文档库 最新最全的文档下载
当前位置:文档库 › 管内对流换热影响因素及其强化分析

管内对流换热影响因素及其强化分析

管内对流换热影响因素及其强化分析
管内对流换热影响因素及其强化分析

管内对流换热影响因素及其强化分析

摘要: 从影响管内对流换热的因素出发,对近年来国内外学者的研究成果进行了综合分析,包括管内流体流动状态、表面形状、物性、脉动等对管内对流换热的影响。介绍了利用缩放管、金属泡沫管、纳米流体、高压电场等强化换热的方法。对中高温太阳能热利用系统中大温差管内对流换热的应用及其强化方法进行了展望。

关键词:管内;对流;换热;强化换热

Influencing Factors and Enhancing Methods of

Convective Heat Transfer in Tubes

Lei Changkui

Safety Engineering Class 1002 1003070210

Abstract: Some factors were summarized systematically according to the research in China and abroad in recent years, including convection flow state,phase-transformation,geometric factors, fluid pulse, fluid physical properties and viscosities. At the same time,some methods of enhancing heat transfer in tubes were also summarized,such as additives,electro-hydro-dynamical,metal foam filled pipes etc.Finally,the characteristics and the method of heat transfer enhancement were analyzed in high-medium temperature solar power systems.

Key Words: tube,convection,heat transfer,heat transfer enhancing

0 引言

管内对流换热过程广泛存在于化工、动力、制冷及太阳能热利用等工程技术领域的各种热交换设备中,是一个传热温差和流体流动阻力并存且相互影响的复杂传热过程。近年来,随着市场经济的发展,热交换设备迫切需要符合节约能源、节省材料和降低成本的要求,这对强化设备的换热提出了更高的要求。众所周知,热量传递方式有热传导、热对流以及热辐射三种,因此强化传热的方法也势必从这三个方面来进行。作为热交换器中管内热流体的主要传热方式,管内对流换热的强化在热交换器强化换热研究中占有极其重要的地位。本文从理论及已有实验的角度对管内对流换热的影响因素及其强化换热的方法进行分析,以期对太阳能中高温热利用中大温差管内对流强化换热的研究提供指导和借鉴。

1 管内对流换热的理论分析

1.1 边界层理论

边界层是由于流体的黏滞性,在紧靠其边界壁面附近,流速较势流流速急剧减小,形成的流速梯度很大的薄层流体,又称为流动边界层[1]。1940年德国普朗特提出著名的边界层概念后,经过发展,流体力学的研究已经证明,黏性流体存在着两种不同的流态: 层流(Re<2

000)及湍流(Re>10000)。层流是流体微团沿着主流方向作有规则的分层流动,而湍流时流体各部分之间发生剧烈的混合,因而在其他条件相同时湍流传热的强度自然要较层流强烈。湍流时的传热除贴壁的滞流内层外,湍流核心的速度分布和温度分布较为平坦,主要热阻存在于滞流内层中。由于滞流内层极薄,温度梯度甚大,所以湍流传热强度远远超过层流。对于强制对流,若忽略自然对流的影响,其一般准则数关系式为

Nu=f(Re 、Pr)

在一定范围内,这个关系式可整理成如下形式:

()()Nu C Re Pr m n

= 式中,Nu 是努塞尔数;Re 是雷诺数;Pr 是普朗特数;系数c ,指数m 、n 依影响因素不同由实验测定。

1.2 场协同理论

针对静止坐标系下的流动换热问题,有学者从二维层流边界层能量方程出发,重新审视了热量输运的物理机制,把对流换热比拟成有内热源的导热过程,并指出热源强度不仅决定于流体的速度和物性,而且取决于流速和热流矢量的协同: 流动的存在可能强化换热,也可能并无实质贡献甚至减弱换热,并以二维平板层流边界层问题为例提出了场协同理论[2],得到了Nu 数与温度梯度之间的关系,定义了表征速度场和温度场协同程度的场协同数Fc ,其中Fc 的表达式为

Pr

Re ?=??=?Nu y Td U Fc

场协同理论提出以来,对于其在静止坐标系下的应用研究得到了广泛的关注和发展: 从抛物型方程拓展到椭圆型方程;通过磁场改变方腔自然对流速度场,强化换热,将传递势容耗散极值原理应用于对流换热,获得了黏性耗散一定的条件下的最优速度场;把场协同理论的应用从层流拓展到湍流,提出采用多纵向涡强化管内对流换热的场协同强化方法;研究了脉冲流动和壁面振动问题中的传热问题,提出为了改善速度和温度梯度场的协同,应使脉动能改变垂直于换热壁面方向的速度分量。

1.3 有效能分析

有效能指的是动力设备对流体实际做功的那部分能量。在管内对流换热中,流体因其不可逆性引起的流动摩擦阻力和温差传热,导致能量贬值,即有效能的损失。在热物性对有效能损失影响的研究中,目前对有效能的研究只是针对层流的情况。师晋生等[3]针对壁面定热流加热的管内对流换热有效能损失进行了研究,分析了黏度变化的影响。结果表明,温差传热时管内液体近壁处流速增大,换热系数也增大,在热流不变的条件下,壁面温度与流体平均温度差将减小,实际温差传热有效能损失会减小,由流动引起的有效能损失更会减小。这是因为近壁处液体流阻系数减小,这样总的单位热容有效能损失将减小。

