文档库 最新最全的文档下载
当前位置:文档库 › 《极坐标与参数方程》题型归纳

《极坐标与参数方程》题型归纳

《极坐标与参数方程》题型归纳
《极坐标与参数方程》题型归纳

《极坐标与参数方程》高考高频题型

除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及

(一)有关圆的题型

题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d > 个交点;相切,1:r d = 个交点;

相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2

2

00B

A C By Ax d +++=

,算出d ,在与半径比较。

题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法)

思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2

2

00B

A C By Ax d +++=

第二步:判断直线与圆的位置关系

第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =

题型三:直线与圆的弦长问题

弦长公式222d r l -=,d 是圆心到直线的距离

延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”

(二)距离的最值: ---用“参数法”

1.曲线上的点到直线距离的最值问题

2.点与点的最值问题

“参数法”:设点---套公式--三角辅助角

①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式

③辅助角:利用三角函数辅助角公式进行化一

例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,

以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为

(I )写出的普通方程和的直角坐标方程;

(II )设点在上,点在上,求的最小值及此时的直角坐标

的直角坐标方程为.

这里没有加减移项省去,直接化同,那系数除到左边

(Ⅱ)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,

.

(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)

当时)(13

sin =+π

α即当时,,此时的直角坐标

为.

xOy 1C ()sin x y α

αα?=??

=??

为参数x 2C sin()4

ρθπ

+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α()sin()2|3d π

αα=

=+-2()6k k Z παπ=+∈()d αP 31

(,)22

(三)直线参数方程的几何意义

1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00???+=+=αα

若A ,B 为直线l 上两

点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:

(1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 2

2;(3)|AB |=|t 2-t 1|;(4)|P A |·|PB |=|t 1·t 2|

(5)????

?>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当

(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.

直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路

第一步:曲线化成普通方程,直线化成参数方程

第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at

第三步:韦达定理:a c

t t a b t t =

-=+2121,

第四步:选择公式代入计算。 例如:已知直线l :?????

x =5+3

2t ,

y =3+1

2t

(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标

系,曲线C 的极坐标方程为ρ=2cos θ.

(1)将曲线C 的极坐标方程化为直角坐标方程;

(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①

将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将???

??

x =5+3

2t ,y =3+1

2t

代入②式,得t 2+53t +18=0.

设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.

(四)一直线与两曲线分别相交,求交点间的距离

思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可。

例如:(2016?福建模拟)在直角坐标系xOy 中,曲线C 1的参数方程为(其中α为参

数),曲线C 2:(x ﹣1)2+y 2=1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1的普通方程和曲线C 2的极坐标方程; (Ⅱ)若射线θ=

(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,求|AB|.

解:(Ⅰ)∵曲线C 1的参数方程为(其中α为参数),

∴曲线C 1的普通方程为x 2+(y ﹣2)2=7. ∵曲线C 2:(x ﹣1)2+y 2=1,

∴把x=ρcosθ,y=ρsinθ代入(x ﹣1)2+y 2=1,

得到曲线C 2的极坐标方程(ρcos θ﹣1)2+(ρsin θ)2=1, 化简,得ρ=2cos θ. (Ⅱ)依题意设A (

),B (),

∵曲线C1的极坐标方程为ρ2﹣4ρsinθ﹣3=0,

将(ρ>0)代入曲线C1的极坐标方程,得ρ2﹣2ρ﹣3=0,

解得ρ1=3,

同理,将(ρ>0)代入曲线C 2的极坐标方程,得,

∴|AB|=|ρ1﹣ρ2|=3﹣.

(五)面积的最值问题

面积最值问题一般转化成弦长问题+点到线的最值问题

例题2016?包头校级二模)在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为

,A,B两点的极坐标分别为.

(1)求圆C的普通方程和直线l的直角坐标方程;

(2)点P是圆C上任一点,求△PAB面积的最小值.

解:(1)由,化简得:,

消去参数t,得(x+5)2+(y﹣3)2=2,

∴圆C的普通方程为(x+5)2+(y﹣3)2=2.

由ρcos(θ+)=﹣,化简得ρcosθ﹣ρsinθ=﹣,

即ρcosθ﹣ρsinθ=﹣2,即x﹣y+2=0,

则直线l的直角坐标方程为x﹣y+2=0;

(Ⅱ)将A(2,),B(2,π)化为直角坐标为A(0,2),B(﹣2,0),

∴|AB|==2,

设P 点的坐标为(﹣5+cost ,3+sint ),

∴P 点到直线l 的距离为d==,

∴d min ==2,

则△PAB 面积的最小值是S=×2

×2

=4.

