文档库 最新最全的文档下载
当前位置:文档库 › 线性代数(本)习题册行列式-习题详解(修改)(加批注)

线性代数(本)习题册行列式-习题详解(修改)(加批注)

线性代数(本)习题册行列式-习题详解(修改)(加批注)
线性代数(本)习题册行列式-习题详解(修改)(加批注)

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 1 页 共 18 页

行列式的概念

一、选择题

1. 下列选项中错误的是( ) (A)

b

a d c d

c b a -

= ; (B)

a

c

b d d

c b a =

(C)

d

c b a d

c

d b c a =

++33; (D)

d

c b a d

c b a -----

=.

答案:D

2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ).

(A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C

二、填空题

1.

a

b b a log 1

1

log = .

解析:

0111log log log 1

1log =-=-=a

b a

b

b a b

a . 2.

6

cos

3sin

6sin

3

cos

π

π

ππ

= . 解析:

02cos 6sin 3sin 6cos 3cos 6

cos 3

sin

6sin

3

cos

==-=πππππππ

π

π

3.函数x x x

x

x f 1213

1

2)(-=中,3x 的系数为 ; x

x x

x x x g 2

1

1

12)(---=中,3x 的系数为 . 答案:-2;-2.

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 2 页 共 18 页

阶行列式n D 中的n 最小值是 . 答案:1.

5. 三阶行列式11342

3

2

1-中第2行第1列元素的代数余子式

等于 . 答案:5.

6.若

02

1

8

2=x

,则x = . 答案:2. 7.在

n

阶行列式ij

a D =中,当i

),,2,1,(0n j i a ij L ==,则D = .

答案:nn a a a Λ2211.

8.设a ,b 为实数,则当a = ,b = 时,

01

0100=---a

b b a .

解析:0)()1

(1

010022=+-=--=---b a a

b b

a a

b

b a

故0,0==b a .

三、解答题

1.用行列式的定义计算.

(1)

1

100001001011

010;

解:原式=1

000101

01)1(1010000011)

1(1412

1++-?+-?

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 3 页 共 18 页

11

0010

100-=-

-

=

(2)

000000h

g

f e d c b a

.

原式=0

000

0g

f e d b h

f e d

c a - =0

0000

g f bd h

f d

f e c a +???

? ?

?-

=bdfg adfh -

2. 设行列式λλλ

01010101-=D , 3

512321

132=D ,若21D D =,求λ的值.

解:由对角线法则,得()()0,1122

1=-+=D D λλ

若21D D =,则()()0112

=-+λλ

于是1-=λ或1.

四、证明题

1.(略)

行列式的性质

一、选择题

1.设行列式x x x

D 01

010

1

1-=, 1

133512

322=D ,若21D D =,

则x 的取值为 ( ).

(A)2,-1; (B)1,-1; (C)0,2; (D)0,1.

答案:B

2.若333

32

31

232221

13

1211

==a a a a a a a a a D ,

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 4 页 共 18 页

则33

32

3331

23222321

13

121311

1525252a a a a a a a a a a a a D +++==( ). (A)30; (B) -30; (C)6; (D)-6. 答案:C

二、填空题

1.若三阶行列式D 的第一行元素分别是1,2,0,第三行元素的余子式分别是8,x ,19,则x = . 解析:1820190,4x x ?-+?==. 2.

2016

201420182016 = .

解析:

42

0222016

20142

22016

201420182016==

=

.

3.行列式c

b d

c a b

c

b a

D =,则312111A A A ++= . 解析:312111A A A ++0111==c

b c a

c

b .

4.行列式x

x x x

x D 3121

3

2

31232

154-=

的展开式中,4

x 的系数

为 ;3

x 的系数为 .

解析:x

x

x x x x x x x

x D 3121

3

1

23232153121

3

2

31232

154--

=-=

x

x x x 312

1

312512585

103215---

= 含4

x ,3

x 的项仅有主对角线上元素之积项,故4

x ,3

x 的

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 5 页 共 18 页

系数分别为15,-3.

三、解答题

1.计算下列行列式 .

(1)

3

214214314324

321;

解:各行加到第一行,得

原式=

321421431432111110

3

2142143143210

101010=

=1604

004

001210111110

1

230121

12

10111110

=---=------.

(2)4

4

4

4

33332222

5432154321543215432111111;

解:原式=(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.

