型三与三角形面积有关的问题 (7) 二、高效训练突破 (10) 一、题型全归纳 题型一利用正、余弦定理解三角形 【题型要点】解三角形的常见题型及求解方法 (1)已知两角A,B与一边a,由A+B+C=π及a sin A= b sin B= c sin C,可先求出角C及b,再求出c. (2)已知两边b,c及其夹角A,由a2=b2+c2-2bc cos A,先求出a,再求出角B,C. (3)已知三边a,b,c,由余弦定理可求出角A,B,C. (4)已知两边a,b及其中一边的对角A,由正弦定理a sin A=b sin B可求出另一边b的对角B,由C=π-(A+B), 可求出角C,再由a sin A=c sin C可求出c,而通过a sin A= b sin B求角B时,可能有一解或两解或无解的情况.

类型一 用正弦定理解三角形 【例1】.(2020·北京朝阳区模拟)在△ABC 中,B =π6,c =4,cos C =53 ,则b =( ) A .3 3 B .3 C.32 D.43 【例2】.(2020·丹东模拟)在△ABC 中,C =60°,AC =2,AB =3,则A =( ) A .15° B .45° C .75° D .105° 类型二 用余弦定理解三角形 【例3】(2020·贵阳模拟)平行四边形ABCD 中,AB =2,AD =3,AC =4,则BD =( ) A .4 B.10 C.19 D.7 【例4】.在△ABC 中,AB =4,AC =7,BC 边上中线AD =72 ,则BC =________. 类型三 综合利用正、余弦定理解三角形 【例5】(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C. △求A ; △若2a +b =2c ,求sin C. 【例6】在△ABC 中,a =3,b -c =2,cos B =-12 .

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

九年级数学: 垂径定理典型例题及练习

典型例题分析: 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD ⊥BC 于D ,求证:AD=21BF. O A E F

例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的 半径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

高考正弦定理和余弦定理练习题及答案精选.

高考正弦定理和余弦定理练习题及答案 一、选择题 1. 已知△ABC 中,a =c =2,A =30°,则b =( ) A. 3 B. 2 3 C. 3 3 D. 3+1 答案:B 解析:∵a =c =2,∴A =C =30°,∴B =120°. 由余弦定理可得b =2 3. 2. △ABC 中,a =5,b =3,sin B = 22,则符合条件的三角形有( ) A. 1个 B. 2个 C. 3个 D. 0个 答案:B 解析:∵a sin B =102, ∴a sin B b B .a

C .a =b D .a 与b 的大小关系不能确定 答案:A 解析:由正弦定理,得c sin120°=a sin A , ∴sin A =a ·3 22a =64>1 2. ∴A >30°.∴B =180°-120°-A <30°.∴a >b . 5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A. 5 18 B. 3 4 C. 3 2 D. 7 8 答案:D 解析:方法一:设三角形的底边长为a ,则周长为5a , ∴腰长为2a ,由余弦定理知cos α=(2a )2+(2a )2-a 22×2a ×2a =7 8. 方法二:如图,过点A 作AD ⊥BC 于点D , 则AC =2a ,CD =a 2,∴sin α2=1 4, ∴cos α=1-2sin 2α 2 =1-2×116=7 8. 6. (2010·泉州模拟)△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于( ) A. 3 2 B. 3 4 C. 3 2或 3 D. 32或3 4 答案:D 解析:∵sin C 3=sin B 1, ∴sin C =3·sin30°=3 2.

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

考点17 正弦定理和余弦定理【2019年高考数学真题分类】

温馨提示: 此题库为Word版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word文档返回原板块。 考点17 正弦定理和余弦定理 一、选择题 1.(2019·全国卷Ⅰ文科·T11)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-1 4,则b b = () A.6 B.5 C.4 D.3 【命题意图】本题考查正弦定理及余弦定理推论的应用. 【解题指南】利用余弦定理推论得出a,b,c的关系,再结合正弦定理边角互换列出方程,解出结果. 【解析】选A.由已知及正弦定理可得a2-b2=4c2,由余弦定理推论可得-1 4=cos A=b2+b2-b2 2bb ,所以b2-4b2 2bb =-1 4 ,所以3b 2b =1 4 ,所以 b b =3 2 ×4=6,故选A. 二、填空题 2.(2019·全国卷Ⅱ理科·T15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π 3 ,则△ABC的面积为. 【命题意图】考查余弦定理以及三角形面积公式的应用. 【解析】因为cos B=b2+b2-b2 2bb , 又因为b=6,a=2c,B=π 3 ,可得c2=12, 1

解得c=2√3,a=4√3, 则△ABC的面积S=1 2×4√3×2√3×√3 2 =6√3. 答案:6√3 3.(2019·全国卷Ⅱ文科·T15)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=. 【命题意图】考查正弦定理、同角三角函数基本关系的运用. 【解析】已知b sin A+a cos B=0,由正弦定理可得sin B sin A+sin A cos B=0,即sin B=-cos B, 又因为sin2B+cos2B=1,解得sin B=√2 2,cos B=-√2 2 ,故B=3π 4 . 答案:3π 4 4.(2019·浙江高考·T14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=,cos∠ABD= . 【命题意图】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想. 【解析】在△ABD中,由正弦定理有:bb sin∠bbb =bb sin∠bbb , 而AB=4,∠ADB=3π 4 ,AC=√bb2+bb2=5, sin∠BAC=bb bb =3 5 ,cos∠BAC=bb bb =4 5 ,所以BD=12√2 5 . cos∠ABD=cos(∠BDC-∠BAC) =cosπ 4cos∠BAC+sinπ 4 sin∠BAC=7√2 10 . 2

垂径定理典型例题及练习

垂径定理练习题 典型例题分析: 例题、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度 为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. O A E F

2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2 、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半 径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

正弦余弦历年高考题及详细答案

正 余 弦 定 理 1.在 ABC ?中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2、已知关于x 的方程2 2 cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= . 4、如图,在△ABC 中,若b = 1,c =3,23 C π ∠=,则a= 。 5、在ABC ?中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =, sin cos 2B B +=,则角A 的大小为 . 6、在?ABC 中,,,a b c 分别为角,,A B C 的对边,且2 7 4sin cos 222 B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状. 8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c . A B 3 23 π

1、解:在ABC A B ?>中,2sin 2sin sin sin a b R A R B A B ?>?>?>,因此,选C . 2、【答案】由题意可知:211cos cos cos 2sin 222 C C A B -= ??= ,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+- cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=, 所以ABC ?一定是等腰三角形选C 3、【命题立意】本题考察正弦定理在解三角形中的应用. 【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得 1sin 60 A =得1 sin 2 A = ,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。 【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。 【规范解答】由余弦定理得,222121cos 33 a a π +-???=,即220a a +-=,解得1a =或2-(舍)。【答案】1 【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。 5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。 【思路点拨】先根据sin cos B B +=B ,再利用正弦定理求出sin A ,最后求出A. 【规范解答】由sin cos B B += 12sin cos 2B B +=,即sin 2B 1=,因为0

相关文档
相关文档 最新文档