文档库 最新最全的文档下载
当前位置:文档库 › 第二节 方程组解的讨论

第二节 方程组解的讨论

第二节  方程组解的讨论
第二节  方程组解的讨论

第二节 方程组解的讨论

一.基础概念:

1.含参方程的解法;

2.含参数方程组解的讨论:

二元一次方程组111222

a x

b y

c a x b y c +=??+=?的解的情况有以下三种: ①当2

12121c c b b a a ==时,方程组有无数多解;(∵两个方程等效) ②当

111222a b c a b c =≠时,方程组无解;(∵两个方程是矛盾的) ③当1122a b a b ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解:122112212112

1221c b c b x a b a b c a c a y a b a b -?=?-??-?=?-?

(这个解可用加减消元法求得).

二.例题:

例1:关于x 、y 的方程组3921ax y x y +=??

-=?

无解,则a 的值为 .

例2:选择一组a,c 值使方程组572x y ax y c +=??+=? (1)有无数多解;(2)无解;(3)有唯一的解.

例3:关于x 、y 的二元方程组334

x ay b x y -=??

+=?,讨论方程解的情况.

例4:若关于x 的方程m(x-1)=2001-n(x-2)有无数个解,则m 2003+n 2003= .

例5:a 取什么值时,方程组5331x y a x y +=??

+=? 的解是正数?

例6:已知m 是整数,方程组436626

x y x my -=??

+=?有整数解,求m 的值.

三.课堂练习:

1.不解方程组,判定下列方程组解的情况:

① 23369x y x y -=??

-=? ②23423x y x y -=??-=? ③351351x y x y +=??-=?

2.k 、b 为何值时,方程组(31)2y kx b y k x =+??=-+? , (1)有惟一一组解;(2)无解;(3)有无穷多组解?

3.已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a-b)x-(a+b)y =a+b 有一组公共解,求这个方程的公共解.

4.a 取什么值时方程组223196922

x y a a x y a a ?+=+-??-=-+??的解是正数?

5.a 取哪些正整数值,方程组25342x y a x y a +=-??

-=?

的解x 和y 都是正整数?

6.要使方程组21x ky k x y +=??

-=?的解都是整数, k 应取哪些整数值?

7.m 为正整数,二元一次方程组210320mx y x y +=??-=?有整数解,即x 、y 均为整数,则m 2= .

8.m 取何整数值时,方程组2441x my x y +=??+=?的解x 和y 都是整数?

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

《解二元一次方程组》教案(例题+练习+答案)

二元一次方程组的解法 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做 二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个方程是为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 2(1)3x y y z +=?? +=?, 5(2)6 x y xy +=?? =?,7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211321 m n -=??-=?1 (2)2 a x a y -+-=

二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 练一练:1、若 =-?? =? x 1 y 2是关于 x 、y 的方程 5x +ay = 1 的解,则a=( ). 2、方程组 +=?? -= ?y z 180y z ()的解是 =??=?y 100 z (). 3、若关于x 、y 的二元一次方程组––=?? + =?4x 3y 1 kx k 1y 3()的解x 与 y 的值相等,则k =( ). 3、用一个未知数表示另一个未知数 想一想:(1)24x y ,所以________x ; (2)345x y ,所以________x ,________y ; (3) 2y x =,所以x = ,________y . 总结出用一个未知数表示另一个未知数的方法步骤: ①被表示的未知数放在等式的左边,其他的放在等式的右边. ②把被表示的未知数的系数化为1. 4.二元一次方程的解法 (1)用代入法解二元一次方程组 将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数; ②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值; ④把这个未知数的值代入一次式,求出另一个未知数的值; ⑤检验,并写出方程组的解.

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

解二元一次方程组计算题

解二元一次方程组计算题 解二元一次方程组计算题 1. 3x+y=34 2x+9y=81 2..3.. 4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33..

x+8y=15 34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=7 3x-2y=7 50. 51. 3x+6y=18 3x+y=7 2x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=11 2x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6 x+y=5 55.8x+2y=16 9x-3y=12 3x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3

解二元一次方程组计算题

解二元一次方程组计算题1. 3x+y=34 2x+9y=81 2..3..4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33.. x+8y=15

34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=73x-2y=7 50. 51. 3x+6y=18 3x+y=72x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=112x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6x+y=5 55.8x+2y=16 9x-3y=123x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3 70. 4x+9y=77 8x+6y=94 71. 4x+7y=3 x+y=0 72. 3x+y=10 7x-y=20 73. 44x+10y=27 x+y=1 74. 8x-y=0

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解二元一次方程组计算题

解二元一次方程组计算题 1. 3x+y=34 2x+9y=81 2..3.. 4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33..

x+8y=15 34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=7 3x-2y=7 50. 51. 3x+6y=18 3x+y=7 2x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=11 2x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6 x+y=5 55.8x+2y=16 9x-3y=12 3x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