(3)

4936251636

25169

25

169

416

941;

原式=

022

22222297531694113

1197119

7

5975316941==

.

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 6 页 共 18 页

(4)

000000

x

y

y x y x x y ;

原式=x

y x y

x x x

y

y y x

y 000

00

00

0-- =2

22

2

2

)(y x x

y

y x x

x

y

y x y

--=-.

(5)xy z zx y

yz

x

11

1; 原式=)

(0

)(0

1

x z y x z x y z x y yz

x

------ =))()((11)

)((x z z y y x y

z x z x y ---=---.

(6)2

00

01200000

0130012000101--;

原式=3

1012

010140

1

312010142

000130120010

12

---=--=--

=203

1124

=---. (7)

4

32

1111

1

11111

1

111111x x x x ++++;

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 7 页 共 18 页

解:原式=

4

321111

1

0010011x x x x x x x ---+

=

4

3211141

312110

0000001x x x x x x x x x x x x x ---+++

+ =

3214214314324321x x x x x x x x x x x x x x x x ++++.

2.设4

32

2

321143113

151-=

D ,计算44434241A A A A +++的值.

其中)4,3,2,1(4=j A j 是D 的代数余子式.

解:44434241A A A A +++61

11

1321143113

151=-=

.

3. 已知1

142

1

1

3

110111253------=

D ,求

41312111M M M M +++.

解:41312111M M M M +++

=41312111)1(1)1(1M M M M --?+--?

=

1

1411

1

3

1

10111251-------=0.

4.计算下列n 阶行列式.

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 8 页 共 18 页

(1)

2

111

21112Λ

M

M M ΛΛ

; 解:原式=

2111

21111Λ

M M M

ΛΛ

+++n n n =2

111

21111)1(Λ

M

M

M ΛΛ+n =11

00010111)

1(+=+n n Λ

M

M M ΛΛ

. (2)x

y y

y

y x y y

y y x y

y y y x Λ

M M M M ΛΛΛ ; 解:原式=[]x y y y y x y y

y y x y

y n x Λ

M M M M ΛΛΛ1111)1(-+ =[]y

x y x y x y n x ----+Λ

M M M M

Λ

Λ

Λ0

00

0001111

)1(

=[]1

)

()1(---+n y x y n x .

(3)),,2,1,0(0

1

001

11110

21

n i x x x x i n

ΛΛ

M M M M ΛΛ

Λ=≠.

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 9 页 共 18 页

解:原式=

n

n

i i

x x x x Λ

M M M M ΛΛΛ00

00000011101211∑

=- =)1

(121∑=-n

i i

n x x x x Λ.

四、证明题

1.设a ,b ,c 是互异的实数,证明01

11

3

3

3

=c b a c b a

的充分必要条件是a+b+c=0.

证明:3

33

3

3

3

3

3

001111

a c a

b a

a c a

b a

c

b

a

c b a

----=

=

3

33

3a c a b a c a b ----

=2

22

211)

)((a ac c a ab b a c a b ++++--

=))()((2

2

ab ac b c a c a b -+--- =))()()((c b a b c a c a b ++---=0,

由于a ,b ,c 是互异的实数,故要上式成立,当且仅当a+b+c=0.

2.证明4+2324323631063a b c d a a b a b c a b c d

a a a

b a b

c a b c

d a a b a b c a b c d +++++=++++++++++++

证明:左边43

32

21

02320

363a b c d r r a a b a b c

r r a a b a b c r r a a b a b c

-+++-+++-+++

4332100

020

03a b c d r r a a b a b c

a a

b r r a a b

-++++-+4

43

00020

00a b c d a a b a b c

r r a a a b a

+++-=+

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 10 页 共 18 页

=右边

克莱姆法则

一、选择题

1.方程组???

??=++=++=++1

,1,1321

321321x x x x x x x x x λλλ

, 有唯一解,则( ).

(A)1-≠λ且2-≠λ; (B) 1≠λ且2-≠λ;

(C) 1≠λ且2≠λ; (D) 1-≠λ且2≠λ.

解析:由克莱姆法则,当0)1)(2(1111

1

12

≠-+=λλλ

λ

λ

,即

1≠λ且2-≠λ,选B.

2.当≠a ( )时,方程组??

?

