文档库 最新最全的文档下载
当前位置:文档库 › 金属指示剂的封闭现象

金属指示剂的封闭现象

金属指示剂的封闭现象
金属指示剂的封闭现象

金属指示剂的封闭现象、僵化现象、氧化现象

(1 )封闭现象

某些金属离子与指示剂形成的络合物较其与EDTA 的络合物更稳定。如果溶液中存在着这些金属离子,即使滴定已经到达计量点,甚至过量EDTA 也不能夺取出MIn 络合物中的金属离子而使游离的指示剂In 释放出来,因而看不到滴定终点应有的颜色突变。这种现象称为指示剂的封闭现象。如果是被测离子导致的封闭,应选择更适宜的指示剂;如果是由共存的其它金属离子导致的封闭,则应采取适当的掩蔽剂掩蔽干扰离子的影响。

(2 )僵化现象

有些指示剂或MIn 络合物在水中的溶解度较小,或因MIn 只稍逊于MY 的稳定性,致使EDTA 与MIn 之间的置换反应速率缓慢,终点拖长或颜色变化很不敏锐。这种现象称为指示剂的僵化现象。克服僵化现象的措施是选择更合适的指示剂或适当加热,提高络合物的溶解度并加快滴定终点时置换反应的速度(接近终点时放慢滴定速度并剧烈振荡)

(3 )氧化变质现象

金属指示剂大多是分子中含有许多双键的有机染料,易被日光、空气和氧化剂所分解;有些指示剂在水溶液中不稳定,日久会因氧化或聚合而变质。这种现象称为指示剂的氧化变质现象。克服氧化变质现象的措施一般有二种:一是加入适宜的还原剂防止其氧化,或加入三乙醇胺以防止其聚合;二是配成固溶体,即以NaCl 为稀释剂,按质量比1:100 配成固体混合物使用,这样减小氧化变质的速度,可以保存更长的时间。

有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。

位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的(即形成共价键)。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷、氮等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。

有机化学物质的分类主要是按照其决定性作用,能代表化学物质的基团也就是官能团的不同来进行分类的。可分为:烷烃,烯烃,炔烃,芳香烃(以上为烃类);卤代烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物,胺类,硝基化合物,腈类,含硫有机化合物(如硫醇,硫醚,硫酚,磺酸,砜与亚砜等),含磷有机化合物等元素有机化合物,杂环化合物等(以上为烃衍生物)。

过滤操作实验注意事项

斗架烧杯玻璃棒,滤纸漏斗角一样。过滤之前要静置,三靠两低不要忘。

解释:

1、斗架烧杯玻璃棒,滤纸漏斗角一样:"斗"指漏斗;"架"指漏斗架。这两句说明了过滤操作实验所需要的仪器:漏斗、漏斗架、烧杯、玻璃棒、滤纸、并且强调滤纸折叠的角度要与漏斗的角度一样(这样可以是滤纸紧贴在漏斗壁上)。

2、过滤之前要静置:意思是说在过滤之前须将液体静置一会儿,使固体和液体充分分离。

3、三靠两低不要忘:意思是说在过滤时不要忘记了三靠两低。"三靠"的意思是指漏斗颈的末端要靠在承接滤液的烧杯壁上,要使玻璃棒靠在滤纸上,盛过滤液的烧杯嘴要靠在玻璃棒上;"两低"的意思是说滤纸边缘应略低于漏斗的边缘,所倒入的滤液的液面应略低于滤纸的边缘。