极坐标与直角坐标、参数方程与普通方程的转化

一、直角坐标的伸缩

设点P(x ,y)是平面直角坐标系中的任意一点,在变换

φ:???>='>=')()(

0,0,μμλλy y x x 的作用下,点P(x ,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩

变换,简称伸缩变换.平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换?????

x′=λ·x ,λ>0

y′=μ·y ,μ>0

下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆

可以变成椭圆,椭圆也可以变成圆(重点考察). 【强化理解】

1.曲线C 经过伸缩变换

后,对应曲线的方程为:x 2+y 2=1,则曲线C 的方程为( )

A .

B .

C .

D .4x 2+9y 2=1

【解答】解:曲线C 经过伸缩变换①后,对应曲线的方程为:x′2+y′2=1②,

把①代入②得到:故选:A

2、在同一直角坐标系中,求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.

【解答】解:设变换为φ:?????x ′=λx (λ>0),

y ′=μy (μ>0),可将其代入x ′2+y ′2=1,得λ2x 2+μ2y 2=1.

将4x 2

+9y 2

=36变形为x 29+y 24=1,比较系数得λ=13,μ=1

2.

所以?????x ′=13x ,y ′=12y .将椭圆4x 2+9y 2=36上的所有点的横坐标变为原来的13,纵坐标变为原来的12,可得到

圆x ′2+y ′2=1.

亦可利用配凑法将4x 2+9y 2=36化为? ????x 32+? ????

y 22=1,与x ′2+y ′2=1对应项比较即可得?????x ′=x

3,y ′=y

2.

3、(2015春?浮山县校级期中)曲线x 2+y 2=1经过伸缩变换

后,变成的曲线方程是( )

A .25x 2+9y 2=1

B .9x 2+25y 2=1

C .25x+9y=1

D .

+=1

【解答】解:由伸缩变换,化为,代入曲线x 2+y 2=1可得25(x′)2+9(y′)2=1,

故选:A .

二、极坐标 1.公式:

(1)极坐标与直角坐标的互化公式如下表:

2.极坐标与直角坐标的转化

(1)点:有关点的极坐标与直角转化的思路 A :直角坐标化为极坐标的步骤

①运用 ②在内由求时,由直角坐标的符号特征判断点所在的象限. B::极坐标化为直角坐标的步骤,运用

(2)直线:直线的极坐标与直角坐标转化的思路 A :直角坐标转化成极坐标

思路:直接利用公式,将式子里面的x 和y 用θρθρsin cos 和转化,最后整理化简即可。

例如:x+3y-2=0:用公式将x 和y 转化,即02-sin 3cos =+θρθρ B :极坐标转化成直角坐标

类型①:直接转化---直接利用公式转化

(),x y (),ρθ()222

tan 0x y y

x x ρθ?=+?

?=≠??

[)0,2π()tan 0y

x x

θ=

≠θ(),ρθ(),x y cos sin x y ρθ

ρθ=??=?cos sin x y ρθ

ρθ=??=?

类型②:利用三角函数的两角和差公式,即()()2sin 2cos k k

ρθαρθα±=±=或

思路:第一步:利用两角和差公式把sin(θ±α)或cosθ±α)化开,特殊角的正余弦值化成数字,整理化简

第二步:利用公式转化

解:第一步:利用两角和差公式把sin(θ±α)或cosθ±α)化开特殊角的正余弦值化成数字,整理化简,即

第二步:第二步:利用公式转化

类型③:角可以不是特殊角)为倾斜角,可以是特殊(ααθ=,该直线经过原点(极点),对应的直角

坐标方程为kx x即y tanα

y =?=

cos sin x y ρθρθ=??

=?cos sin x y ρθ

ρθ=??

=?

(注:直线的直角坐标方程一般要求写成一般式:Ax+By+C=0) 三、曲线极坐标与直角坐标互换 (一)圆的直角与极坐标互换 1.圆的极坐标转化成直角坐标 类型一:θθρsin cos +=

详解:一般θθsin ,cos 要转化成x 、y 都需要跟ρ搭配,一对一搭配。

所以两边同时乘以ρ,即0--,sin cos 22222=++=+∴+=y x y x y x y x 即θρθρρ 类型二:2=ρ

没有三角函数时,可以考虑两边同时平方44222=+=y x 即ρ 2.圆的直角坐标转化成极坐标

3)1()4(22=++-y x

解题方法一:拆开--公式代入

014sin 2cos 801428031216822222=++-∴=++-+=-++++-θρθρρy x y x y y x x 即

解题方法二:代入-拆-合

031sin 2sin 16cos 8cos 3)1sin ()4cos (222222=-++++-=++-θρθρθρθρθρθρ即 014sin 2cos 8014sin 2cos 8)sin (cos 2222=++-=++-+∴θρθρρθρθρθθρ即

【强化理解】

1.将下列点的极坐标与直角坐标进行互化.