??=+-=++=+02,02,0z y ax z ax x z ax 只有零解.

(A) -1 ;(B) 0 ;(C) -2 ;(D) 2. 解析:由克莱姆法则,

当0)2(21

20

121

001

21210≠-=--=-a a

a

a a

a

即2≠a ,选D.

三、解答题

1.用克莱姆法则下列解方程组.

(1)??

?

??=+-=+-=-+;32,322,22z y x z y x z y x

解: 031

12221

1

21

≠=---=D , 由克莱姆法则知,此方程组有唯一解,

31

1

3

22

31

221=---=D ,

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 11 页 共 18 页

61

3

223

11212=-=D ,93

323312213==D ,

因此方程组的解为

11==D D x ,22==D D

y ,33==D

D z .

(2)..2

3342,223,3232,124321432143214321???????=-++=+++=+-+=-++x x x x x x x x x x x x x x x x

解:043

3

4

212312132112

1≠=---=

D

由克莱姆法则知,此方程组有唯一解,

833

4

21232213311211=---=

D , 23

322122121

3211112-=---=

D ,

23

2421

2

31233211213=--=

D ,2234

222313

13211214=-=D . 因此方程组的解为

211==

D D x ,2122-==D D x ,2133==D D x ,2

1

44==D D x . 2.判断线性方程组???

??=-+=+-=-+0

285,042,

022321

321321x x x x x x x x x 是否有非零解

解:因为系数行列式2

85

122

42

12

8

5

421

122

----=---=D

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 12 页 共 18 页

=0305

00

960

4

2

122

18

960

42

1≠-=--=----, 所以,方程组只有零解.

3.已知齐次线性方程组???

??=+-=++=-+0

2,0,0321

321321x x x x x kx x kx x 有非零解,求k 的值.

解:因为齐次线性方程组有非零解,所以该方程组的系数行列式

必为零,即

3

210110

1

11

1

211

112

k k k

k k

k --+--=--

=)21)(1()1(32

k k k +++- =0)4)(1(=-+k k 解得,k =-1或k =4.

4.当μ取何值时,齐次线性方程组???

??=--+-=-+-=-++0

)1(02)3(0)1(42321

321321x x x x x x x x x μμμ有非

零解

解:由齐次线性方程组有非零解的条件可知,

01

11

213

1

42=------μ

μμ,解得3,2,0=μ.

第一章综合练习

一、判断题

1. n 阶行列式n D 中的n 最小为

2.( ╳ )

2. 在n 阶行列式ij a D =中元素),2,1,(L =j i a ij 均为整数,则D 必为整数.( √ )

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 13 页 共 18 页

3.

413223144433221144

41

3332232214110

000000a a a a a a a a a a a a a a a a -=.( ╳

)

二、选择题

1.若1

1

131--+=

x x x D ,2

1

1122-+=

x x D ,则1D 与2D 的大

小关系是( ).

(A)21D D <; (B)21D D >;(C)21D D =;(D)随x 值变化而变化.

答案:C 2.行列式

{})2,1,1,,,(-∈d c b a d

c b a 的所有可能值中,

最大的是( ).

(A) 0; (B)2; (C)4; (D)6.

答案:D

三、填空题

1.

?

???40cos 20sin 40sin 20cos = .

解析:

??-??=?

???40sin 20sin 40cos 20cos 40cos 20sin 40sin 20cos

2

160cos =

?=. 2.若y y x x y x -=

-1

12

2,则x+y = . 解析:由y y x x y x -=-1

122,得xy y x 22

2-=+ 即0)(2

=+y x ,从而x+y =0.

3.已知

111,

01

12==y

x x ,则y = . 解析:由11

1,

01

12==y

x

x ,得x =2,x-y =1,从而y =1

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 14 页 共 18 页

4. 若222222222

6

4

2

5

31

C c B b A a c b a ++=,则2C 化简后的结果等于 . 解析:24

2312=-

=C .

5.设x

x

x x x

x f 1

11

12

3111212)(-=

,则4

x 的系数为 ;3

x 的

系数为 .

解析:当f (x )的主对角线的4个元素相乘才能得出4

x ,系数为2;含3

x 的项只能是44332112,,,a a a a 的乘积,系数为-1. 答案:2,-1.