1.4 脉动分析

对管内流动,脉动流体进入管道进口时造成换热系数的影响,直接反映在速度发生周期性变化,以及流体的脉动幅值、频率的变化。通常的研究结果表明脉动流体会起到强化或弱化换热效果,胡玉生等[4]通过数值模拟的方法对管内流体脉动流动的分析,结果表明阻力比无脉动时大,并且在流场中有与主流区流动方向相反的流动现象。当无因次振幅不变的情况下,换热强化比随频率的增大逐渐增大,在低频率时变化较为明显,在高频率时变化不明显,但是频率较高时能够强化换热,而在频率较低时则会有弱化换热的情况。同样,当频率不变的情况下,换热强化比是随着无因次振幅的增大先是逐渐下降然后逐渐增大,在无因次振幅较低时,会弱化换热,并且振幅的影响不是很明显。相反,振幅对换热效果的影响十分显著,并且随着振幅的增大,换热效果逐渐增大。因为脉动时阻力比无脉动时大,而且在流场中有与主流区流动方向相反流动现象,这是造成流体强化或弱化换热的原因。

2 管内对流换热的研究

2.1 缩放管强化换热

缩放管是由依次交替的收缩段和扩张段组成,使流体始终在方向反复改变的纵向压力梯度作用下流动,通过表面缩放来改变管内流体的流动状况以达到换热的效果。在同等压力降下,流体的流动速度模量、流动方向、湍流强度相较圆管内而言,缩放管的传热量会大幅度增加。

黄维军等[5]研究表明,缩放管中的流体在流动滞流底层内,径向速度很小,对传热影响不大,在湍流主区,各处的径向速度分布一致,与缩放管传热系数的沿程分布没有直接联系;轴向速度是影响速度矢量模量的决定因素,但是其大小变化规律与传热系数的变化不一致,可以排除轴向速度的影响。剩下过渡区内流体的径向速度对缩放管内流体与固体壁面间的对流传热起着决定作用,相应地表面传热的提高也受过渡区的湍流强度的影响。所以,设法提高近壁面区域的径向速度与增大近壁面流体湍流度,是强化缩放管内的湍流对流传热的主要途径。

2.2 金属泡沫管强化换热

金属泡沫管是一种新型的多孔材料,是采用烧结等工艺将金属泡沫与金属管壁紧密结合而形成的新型强化换热管,是一种高孔隙率的特殊多孔介质。这种管的管内孔隙率、孔密度、导热系数比和雷诺数等不同参数对流动和换热都有不同程度的影响,李盈海等[6]研究表明: 金属泡沫可以大大减薄边界层的厚度,使截面流体速度分布十分均匀,截面温差也很小。泡沫管的平均Nu数随孔隙率的减小或孔密度的提高而增大,随流体和固体导热系数比的减小而增大。当系数比>0.1001时,采用低孔密度的金属泡沫既可以强化换热,同时也可以大大减小压降。采用金属泡沫管可以大大强化传热,但相对同时管内流体阻力增加也会很多。2.3 带交叉肋方形截面通道换热

一直以来人工粗糙元被认为是强化换热的一项有效的技术。通常,粗糙元是一些小的凸

起物,按照一定的角度,周期性地布置在需要强化换热的换热面上。粗糙元能使流体的流动形成湍流而强化换热,同时也会引起阻力增加。为了不使阻力增加过多,应使湍流脉动限制在靠换热面很近的地方,也就是在边界层内。带交叉肋方形截面通道就是利用这个原理通过内置粗糙元以达到管内强化换热。

针对交叉布置肋条和平行布置肋条强化效果比较,邓斌等[7]进行了交叉布置肋条的换热研究,结果表明交叉布置肋条布置角度越大,高度越高,换热增强,但阻力也相应增大。取45°肋条的综合换热效果较好。同时总结得出,在Re较低时,交叉布置的肋条通道较平行布置的肋条有一定的强化换热效果,但在高Re下并无优势。

2.4 纳米流体强化换热

自从发现“Toms效应”并被证明在液体湍流中添加少量的添加剂会影响流体传热后,高分子聚合物和某些表面活性剂经常被用作纳米流体添加剂来使用[8]。1987年蔡国琰等[9]的流体黏弹性对湍流流动与传热的影响的研究发现,黏弹性会降低流体的换热性能,黏弹性对换热系数的影响与普朗特数和雷诺数有关,随着普朗特数增加,黏弹性影响加强,随雷诺数增加,影响变弱。根据国内外的研究表明,表面活性剂的加入使湍流在减阻的同时对流换热系数也大幅度降低。另一方面也发现,表面活性剂溶液具有剪切可逆性及温变可逆性,利用该性质可以对其湍流的对流换热进行控制。总之,在流体中加入纳米材料后流体的对流换热系数明显提高,随着雷诺数的增加换热系数还呈线性提高[10]。因此,添加纳米材料也是强化流体换热的一大途径。

2.5 高压电场强化换热

电场强化换热以其非常小的能耗取得相当好的强化效果,有着诱人的应用前景,20世纪70年代以来,国外研究者在该领域内进行了大量的基础性研究,并逐渐进行应用性研究。

电场对流体换热主要有四个方面的影响,焦耳热、库仑力、介电泳力和电致收缩力,在绝缘性流体中焦耳热远小于其它三项的影响,故库仑力、介电泳力和电致收缩力为主导因素影响着电场对流体换热。有机流体在外加直流高压电场的作用下,电场能对管内层流强制对流换热起着很好的强化作用。利用高压电场目的是增加在管内层流流动的流体的紊乱程度,变层流为湍流。刘振华等[11-12]在气体和一般低黏度的有机流体的研究基础上,再对高黏度的油在高压电场强化管内强制对流换热的实验研究表明,外加高压电场能对管内层流强制对流换热起着很好的强化作用,并得出其换热系数强化率主要与外加电场强度及热通量等因素有关。因为在相同传热面积和泵功条件下,换热系数强化率随着外加直流电压几乎呈指数关系变化,在较小的外加电压下,对流换热强化率较低,而且强化率基本不随高温通量而变化,相对地在较大的外加电压下,换热强化率较高,但是随着热通量的增大,强化率也有很大影响。所以外加直流电压的提高换热强化率有良好的综合强化效果。