①将点M 的极坐标? ??

??4,143π化成直角坐标; ②将点N 的直角坐标(4,-43)化成极坐标(ρ≥0,0≤θ<2π).

【解答】解:①∵x =4cos 143π=4cos 2π3=4×

? ????

-12=-2,y =4sin 143π=4sin 2π3=23,∴点A 的直角坐标是(-2,23).

②∵ρ=42

+(-43)2

=8,tan θ=-43

4=-3,θ∈[0,2π),又点(4,-43)在第四象限,∴θ

=5π3,∴对应的极坐标为? ?

?

??8,5π3.

2、将下列直角坐标方程与极坐标方程进行互化.

①y 2=4x;

②θ=π

3(ρ∈R ); ③ρ2cos2θ=4;

④ρ=

1

2-cos θ

【解答】解:①将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ. ②当x ≠0时,由于tan θ=y x ,故tan π3=y

x =3,化简得y =3x (x ≠0);当x =0时,y =0.显然(0,0)在

y =3x 上,故θ=π

3(ρ∈R )的直角坐标方程为y =3x . ③因为ρ2cos2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. ④因为ρ=

1

2-cos θ

,所以2ρ-ρcos θ=1,因此2

x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.

3.化极坐标方程ρ2cos θ﹣ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y=1 B .x=1 C .x 2+y 2=0或x=1 D .y=1

【解答】解:∵ρ2cosθ﹣ρ=0,∴ρcosθ﹣1=0或ρ=0,∵

∴x 2+y 2=0或x=1,故选C .

4.将曲线ρcos θ+2ρsin θ﹣1=0的极坐标方程化为直角坐标方程为( ) A .y+2x ﹣1=0 B .x+2y ﹣1=0 C .x 2+2y 2﹣1=0 D .2y 2+x 2﹣1=0 【解答】解:由曲线ρcosθ+2ρsinθ﹣1=0,及,

可得x+2y ﹣1=0.

∴曲线ρcos θ+2ρsin θ﹣1=0的极坐标方程化为直角坐标方程为x+2y ﹣1=0.故选:B .

5、在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ? ????

θ-π4=22.,求圆O 和直线l 的直角坐标方程;

【解答】解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0, 直线l :ρsin ? ????

θ-π4=22,即ρsin θ-ρcos θ=1,

则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.

三、参数方程 1.必记的曲线参数方程

抛物线y2=2px(p>0)

2.参数方程与普通方程的转化

(1)参数方程转化成普通方程

类型一:含t的消参

思路:含有t的参数方程消参时,想办法把参数t消掉就可以啦,有两个思路:思路一:代入消元法,把两条式子中比较简单的一条式子转化成t=f(x)或t=f(y),思路二:加减消元:让含有t前面的系数相同或成相反数后相加减。

思路二:加减消元:两式相减,x-y-1=0.

类型二:含三角函数的消参

思路:三角函数类型的消参一般的步骤就是:移项-化同-平方-相加

移项:把除了三角函数的其他相加减数字移动左边 化同:把三角函数前面的系数化成相同 平方:两道式子左右同时平方 相加:平方后的式子进行相加 (注:有时候并不需要全部步骤)

例如:圆?????x =1+cos θ,

y =-2+sin θ

消参数θ,化为普通方程是(x -1)2+(y +2)2=1.

解:移项:?

??=+=-θθ

sin 2cos 1y x (三角函数前面系数已经相同,省去化同,直接平方)

平方:?????=+=-θ

θ2

222

sin 2cos 1

)()(y x 相加:

12)y 1-x 22=++()( 3.参数方程涉及题型

(1)直线参数方程的几何意义

(2)距离最值(点到点、曲线点到线、) 【强化理解】

1、直线l 的参数方程为为参数).写出直线l 的直角坐标方程;

【解答】直线l 的参数方程为为参数).