8-2解二元一次方程组加减法练习题(及答案)

8.2 解二元一次方程组(加减法)(二)一、基础过关 1.用加、减法解方程组 436, 43 2. x y x y += ? ? -= ? ,若先求x的值,应先将两个方程组相_______;若 先求y的值,应先将两个方程组相________. 2.解方程组 231, 367. x y x y += ? ? -= ? 用加减法消去y,需要() A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是() A.266 B.288 C.-288 D.-124 4.已知x、y满足方程组 259, 2717 x y x y -+= ? ? -+= ? ,则x:y的值是() A.11:9 B.12:7 C.11:8 D.-11:8 5.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为() A. 2, 2 x y = ? ? =- ? B. 2, 2 x y =- ? ? = ? C. 1 , 2 1 2 x y ? = ?? ? ?=- ?? D. 1 , 2 1 2 x y ? =- ?? ? ?= ?? 6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-1 7.若2 3 x5m+2n+2y3与- 3 4 x6y3m-2n-1的和是单项式,则m=_______,n=________. 8.用加减法解下列方程组: (1) 3216, 31; m n m n += ? ? -= ? (2) 234, 443; x y x y += ? ? -= ? (3) 523, 611; x y x y -= ? ? += ? (4) 35 7, 23 423 2. 35 x y x y ++ ? += ?? ? -- ?+= ??

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

解二元一次方程组练习题(经典)

| 解二元一次方程组练习题1.(2013?梅州)解方程组. 2.(2013?淄博)解方程组. 【 3.(2013?邵阳)解方程组:. 4.(2013?遵义)解方程组. : 5.(2013?湘西州)解方程组:. 6.(2013?荆州)用代入消元法解方程组 . 】 7.(2013?汕头)解方程组.

8.(2012?湖州)解方程组. ! 9.(2012?广州)解方程组. 10.(2012?常德)解方程组: — 11.(2012?南京)解方程组. 12.(2012?厦门)解方程组:. 、 13.(2011?永州)解方程组:. 14.(2011?怀化)解方程组:. —

16.(2010?南京)解方程组:. · 17.(2010?丽水)解方程组: 18.(2010?广州)解方程组:. … 19.(2009?巴中)解方程组:. 20.(2008?天津)解方程组: ! 21.(2008?宿迁)解方程组:. 22.(2011?桂林)解二元一次方程组:.<

23.(2007?郴州)解方程组: 24.(2007?常德)解方程组:. ~ 25.(2005?宁德)解方程组: ` 26.(2011?岳阳)解方程组:. 27.(2005?苏州)解方程组:. ? 28.(2005?江西)解方程组: ,

29.(2013?自贡模拟)解二元一次方程组:. — 30.(2013?黄冈)解方程组:.

解二元一次方程组练习题 参考答案与试题解析 一.解答题(共30小题) 1.(2013?梅州)解方程组. - 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答:> 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. ? 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:^ 先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:. 点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组的公共解

线性方程组的公共解 问题:如何求解线性方程组的公共解? 线性方程组是高代学习的一个重点内容,它的一般形式为 ???????=+++=+++=+++bs asnxn x as x as b nxn a x a x a b nxn a x a x a ...2211... ,22...222121,11...212111 而线性方程组的求解也是这部分学习的重点和难点。其中求解线性方程组的公共解也是高等代数学习所必须掌握的一个知识点。 例1、证明:对于n 元齐次线性方程组(Ⅰ)AX=0与(Ⅱ)BX=0,有非零公共解的充要条件是r(B A )

???=-=+0 42031x x x x 又已知某齐次线性方程组(Ⅱ)的通解为 k1(0,1,1,0)’+k2(-1,2,2,1)’ 问(Ⅰ)与(Ⅱ)是否有非零公共解?若有,则求出所有公共解,若没有,则说明理由。(出自2005年中科院) 解:方法一:将(Ⅱ)的通解代入方程组(Ⅰ)得 ???=+=+0 21021k k k k 解得k1=-k2,故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法二:令方程组(Ⅰ)与(Ⅱ)的通解相同,即 k1(0,1,1,0)’+k2(-1,2,2,1)’=k3(-1,0,1,0)’+k4(0,1,0,1)’ 得到关于k1,k2,k3,k4的一个方程组 ???????=-=-+=-+=-0 420 422103221032k k k k k k k k k k 可求其通解为(k1,k2,k3,k4)’=k(-1,1,1,1)’ 将k1=-1,k2=k 代入(Ⅰ)的通解可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法三:方程组(Ⅱ)可以是 ? ??=+=+-041032x x x x 解(Ⅰ)与(Ⅱ)的联立方程组可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 韩梦雪 20132113429