2.6 旋转流体强化换热

应用流体旋转法也是流体管内强制对流换热的有效强化方法之一。目前国内外在研究旋

转流体都普遍采用滚压成型的螺纹槽管,增加旋转流体的流动路径,使管内流体发生旋转运动,增加贴近壁面的流体速度,同时还可改变整个流体的流动结构,使流体在管内停留时间延长,加强边界层流体的扰动以及边界层流体和主流流体的混合,因而使传热过程得以强化。但是,并不是螺纹头数越多就能达到越好的换热效果,一般螺纹头数不宜超过3头,同时螺纹高度也不宜过大,应控制在h/d=0.03~0.04左右[13],式中h为螺纹高度,d为直径。因为在相同Re数时,单头螺纹主要使边界层流体旋转,而多头螺纹能使边界层流体和主流体一起产生强烈的旋转,使流动缓慢的边界层流体旋转有利于强化传热。

2.7 微结构强化换热

当今微电子、微能源以及生物芯片等行业对微型的高效换热器有着迫切的需求,从而带动了利用微结构对微型换热器进行强化换热的研究,其中以微通道最为常用。唐慧敏等[14]讨论了锯齿形硅微通道强化换热的机理,发现锯齿形微通道内流动摩擦常数和换热努塞尔数较平直微通道均有明显提高,且提高幅度随雷诺数Re增加而增加,相同泵功条件下锯齿形微通道换热热阻显著下降。李晓伟等[15]实验研究了微肋管在过渡区及湍流区的换热及阻力性能,并针对微肋管在过渡区的换热强化较差的特点改进其结构。实验结果表明,改进后的微肋管在2300<Re<10000时比原微肋管强化换热提高120%,阻力增70%~120%。

3 太阳能中高温热利用管内对流换热

近年来,太阳能中高温热利用如太阳能热发电技术日益受到人们的重视,吸热器是关键设备之一,通常采用管内对流换热方式来加热热流体。由于太阳能中高温热利用的聚光温度高达数百甚至上千摄氏度,而管内被加热的热流体温度通常在数百摄氏度,因此吸热器的管内对流换热温差一般在100℃以上。已有管内对流换热及其强化的研究大多在中低温差的条件下( 通常小于50℃)进行,所得实验关联式及其相关结论也具有一定局限性,不能直接用于太阳能中高温热利用中吸热器的设计,或者具有较大的误差。因此有必要对聚光型太阳能中高温热利用系统中吸热器大温差下管内对流换热及其强化方法进行研究,获得较为专门和精确的实验关联式以推动聚光型太阳能中高温热利用技术的发展。

4 结论

上述管内对流换热的影响因素及管内换热的强化研究,可以作为太阳能中高温热利用系统中换热器尤其是吸热器设计及其强化换热手段的借鉴,并在此基础上开展面向太阳能中高温热利用的大温差管内对流换热及其强化的研究。

参考文献

[1]杨世铭,陶文铨.传热学[M].4版.北京:高等教育出版社,2006

[2]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004 [3]师晋生,张巧珍.管内对流传热有效能损失分析[J].干燥技术与设备,2005,2(2):69-72[4]玉生,曾丹苓,李友荣,等.恒壁温下管内流体脉动流动对流换热的数值模拟[J].

工业加热,2006,35(1):3-6

[5]黄维军,邓先和,周水洪.缩放管强化传热机理分析[J].流体机械,2006,34(2):76-79[6]李盈海,陶文铨,孙东亮,等.金属泡沫管内强制对流换热的数值模拟[J].西安交通大学学报,2008,42(3):261-264

[7]邓斌,Wong T T,陶文铨. 带交叉肋方形截面通道内强制对流换热的实验研究[J].

西安交通大学学报,2002,36(9):881-885

[8]焦利芳,李凤臣. 添加剂湍流减阻流动与换热研究综述[J].力学进展,2008,38(5):339-357

[9]蔡国琰.流体黏弹性对湍流流动与换热的影响[J].山东工业大学学报,1987,17(4):39-44

[10]李新芳,朱冬生.纳米流体强化对流换热的实验研究[J].制冷学报,2009,30(3):6-10 [11]振华,王经.EHD效应强化管内强制对流换热的实验研究[D].北京:中国工程热物理学会,2000

[12]振华,陈玉明.高压电场强化管内强制对流换热的实验研究[J].高电压技术,2000,26(4):38-40

[13]王春来,高金芳,高春生,等.应用流体旋转法强化单相流体管内强制对流换热[J].

工业锅炉,1999,2(58):20-22

[14]唐慧敏,吴慧英,吴信宇.锯齿形硅基微通道内流动与换热特性实验[J].航空动力学报,2010,25(6):1264-1270

[15]李晓伟,孟继安,陈泽敬,等.微肋管及强化微肋管换热和阻力实验研究[J].工程热物理学报,2007,28(5):817-819

第五章对流传热分析..