6.设0

123411222641232

21115

4321=D ,

则(1)333231A A A ++= ; (2)3534A A + ; (3)5554535251A A A A A ++++ . 解析:0)(23534333231=++++A A A A A 0)()(23534333231=++++A A A A A

于是0333231=++A A A ,03534=+A A .

5554535251A A A A A ++++1

111111222641232

21115

4321=

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 15 页 共 18 页

01

111133333641232

211154321==. 即0555*******=++++A A A A A .

四、解答题

1.计算下列行列式.

(1)

4

43

42

41

4433323134

23222124131211

1y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++;

解:原式=

1

41

31

21

41413121

31

413121

21413121

1y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x ---+---+---+---+

=

00

000000001

413121

41

31

211=------+x x x x x x y y y y y y y x .

(2)432

11111

11111

1

111111x x x x ++++;

解:原式=

4

321111

1

0010011x x x x x x x ---+

=4

3211141

312110

0000001x x x x x x x x x x x x x ---+++

+ =3214214314324321x x x x x x x x x x x x x x x x ++++.

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 16 页 共 18 页

(3)

2007

000

0020060002005000200

01000Λ

ΛΛM

M M M M ΛΛ. 解:原式=!2006)1(20072

2005

2006?-?=!2007-

2.已知1

23452

2211

273

12451112243150

D ==, 求(1)434241A A A ++;(2)4544A A +. 解:27)(21114544434241=++?+?+?A A A A A

0)()(24544434241=++++A A A A A

得9434241-=++A A A ,184544=+A A . 3.计算下列n 阶行列式.

(1)n

n n n n n n D Λ

M M M Λ

ΛΛ22

2

333222111=; 解:(利用范德蒙行列式计算)

1

1221333

21

111!--==n n n T

n n n n n D D Λ

M M

M

Λ

ΛΛ [])1()2()24)(23)(1()13)(12(!--------=n n n n n ΛΛΛ

!2)!2()!1(!Λ--=n n n .

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 17 页 共 18 页

(2)

2

111

21112Λ

M

M M ΛΛ

; 解:原式=

2111

21111Λ

M M M

ΛΛ

+++n n n =2

111

21111)1(Λ

M

M

M Λ

Λ

+n =1100010111)

1(+=+n n Λ

M

M M ΛΛ

.

(3)m

x x x x m x x x x m

x D n n n n ---=

Λ

M M M Λ

Λ

2

1

2121

解:将第2列,L ,第n 列分别加到第一列,并提取第一列的

公因子,得

m x x m

x x x x m x m x x x x x m x x x D n n n n n n n --+++--+++-+++=

Λ

ΛM M M

Λ

ΛΛ

Λ221221221

m

x x x m x x x m x x x n n n n ---+++=Λ

M

M M Λ

Λ

Λ2

22211

11

)

(

m

m m x x x n ---+++=Λ

M M M ΛΛΛ0

1

01001)

(21

1

21))((---+++=n n m m x x x Λ

||班级: 姓名: 学号: 成绩: 批改日期: ||

第 18 页 共 18 页

(4)n

n n n n a a a a a a b b b b b D 1

3221

13210

000

000-----=Λ

M M M M M Λ

Λ

Λ (其中n i a i ,,2,1,0Λ=≠)

解: 12211000

00000)1(-+----=n n

n n a a a a b D ΛM M M M ΛΛ

1

2

22

1

122100

000

00------+n n n n n a a a a a b b b b a Λ

M M M M ΛΛ

Λ 121-+?

=n n n

n

n D a a b a a a Λ ???

?

??==∑=n i i i

n a b a a a 121ΛΛ. 三、证明题

1.试证:如果n 次多项式n n x a x a a x f +++=Λ10)(对n+1个不同的x 值都是零,则此多项式恒等于零.