本章介绍了线性方程组有解的充要条件和求解的方法

本章介绍了线性方程组有解的充要条件和求解的方法;为了在理论上深入的研究与此有关的问题,本章还引入了向量和向量空间的基本概念,介绍了向量的线性运算,讨论向量间的线性关系,向量的内积等有关概念和性质,并在此基础上,研究线性方程组解的性质和解的结构等问题。 一、一、线性方程组 1、Cramer法则 教材p64,定理2.1 2、线性方程组有解的判别定理 教材p72,定理2.3 3、线性方程组的消元解法 步骤:(1)对线性方程组的增广矩阵施以初等行变换,将其化为阶梯型矩阵 (2)如果系数矩阵的秩与增广矩阵的秩不相等,表明方程组无解; 如果相等,则表明有解,继续对阶梯型矩阵进行初等行变换,求出 方程的解。【详见p68】 初等行变换: (1)(1)交换两方程的位置; (2)(2)用一个非零数乘某一方程; (3)(3)把一方程的若干倍加到另一方程去 4、消元法与Cramer法则的异同:在条件的限制上,Cramer法则仅适用于 方程数与未知数相等并且系数行列式不为零的情况,而消元法对此没有限制。即便是满足Cramer法则的要求,用消元法可以区分方程组无解还是有无穷多解,而Cremer法则却不能区分 二、二、向量及向量间的线性关系 (一)向量的定义 1、向量、行向量、列向量【教材p77,定义2.1】 2、零向量【教材p78,定义2.2】 3、向量的相等【教材p78,定义2.3】 4、向量的加法、减法【教材p78,定义2.3】 5、数乘向量【教材p78,定义2.5】

6、n维向量空间【教材p78,定义2.6】 7、n维向量空间的子空间【教材p78,定义2.7】 (二)向量间的线性关系 1、线性组合 (1)一个向量可表为一个向量组的线性组合,或称此向量可由此向量组线性表出【教材p80,定义2.8 (2)一个向量可表为一向量组的线性组合的充要条件:由它们做系数及常数项组成的线性方程组有解【教材p81】 (3)几个结论 a、n维零向量是任一n维向量组的线性组合 b、任一n维向量可由n 维基本单位向量组线性表示 c、向量组中的任一向量可由此向量组线性表示 2、向量组的线性相关与线性无关 (1)向量组的线性相关与线性无关的定义【教材p82:定义2.9,2.10】 (2)几个充要条件 Ⅰ向量组线性相关的充要条件由它们做系数组成的齐次线性方程组有非零解【教材p83】 Ⅱ向量组线性无关的充要条件由它们做系数组成的齐次线性方程组仅有零解【教材p83】 Ⅲ一个向量组线性相关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式等于零【教材p83】 Ⅳ一个向量组线性无关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式不等于零【教材p83】: Ⅴ一个向量组线性相关的充要条件是此向量组中至少有一个向量可以表为其余向量的线性组合【教材p85:定理2.6】 Ⅵ一个向量组线性无关的充要条件是此向量组中每一个向量都不能表为其余向量的线性组合【教材p86:定理2.6 的推论】 Ⅶ若一向量可由一向量组线性表出,则表示法唯一的充要条件是此向量组线性无关 三、向量组

解二元一次方程组计算题

3x+y=34 2. 9x+4y=35 8x+3y=30 3. jx+2y=52 7x+4y=62 4. fx+6y=54 9x+2y=87 5. 2x+y=7 “ 2x+5y=19 6. *+2y=21 3x+5y=56 7. #x+7y=52 5x+2y=22

7x+7y=203 9. 8x+4y=56 x+4y=21 10. px+7y=41 5x+8y=44 11. /x+5y=54 3x+4y=38 F 12. j+8y=15 | 4x+y=29 13. px+6y=24 9x+5y=46 14. px+2y=62 “ 4x+3y=36 15. px+4y=46 1 7x+4y=42

4x+y=41 17. 3x+8y=51 x+6y=27 18. Bx+3y=99 4x+7y=95 19. fx+2y=38 3x+6y=18 20. px+5y=45 7x+9y=69 21. 审x+2y=28 7x+8y=62 b 22. x+6y=14 3x+3y=27 t

2x+8y=26 24. J5x+4y=52 7x+6y=74 25. 7x+y=9 4x+6y=16 26. px+6y=48 k6x+3y=42

7x+y=11 lr 28. fix+9y=77 "8x+6y=94 29. px+8y=68 7x+6y=66 =22 y=47 30. 31. *5x+3y=8 I3x+5y=8 32. Jx-7y=5 》x+2y=4 33. fl0x-8y=14 x+y=5 34. fx+7y=3 x+y=0

7x-y=20 36. #4x+10y=27 x+y=1 37. 8x-y=0 x+y=18 38. jlx-y=12 11y-x=-12 39. px+6y=27 ” 2x+3y=12 t 40. 7$-2y=4 x+2y=12 41. (2x+y)-5y=2 2x-5y=0 42. j7x-3y=3 3x+2y=21

相关文档
相关文档 最新文档