第五章 对流换热分析 通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。 5.1内容提要及要求 5.1.1 对流换热概述 1.定义及特性 对流换热指流体与固体壁直接接触时所发生的热量传递过程。在对流换热过程中,流体内部的导热与对流同时起作用。牛顿冷却公式w f ()q h t t =-是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。 2.影响对流换热的因素 (1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。 (2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。 (3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。 (4)流体的相变:冷凝和沸腾是两种最常见的相变换热。 (5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。 综上所述,可知表面传热系数是如下参数的函数 ()w f p ,,,,,,,,h f u t t c l λραμ= 这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。 3.分析求解对流换热问题 分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。同时,分析求解的前提是给出正确地描述问题的数学模型。在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数 2x x w,x W/(m K)t h t y λ??? ?=- ? ? ??? 由上式可有 2x x w,x W/(m K)h y λθ?θ?? ?=- ? ? ??? 其中θ为过余温度,t t θ=-。

对流换热系数的的测定方法

对流换热系数测定方法 姓名:乔迈 指导教师:罗翔 学号:SY1004319

对流换热系数测定方法 一、前言 具有初始温度T的物体,被突然置于有确定温度的流场中,该物体与流场构成一个非稳态的换热体系。在这个非稳态换热体系中,包含着两个传热环节:一个是物体内部的导热;另一个是流体于物体边界的对流换热。其中影响对流换热的关键参数就是对流换热系数。 对流换热系数是求解伴有表面对流换热的热传导问题的重要参数之一。直接测定对流换热系数的方法分为稳态法与瞬态法。稳态法对实验条件要求苛刻,实验周期长,误差大。瞬态法由于实验周期短,误差小,近年来被广泛运用于对流换热系数测量实验,通常所说的瞬态法是通过瞬时提高来流温度或者壁面温度来达到温度阶跃,测量窄幅热色液晶显色时间,通过求解一维半无限大平板非稳态导热方程得到测量表面的对流换热系数。实验中要达到温度的阶跃通常不容易实现,只能是近似阶跃,需要进行逐级阶跃或者指数函数进行修正。这种处理方式可以近似解决入口温度非阶跃响应问题。但是如果实验中存在涡流,采取突然提高来流温度的方法,并不能确定涡流温度随时间的变换曲线,对实验结果造成很大的误差。为了解决上述问题,本文总结提出了一种测定对流换热系数的新方

法,此方法是以传热学中非稳态导热求解法中的数学分析法集总参数分析法为基础设计的特定环境下的对流换热系数测定方法,本文全面分析了各因素对对流换热系数精度的影响并进行了定量分析此方法简便可靠在一般条件下误差不超过 1.6%。 热传导热对流和热辐射一般情况下并不是独立存在的,热传导时常伴有表面对流换热。本文研究的是零件内非等温场及其变形的研究的一部分内容,其中的热传递现象是导热对流系统,为了确定零件内的非等温场,表面对流换热系数h 是必需的参数之一,本文采用了实验法以求得此参数。传统的实验法是以确定准则方程式的函数关系为主要内容,若采用传统的方法就显得过于复杂。因此设计了这种以集总参数分析法为基础的对流换热系数的测定方法即把导热体看成集总体,使得导热体的温度T 只是时间t 的函数,对特定环境条件下对流换热系数的获得提供了一种方便有效的方法 二、实验的理论分析 2.1对流换热系数分析 由牛顿冷却公式和傅里叶导热定律可知对流换热系数为: 0|y w f T h T T y λ =?=--? 其中,λ为流体的导热系数,w T 为导热体壁温,f T 为流体温度,0|y T f =??为 流体的温度梯度,由此式可知h 取决于流体的导热系数,温度差和贴壁流流体的温度梯度更准确地说h 取决于流体的物性和流动状况,另外,λ还受壁面形状位置,表面粗糙度等的影响。本实验流体是空气其温度压力和速度均为定值因此雷诺数Re ,普朗特数Pr 均为常量其努谢尔特数为:

热能与动力工程专业英语论文(强化对流传热)

Enhancement of Forced Convection Heat Transfer Rongzhen You Class 1202 of Power Engineering In my College Students Innovative Project, we are supposed to adopt some methods to enhance the forced convection heat transfer on the plain surface. Although we have taken several technical methods into consideration, most of them are too difficult for us to apply in our project. Therefore, I would like to make an introduction to these methods here. Firstly, machining some grooves or dimples on the plain plates is one of important methods to enhance the convection heat transfer. The grooves or dimples can change the flow field of the fluid near the surface, for which the fluid would be turbulent than before. In this way, the Nusselt number of the near surface fluid would be raised, and than the convection heat-transfer coefficient would increase. This method can enhance the convection heat transfer on the plain plate to some extent, but it’s still ineffective for the reason that the improvement of heat-transfer coefficient of the fluid in the near wall region can not enhance the heat-transfer of the mainstream. Secondly, some researchers come up with an idea that using spiral fine ribs (SFRs) in plate channel to enhance the convection heat transfer. They equally placed the SFRs in the channel, which can form a packing layer resembling a kind of quasi-porous media with large porosity and can produce efficient disturbance both to the boundary layer and the mainstream. The operation principle of SFRs is that the multi-longitudinal vortices induced by SFRs can significantly increase the tangential velocity components in the cross section, which is helpful to promote the micro-fluctuation in the fluid. What’s more, the transport action caused by the longitudinal vortices can improve the mass exchange between the boundary layer and the mainstream. These two factors can not only speed up the heat migration from the channel walls, but also enhance the heat diffusion in the mainstream. This improves the temperature distribution uniformity in channel. Thirdly, the most efficient way to enhance the convection heat transfer is installing fins on the plain plate. Base on this thought, some researchers have fabricated many different types of fins, such as columned pin fins, conical pin fins, elliptical pin fins, cross-cut pin fins and longitudinal vortex generator arrays (LVG). Nowadays, fins with geometric shape pins have been commonly used to in the engineering. As for the vortex generator, it can disturb the flow field by the vortex and generate vortex after the generator, which can break the boundary lay on the surface and transfer the heat into mainstream quickly. Nowadays, many researchers have proved that the LVG effect is much better than the straight fins within a certain limit of Reynolds number, as well as that the multi rows LVG can improve the whole heat transfer effect. The methods mentioned above sounds pretty advanced, but it’s quiet difficult for us, regular college students, to apply these methods in our project. Because we couldn’t analysis the complex flow field in these special structure, unless we use the FLUENT software to build up their mathematic model. As the advanced usage of FLUENT is out of our ability, we have no choices but to install the straight fins on the heat transfer surface. Some researchers have found that the overall thermal resistance of straight fins is lower than other geometric pin fins, due to the combination effect of enhanced later conduction along the fins and the lower flow bypass characteristics. At last, our experiment also proved that the straight fin can meet the requirement of the enhancement of forced convection heat transfer.