(提示:用范德蒙行列式证明)

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

第2讲行列式按行(列)展开及计算

授课时间 第 周 星期 第 节 课次 2 授课方式 (请打√) 理论课□ 讨论课□ 实验课□ 习题课□ 其他□ 课时 安排 2 授课题目(教学章、节或主题): 第二讲 行列式按行(列)展开及计算 教学目的、要求(分掌握、熟悉、了解三个层次): 熟练掌握行列式按行(列)展开;掌握运用行列式的定义与性质计算行列式;熟悉一些典型行列式的计算;熟悉用数学归纳法证明行列式. 教学重点及难点: 重点:行列式按行(列)展开;利用行列式的定义与性质计算行列式 难点:行列式的计算 教 学 基 本 内 容 备注 一、行列式按行(列)展开 引理 一个n 阶行列式,如果其中第i 行所有元素除),(j i 元ij a 外都为零, 那么这行列式等于ij a 与它的代数余子式的乘积. 定理 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ) ,2,1(,),2,1(,22112211n j A a A a A a D n i A a A a A a D nj nj j j j j in in i i i i =++==++= (按行(列)展开法则) 推论 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠++=,2211 或 .,2211j i A a A a A a D nj ni j i j i ≠++= 例1、3 2 3 1 11024315211 14----= D

解 法 1:241227 1 51271031251 13 4 312014 260211 14-=?-=---=----=------= D 解法2:244 8 224 8 1112021 2 3 5 010******** 14-=-= ---=-----= D 例2、设2 1 3 12 1014112 5 1 014---=D ,(1)求41312111A A A A +--;(2)444342412A A A A +-+。 解:(1)041312111=+--A A A A (2)4444444342414443424133422A A A A A A A A A A -=-+-+=+-+ 61 11 13 1 011121 13=--=---= 二、行列式的计算 例3、n n n n n b a a a a b a a a a b a D +++= 2 1 2212 1 1,其中021≠n b b b 解:n n n n n n n b a a a a b a a a a b a a a a D D +++==+ 2 1 2 212112 11 0001=n n b b b a a a 0 0100100112121---

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1 -n D 1+ a 2x 2 -n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1 010010000n n n n x x x a xa a a x a -----++K K K M M M M K

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

第三讲 行列式按行按列展开

单位:理学院应用数学物理系计算数学教研室 批准:日期:年月日任课教员:刘静 课程名称:线性代数 章节名称:第一章行列式 课题:第三讲行列式按行按列展开 目的、要求: 1. 行列式的按行按列展开法则; 2. 掌握行列式的计算方法。 难点、重点:行列式按行按列展开法则及其应用。 器材设备:多媒体设备 课前检查

教学内容课堂组织

教学内容: 本讲主要介绍: 1. 行列式的按行(列)展开法则; 2. 掌握行列式的计算方法。 教学方法与思路: 1. 首先介绍余子式和代数余子式的概念; 2. 对于三阶行列式,容易验证: 1112132223212321232122231112 13 32 33 31 33 31 33 31 32 33 a a a a a a a a a a a a a a a a a a a a a a a a =-+ 可见一个三阶行列式可以转化成三个二阶行列式的计算。 由此容易想到:一个n 阶行列式是否可以转化为若干个 n -1 阶行列式来计算? 3. 给出一个特殊的n 阶行列式的计算方法,从而给出一个引理; 4. 进而介绍行列式的按行(列)展开法则。 教学中运用多媒体手段,讲解、板书与教学课件相结合,以讲解为主。 教学步骤: 教学内容、方法、步骤

教学内容课堂组织 1. 介绍余子式和代数余子式的概念; 2. 引理; 3. 行列式的按行(列)展开法则; 4. 应用举例。 5. 小结并布置作业。

212 n n n nn a a a 中仅含下面形式的项 a M =1 0n ij n nj nn a a a a 行依次与第i-1行,第i-2行,……,第21,1,11,,1 (1)i j j i j i n ij nj n j nn a a a M a a a +-----=-

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶 213111 n r r r r r r +---= 12121100 1001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 12100000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 12111 1111 1 1n n a a D a ++= +

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a O 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - L O =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --O 1n c c += 1 1 1 a a a +-O =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -O +1 1 001 0(1) 0n n a a +--L O O 而 1 1 01 0(1) 0n n a a +--L O O 最后列展开 =21 (1)n +-2 n a a -O =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a O = 11a a 2 n a a -O =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= +L L M M M L (120n b b b ≠L ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 121121 221 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++L L L M M M M L 升阶 213111 n r r r r r r +---= L 12121100100100n n a a a b b b ---L L L M M M M L 11 12,,1 j j c c b j n -+ =+= L 111211 1 2100 00000 n n a a a a a b b b b b + ++L L L L M M M M L =1121(1)n n n a a b b b b b + ++L L 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +L L M M M L =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

相关文档
相关文档 最新文档