由上式化简成t=2(x﹣1)代入下式得

根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)

2、.将参数方程(θ为参数)化为普通方程为()

A.y=x﹣2 B.y=x﹣2(0≤y≤1)C.y=x+2(﹣2≤x≤﹣1)D.y=x+2

【解答】解:将参数方程(θ为参数)化为普通方程为:y=x+2,(﹣2≤x≤﹣1).故选:C.

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

(推荐)高中数学必修1基本初等函数常考题型:幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x 是自变量,α是常数. 2.常见幂函数的图象与性质 解析式 y =x y =x 2 y =x 3 y =1x y =12 x 图象 定义域 R R R {x|x≠0} [0,+∞) 值域 R [0,+∞) R {y|y≠0} [0,+∞) 奇偶性 奇函数 偶函数 奇函数 奇函数 非奇非偶函数 单调性 在(-∞,+ ∞)上单调递增 在(-∞,0]上单调递减,在(0,+∞)上单调递增 在(-∞,+∞)上单调递增 在(-∞,0)上单调递减,在(0,+∞)上单调递减 在[0,+∞)上单调递增 定点 (1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念

【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ??? ;③y=4x 2;④y=x 5+1;⑤y=(x -1)2 ; ⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=( ) 22 23 1m m m m x ----为幂函数, ∴m 2 -m -1=1,解得m =2或m =-1. 当m =2时,m 2 -2m -3=-3,则y =x -3 ,且有x≠0; 当m =-1时,m 2 -2m -3=0,则y =x 0 ,且有x≠0. 故所求幂函数的解析式为y =x -3 ,{x|x≠0}或y =x 0 ,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x) 的解析式. 解:根据幂函数的定义得 m 2 -m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3 在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3 . 题型二、幂函数的图象

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

基本初等函数经典复习题+问题详解

()) 1,,,0(.4*>∈>=n N n m a a a n m n m x N N a a x =?=log 必修1基本初等函数 复习题 1、幂的运算性质 (1)s r s r a a a +=?),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =?)(R r ∈ 2、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1()N M N M a a a log log log +=?; ○2 N M N M a a a log log log -=; ○ 3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a 换底公式:a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m n b a n a m log log = ;(2)a b b a log 1log =. 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

解三角形题型汇总.docx

《解三角形》知识点归纳及题型汇总 1、①三角形三角关系: A+B+C=180°; C=180°— (A+B); ② . 角平分线性质 : 角平分线分对边所得两段线段的比等于角两边之比. ③ . 锐角三角形性质:若A>B>C则60 A 90 ,0 C 60 . 2、三角形三边关系: a+b>c; a-b

的外接圆的半径,则有 a b c 2R .sin sin sin C 5、正弦定理的变形公式: ①化角为边: a2Rsin, b2Rsin, c2Rsin C ; ②化边为角: sin a, sin b, sin C c ; 2R2R2R ③ a : b : c sin:sin:sin C ; ④a b c a b c=2R sin sin sin C sin sin sin C 6、两类正弦定理解三角形的问题: ①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角. 7、三角形面积公式: S C1 bc sin1 ab sin C1 ac sin.=2RsinAsinBsinC=abc 2 2224R = r (a b c) =p( p a)( p b)( p c) ( 海伦公式 ) 2 8、余弦定理:在 C 中, a2b2c22bc cos,b2a2c22ac cos , c2a2b22ab cosC .9、余弦定理的推论: cos b2c2 a 2, cos a2c2b2, cosC a2b2c2. 2bc2ac2ab 10、余弦定理主要解决的问题: ①已知两边和夹角,求其余的量. ②已知三边求角

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

基本初等函数题型总结

基本初等函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23 lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+????1252log . 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27 . (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 题型2指数与对数函数的概念 【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. (2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (3)函数y =a x -5+1(a ≠0)的图象必经过点________. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =2x +1的图象是( )

【例3】函数y =|2x -2|的图象是( ) 【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________. 【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________. 变式: 1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110 ,则相应于 c 1,c 2,c 3,c 4的a 值依次为( ) A.3,43,35,110 B.3,43,110,35 C.43,3,35,110 D.43,3,110,35 2.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 4.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .0 B .1 C .2 D .3 5.函数y =x 3 3x -1 的图象大致是( ) 题型4指数与对数型函数的定义域、值域、单调性、奇偶性 例 1函数f (x )=1-2x +1x +3的定义域为____________. 2判断f (x )= x -x )(2231的单调性,并求其值域.

相关文档
相关文档 最新文档