自然对流强化换热

自然对流强化换热 班级:14040203 姓名:吴端 学号:2011040402121

1.概述 当前,对于自然对流换热问题的研究没有强迫对流研究那样开展得广泛。一方面是由于自然对流强化效果没有强迫对流换热强化效果好;另一方面是由于自然对流强化的途径少难度大,所以自然对流的研究进展缓慢。但自然对流应用有自己的领域,强迫对流又有其制约因素,尤其是随着电子集成电路的发展,自然对流强化换热的问题越来越受到学者的关注。 利用振动强化单相流体对流换热的方法可分为两种:一种是使换热面振动以强化换热;另一种是使流体脉动或振动以强化换热。研究表明,不管是换热面振动还是流体振动,对单相流体的自然对流和强制对流换热都是有强化作用的。振动可以增大流体间的扰动,干扰附面层的形成和发展,从而减小换热热阻,达到强化换热的目的。 2.原理 利用振动可以强化传热早已为人们所认识,在1923年就有关于在静止流体中振动换热面以增强传热效果的相关研究。早期研究的主要手段为传热实验,随着数值计算方法及计算机技术的发展,自80年代人们开始对振动对流换热问题进行数值分析。研究结果表明,换热面在流体中振动时,根据振动系统的不同,自然对流换热系数可提高30%~2000%。。传热实验中,采用的振动源形式主要有以下几种: 1)机械振动或电动机驱动偏心装置产生,早期的实验均采用该方法; 2)流体绕流诱导传热元件产生,如在换热器中的管束: 3)超声波激励换热元件产生。下面分别就这三个方面分别展开综述,其中,A表示振幅,厂表示振动频率,D表示管直径,U表示来流速度,尺P表示雷诺数,h表示表面传热系数。 机械振动为传热实验中最为常用的振动源,一般情况下,机械振动装置结构简单,并且能够比较方便调节振幅、频率等参数,这对于深入研究振动参数对传热的影响具有不可替代的作用。 表1.2、1.3分别为自然对流、强制对流条件下振动传热研究概况,表中

传热学第五章答案

复习题 1、试用简明的语言说明热边界层的概念。 答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此 薄层之外,流体的温度梯度几乎为零, 固体表面附近流体温度发生剧烈变化的这一薄层称为 温度边界层或热边界层。 2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率 适用于边界层内,不适用整个流体。 3、式(5—4)与导热问题的第三类边界条件式( 2 —17)有什么区另 一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把 牛顿冷却公式应用到整个表面而得出。 4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流 体的流动起什么作用? 答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关, 流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小 5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法 求得其精确解,那么建立对流换热问题的数字描述有什么意义? 答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件 包括,(1)初始条件 (2 )边界条件 (速度、压力及温度)建立对流换热问题的数字描述 目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量, 能量和质量守恒关系,避免在研究遗漏某种物理因素。 基本概念与定性分析 5-1、对于流体外标平板的流动, 试用数量级分析的方法, 从动量方程引出边界层厚度 解:对于流体外标平板的流动,其动量方程为: 第五章 2 / 2 A / X ,因此仅 h 答: (5— 4) (丄)h(t w t f ) h (2—11) 式(5—4)中的 h 是未知量,而式(2 —17)中的h 是作为已知的边界条件给出, 此外(2 —17)中的 为固体导热系数而此式为流体导热系数,式( 5— 4)将用来导出 的如下变化关系式: x

对流传热分析

对流换热分析 通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一 步提出针对具体换热过程的强化传热措施。 1. 对流换热概述 1.1. 定义及特性 对流换热指流体与固体壁直接接触时所发生的热量传递过程。在对流换热过程中,流体内部的导热与对流同时起作用。牛顿冷却公式 q=?×(t w?t f) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。 1.2. 影响对流换热的因素 (1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。 (2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。 (3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。 (4)流体的相变:冷凝和沸腾是两种最常见的相变换热。 (5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。 综上所述,可知表面传热系数是如下参数的函数 ?=f u,t w,t f,c P,ρ,α,μ,l 这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。

1.3. 分析求解对流换热问题 分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。同时,分析求解的前提是给出正确地描述问题的数学模型。在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数 ?x=λ Δt x et ey w,x W/(m2·K) 由上式可有 ?x=λ Δθx eθ ey w,x W/(m2·K) 其中θ为过余温度,θ=t w?t f。 对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。 由于对流换热问题的分析求解常常要求解包括连续性方程、动量微分方程和能量微分方程在内的一系列方程,因此它的求解过程比导热问题要困难得多。 2. 对流换热微分方程组 2.1. 连续性方程 二维常物性不可压缩流体稳态流动连续性方程: eu ex +ev ey =0 2.2. 动量微分方程式 动量微分方程式描述流体速度场,可从分析微元体的动量守恒中建立。它又称纳斯-斯托克斯方程,简称N·S方程。 ρeu eτ+ueu ex +veu ey =X?ep ex +μ(e2u ex2 +e2u ey2 ) ρev eτ+uev ex +vev ey =Y?ep ey +μ(e2v ex2 +e2v ey2 )

强化传热技术

强化传热技术研究进展 1概述 由于生产和科学技术发展的需要,强化传热技术从上世纪80年代以来获得了广泛的重视和发展。 首先,随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。设计和制造各类高性能换热设备是经济地开发和利用能源的最重要手段,这对于动力、冶金、石油、化工、制冷及食品等工业部门有着极为重要的意义。 其次,随着航空、航天及核聚变等高顶尖技术的发展,各种设备的运行时的温度也不断升高为了保证各设备有足够长的工作寿命及在高温下安全运行,必须可靠经济的解决高温设备的冷却问题。 最后,随着计算机的迅速发展,密集布置的大功率电子元件在电子设备中的释能密度日益增加。电子元件的有效冷却,是电子设备性能和工作寿命的必要保证。 正是基于以上原因促使人们对强化换热进行了极为广泛的研究和探讨,力图从理论上解释各种强化传热技术的机理,从大量的实验资料中总结其规律性,以便在工业上加以推广应用,并发现新的更为经济实用的强化传热技术,因此近40年来在世界各国强化传热技术如雨后春笋般不断涌现出来。 20世纪80年代以来,我国经济发展迅速而能源生产的发展相对要滞后得多。面对改革开放带来的经济高速发展态势,能源供应难以满足迅速增长的需求,节能成为关系到能否可持续发展的重大问题,近年来我国也在节能领域取得了显著的成绩。1980年到2000年中国经济年平均增长9.7% 而能源消耗的年增长仅为4.6% 节能降耗年平均达5%。“九五”期间我国每万元国内生产总值GDP能耗1990年价由1995年的3.97吨标准煤下降到2000年的2.77 吨标准煤累计节约和少用能源达4.1亿吨标准煤;主要耗能产品单位能耗均有不同程度下降。按“九五”期间直接节能量计算节约的能源价值约660亿元;节约和少用能源相当于减排二氧化硫820万吨二氧化碳计1.8亿吨。当前中国在能源利用效率、能耗等方面与世界先进国家相比还存在较大差距,能源节约还有很大的潜力。 纵观强化传热技术的发展传热强化的研究自始至终有着明确的目标和广泛的应用背景表现出高速度、实用性以及不断迎接高技术发展的挑战等三个突出特点。现代科学技术的飞速发展和能源的严重短缺对传热强化不断提出新的要求,使得研究深度和广度日益扩大并向新的领域渗透和发展,甚至成为某些高新科技中的关键。随着世界能源出现短缺和人们环保意识的增强,节能已成为经济可持续发展的重大需求。我国的节能技术的应用远落后于发达国家,实用的高效强化传热技术,在工业应用中具有广阔的前景。强化传热技术在石油、化工和能源等领域的应用,将带来巨大的经济和社会效益。在未来的几十年,能源环境、微电子和生物技术等领域必将成为传热强化研究和应用的重要舞台。 2强化传热技术研究现状 Bergles在总结强化技术及其发展时,将强化换热技术划分为三代。从19世纪末开始,人们开始关注传热强化的研究,但是由于当时的工业生产水平对传热强化的要求不是很迫切,所以对于强化传热的研究基本上属于实验科学,还很不成熟,相应的传热强化技术属于第一代。从20世纪70年代石油危机开始,国际传热界加强了传热传质过程的机理研究,

增压强化烟气对流传热机理及其计算方法_雷雨

第62卷 第S1期 化 工 学 报 V ol 62 N o S1 2011年5月 CIESC Journal M ay 2011 研究论文 增压强化烟气对流传热机理及其计算方法 雷 雨,孙宝芝,李彦军,宋福元 (哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001) 摘要:增压锅炉装置因其容积热负荷高、体积小、质量轻等优点广泛应用于大中型船舶主动力装置。利用分子动力学原理及流体分子微观理论与性质,分析了增压对烟气导热与热对流的影响机理,并利用Illes 教授与前苏联的两种计算方法,分别计算了不同增压比下增压锅炉对流受热面烟气流速、密度以及传热系数等参数并进行了对比。经分析可知烟气压力的提高使分子碰撞频率增加、平均自由程减小、烟气密度增大,从而对流传热得到强化。同时计算结果表明烟气压力较低时两方法计算结果相差不大,但在压力接近0 3M Pa 时,Illes 教授推荐的热力计算方法所得传热系数可达到前苏联方法的1 3倍。关键词:增压锅炉;强化传热;对流受热面;分子动力学 中图分类号:T K 222;O 552 3+2 文献标志码:A 文章编号:0438-1157(2011)S1-140-06 Mechanism an d calculating meth ods of su percharged en hanced con vective heat transfer of flu e gas LEI Yu,SU N Baozhi,LI Yanju n,SONG Fu yu an (Co llege of Pow er and Ener gy Engineer ing ,H ar bin Engineer ing Univer sity ,H ar bin 150001,H eilongj iang ,China ) Abstract :Super charged bo iler installation is w idely applied in the main pow er plant of lar ge and medium -sized ships for its high furnace vo lum e heat release rate and small volume T he o bjective of this paper is to analyze the mechanism affected gas heat conduction and co nvection under pressure incr eased using the theory of molecular dynamics and pr operties of fluid m olecules And convection heating surface has been studied in this paper using the standard metho ds of Pr of Illes and the So viet U nio n w ith superchar ge ratio chang ed T he tw o metho ds calculation results including heat transfer coefficient,gas flow rate and gas density are compared with each other respectively It is obtained that increased frequency of molecular collisions,decreased mean free path and larger gas density caused by pressure increased make the convective heat transfer process enhanced And the calculation results demonstrate that differences betw een the two methods can be neglected under the low load how ever the heat transfer coefficient calculated w ith method recommended by Prof Illes can be 1 3times compared w ith the Soviet Union method w hen the pressure is close to 0 3MPa Key words :supercharged boiler;heat transfer improvement;convection heating surface;molecular dy nam ics 2011-04-27收到初稿,2011-05-05收到修改稿。 联系人:孙宝芝。第一作者:雷雨(1987 ),男,硕士研究生。 基金项目:中国博士后科学基金面上资助(20100471017);黑龙江省博士后科学基金(LBH -Z09233)。 引 言 增压锅炉装置利用锅炉排烟驱动烟气轮机,带 动压气机压缩空气供给炉膛燃烧,从而提高了燃料燃烧和传热的强度。与常压锅炉相比,增压锅炉具 Received date :2011-04-27 Correspon ding author :Prof S UN Baozhi,sun baoz hi@163 com Foun dation item :supported by the Ch ina Postdoctoral Science Foundation (20100471017)and H eilongjian g Postdoctor al Science Foundation (LBH -Z09233) 有容积热负荷大、体积小、质量轻、运行可靠稳定

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

管内对流换热影响因素及其强化分析

管内对流换热影响因素及其强化分析 摘要: 从影响管内对流换热的因素出发,对近年来国内外学者的研究成果进行了综合分析,包括管内流体流动状态、表面形状、物性、脉动等对管内对流换热的影响。介绍了利用缩放管、金属泡沫管、纳米流体、高压电场等强化换热的方法。对中高温太阳能热利用系统中大温差管内对流换热的应用及其强化方法进行了展望。 关键词:管内;对流;换热;强化换热 Influencing Factors and Enhancing Methods of Convective Heat Transfer in Tubes Lei Changkui Safety Engineering Class 1002 1003070210 Abstract: Some factors were summarized systematically according to the research in China and abroad in recent years, including convection flow state,phase-transformation,geometric factors, fluid pulse, fluid physical properties and viscosities. At the same time,some methods of enhancing heat transfer in tubes were also summarized,such as additives,electro-hydro-dynamical,metal foam filled pipes etc.Finally,the characteristics and the method of heat transfer enhancement were analyzed in high-medium temperature solar power systems. Key Words: tube,convection,heat transfer,heat transfer enhancing 0 引言 管内对流换热过程广泛存在于化工、动力、制冷及太阳能热利用等工程技术领域的各种热交换设备中,是一个传热温差和流体流动阻力并存且相互影响的复杂传热过程。近年来,随着市场经济的发展,热交换设备迫切需要符合节约能源、节省材料和降低成本的要求,这对强化设备的换热提出了更高的要求。众所周知,热量传递方式有热传导、热对流以及热辐射三种,因此强化传热的方法也势必从这三个方面来进行。作为热交换器中管内热流体的主要传热方式,管内对流换热的强化在热交换器强化换热研究中占有极其重要的地位。本文从理论及已有实验的角度对管内对流换热的影响因素及其强化换热的方法进行分析,以期对太阳能中高温热利用中大温差管内对流强化换热的研究提供指导和借鉴。 1 管内对流换热的理论分析 1.1 边界层理论 边界层是由于流体的黏滞性,在紧靠其边界壁面附近,流速较势流流速急剧减小,形成的流速梯度很大的薄层流体,又称为流动边界层[1]。1940年德国普朗特提出著名的边界层概念后,经过发展,流体力学的研究已经证明,黏性流体存在着两种不同的流态: 层流(Re<2

电机换热系数的确定

划片机气静压电主轴的冷却与热传递研究 王明权,孔德生 (中国电子科技集团公司第四十五研究所,北京东燕效101601) 1 引言 信息产业是现代经济的先导产业。而以集成电路为核心的电子元器件是信息产业的基础;划片机是集成电路产业中分割IC晶片(wafer)电路单元(die)的精密切割设备;是电子元器件微型化的瓶颈。划片机的切割机理是强力磨削,气静压电主轴正是带动金刚石外圆刀具高速旋转(3 000~60 000 r/min)切割(强力磨削)晶片的部件,其热态特性、刚性、轴线旋转精度等动静态特性决定着电子元器件的品质。 气静压电主轴的径向、轴向跳动均小于3μm,而在实际工作中发现,由于主轴发热造成的热变形量可大于10μm,热变形是影响主轴精度的最主要因素。因此,研究主轴的冷却情况,并采取适当的措施恒定主轴的散热系数,减小由主轴热变形造成的加工误差,是划片机研究的重要内容。 2 气静压电主轴的冷却 划片机气静压电主轴的冷却系统如图1所示。电主轴冷却主要通过3种方式实现:一是主轴电机冷却水流过电机定子冷却套对主轴电机强制冷却;二是切割冷却水在流经主轴和冲洗刀具时带走热量;三是空气轴承排气时的散热。 值得注意的是,流入电机定子冷却套的冷却水和流出电机定子冷却套的冷却水温度并非越低越好。这是因为内置电动机的转子无法用冷却水冷却,总有一定的温升,故希望定子温升值与转子温升值尽量接近。 划片机工作时,气静压电主轴由于内置电机的功率损耗发热及空气轴承气膜的剪切摩擦发热,主轴的温度总是比环境温度高。热量总是从高温处向低温处传递,这就是传热。传热有热传导、对流和辐射3种基本的方式,在这3种基本的传热方式的作用下电主轴与周围环境进行热交换。转子产生的热量一部分通过导热直接传递给主轴和空气轴承,另一部分通过对流及辐射传递给定子;定子产生的热量一部分通过流经定子冷却套的主轴电机冷却水进行热对流,另一部分通过对流和辐射传递给定子周围的空气;空气轴承气膜的剪切摩擦产生的热量,一部分通过压缩空气进行对流换热,另一部分传递给主轴外壳。电主轴的各外表

传热课后问答题答案

绪论 1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的? 答:冰雹融化所需热量主要由三种途径得到: a 、地面向冰雹导热所得热量; b 、冰雹与周围的空气对流换热所得到的热量; c 、冰雹周围的物体对冰雹辐射所得的热量。 2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的? 答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。 3.现在冬季室内供暖可以采用多种方法。就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。 答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体 电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体 红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体 电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体 冷暖两用空调机(供热时):加热风对流换热和辐射人体

太阳照射:阳光辐射人体 4.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式? 答:加热:用炭火对锅进行加热——辐射换热 冷却:烙铁在水中冷却——对流换热和辐射换热 凝固:冬天湖水结冰——对流换热和辐射换热 沸腾:水在容器中沸腾——对流换热和辐射换热 升华:结冰的衣物变干——对流换热和辐射换热 冷凝:制冷剂在冷凝器中冷凝——对流换热和导热 融熔:冰在空气中熔化——对流换热和辐射换热 5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在? 答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。挂上窗帘布后,辐射减弱,所以感觉暖和。 6.“热对流”和“对流换热”是否同一现象?试以实例说明。对流换热是否为基本传热方式? 答:热对流和对流换热不是同一现象。流体与固体壁直接接触时的换热过程为对流换热,两种温度不同的流体相混合的换热过程为热对

对流换热系数的测定方法

对流换热系数的测定方法 实验传热学 对流换热系数测定方法总结 对流换热系数测定方法总结 目录 一、前言...................................................................... ...................................... 2 二、管内对流换热系数的瞬态测量法 ........................................................... 3 三、窄环隙流道强迫对流换热实 验 (4) 四、双侧加热窄环隙流道强迫对流换热实 验 (5) 五、无相变流体在内斜齿螺旋槽管内强化对流换热实 验 (6) 六、基于集总参数法的瞬态对流换热系数测 定 (8) 七、总结...................................................................... .................................... 10 八、参考文 献 ..................................................................... .. (11) 1

一、前言 工程上把流体流过一个物体表面时流体与物体表面间的热量传递过程称为对流传热。对流传热的基本计算式是牛顿冷却公式,及分别为q,h(t,t)ttwwff 2壁面温度和流体温度,即为表面传热系数,单位是。表面传热系数W/(m,K)h 的大小与对流换热过程中的许多因素有关。它不仅取决于流体的物性以及换热表面的形状、大小与布置,而且还与流速有密切的关系。牛顿冷却公式并不是揭示影响表面传热系数的种种复杂因素的具体关系式,而仅仅给出了表面传热系数的定义。 确定对流换热系数h有两条途径:一是理论解法;一是实验解法。理论解法是在所建立的边界层对流传热微分方程的基础上,通过教学分析解法、积分近似解法、数值解法和比拟解法求得对流传热系数h的表达式或数值。实验解法是通过对边界层对流传热微分方程组无量纲化或对影响对流传热系数h的主要因素进行量纲分析,得出有关的相似特征数,在相似原理的指导下建立实验台和整理实验数据,求得各特征数之间的相互关系,再将函数关系推广到与实验现象相似的现象中去。这种在理论指导下的实验研究方法,是研究对流传热问题最早的一种方法,也是研究对流传热问题的一种主要和可靠的方法,由实验解法得到的实验关联式是传热计算,尤其是工程上传热计算普遍使用的计算公式。 对流换热系数h是求解伴有表面对流换热的热传导问题的重要参数之一。实验方法中直接测定对流换热系数的方法分为稳态法与瞬态法。稳态法对实验条件要求苛刻,实验周期长,误差大;瞬态法由于实验周期短,误差小,近年来被广泛运用于对流换热系数测量实验。通常所说的瞬态法是通过瞬时提高来流温度或者壁面温度来达到温度阶跃,测量窄幅热色液晶显色时间,通过求解一维半无限大平板非稳态导热方程得到测量表面的对流换热系数。实验中要达到温度的阶跃通常不容易实现,只能是近似阶跃,需要进行逐级阶跃或者指数函数进行修正。这种处理方式可

相关文档