长安大学金属热加工名词解释

1,成分过冷:由溶质再分配导致界面前方熔体成分及其凝固稳定发生变化而引起的过冷称为成分过冷。条件:合金中的溶质含量较高;液相斜率大;溶质在液体中的扩散系数小;对于K0<1的合金,K0值很低,反之很高;凝固界面前的液相中温度梯度小;晶体生长速率高 .2 溶质再分布:凝固时固相中不能容纳的B原子被排挤出来,富集在界面上的液体中,然后逐渐向液体内部扩散均化。三种:1.溶质通过扩散进行再分布;2.溶液中有对流,局部增多的溶质借助熔体流动而达到在大体积液相中均匀分布;溶质即通过扩散也借助液体流动而进行再分布. 3伪共晶:非平衡凝固状态下,非共晶成分的合金凝固得到的共晶组织。 17回火抗力(回火稳定性):在回火过程中随回火温度的升高钢抵抗硬度下降的能力 ,4二次硬化:某些淬火合金钢在500℃以上回火后,形成特殊碳化物,弥散细小,使硬度-在硬度-回火温度曲线上出现峰值的现象 5、邻先相两个共晶相得析出次序和生长速度是不相同的,就是说,在两个相的生核和生长中必有一个相位先导。由于次相的析出,引起溶质的富集而导致另一相的析出和生长,此相成为领先相。 6、平衡凝固凝固过程中的每个阶段都达到平衡,即相变过程中有充分时间进行组元间的扩散,以达到平衡相的成分 7、固态相变固体物质内部结构的转变成为固态相变 8调幅分解:某些合金在高温下具有均匀单相固溶体,但冷却到某一温度范围时可分解成为与原固溶体结构相同但成分不同的两个威区的转变 9、热处理热处理的基本过程就都是把金属材料加热到一定温度并保温一段时间后,以规定的冷却速率冷却下来。 10过冷奥氏体:在临界点以下存在且不稳定的将要发生转变的奥氏体 11、回火M马氏体经分解后, 原马氏体组织转化为由有一定过饱和度的立方马氏体和ε-碳化物所组成的复相组织。 12、回火脆性定义:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象13、A1称为共析转变线或共析温度,凡是含碳量大于0.0218的铁碳合金都将发生共析转变; A3它是在冷却过程中由奥氏体析出铁素体的开始线,或者说在加热过程中铁素体溶入奥氏体的终了线; Acm是二次渗碳体的开始析出线。 14、形状记忆效应:将某些材料进行变形后加热至某一特定温度以上时,能自动回复原来形状的效应。 15伪共晶区的特点:1共晶的各组元的熔点相近时,在液相线的延伸线包围的范围内,反之,偏离高熔点组元一侧。2由金属相和非金属相构成的共晶系中,伪共晶区一般是偏向非金属组元或金属性较低的组元一侧。 16、分析晶内偏析和晶界偏析的形成机理,如何减少和去除这两种偏析? 实际铸造条件下,所得的固溶体中,每一个晶粒内的成分都是不均匀的,晶粒内先结晶的部分和后结晶的部分的成分是不同的,这就是晶内偏析。在成分过冷不大的情况下,固溶体合金在结晶时会出现一种胞状结构,当液相内过冷度较大时,结晶时则呈现树枝状结构,胞状结构由一系列平行的棒状晶体所组成,沿凝固方向长大,呈六方断面,六方断面的晶界富集着溶质元素,因此这种偏析也叫胞状偏析。它属于晶界偏析。预防和消除方法:细化晶粒,均匀化退火。 17、分析带状偏析和逆偏析的形成机理。如何减少和去除这两种偏析? 带状偏析:当液体金属中的溶质的扩散速度低于固体生长速度时,在固液界面将产生溶质偏析,固液界面的过冷下降,由于界面的低减,结晶在固液界面过冷低减较小部位优先生长,此时由于固液界面的前方的过冷相对过大,优先结晶的部位进而长成树枝状,溶质浓化液将被树枝状的晶枝所捕捉,此时枝晶的成长将与邻近的的枝晶连接在一起,结晶前沿的成长又会出现新的停滞,如此重复在铸件断面可能出现数条带状偏析。减少溶质含量,采取孕育措施细化晶粒,提高合金的结晶速度。逆偏析:宽结晶区间的固溶体型合金在凝固时形成粗大的树枝状晶,枝晶相互交错,枝晶间富集着低熔点的溶质,当铸件产生体收缩,低熔点溶质

滴定曲线及指示剂的选择

滴定曲线及指示剂的选择(二) 【学习要求】 1.理解弱酸或弱碱的滴定曲线、突跃范围的确定及指示剂的选择。 2.掌握弱酸或弱碱的滴定条件 【复习回顾】 1、什么是酸碱滴定曲线?什么是滴定突跃? 2、强碱滴定强酸一般选用什么酸碱指示剂? 3、弱酸、弱碱、强碱弱酸盐、强酸弱碱盐、缓冲溶液的pH的计算公式 【预习内容】有人说“在化学计量点时溶液的pH等于7”你认为对吗?试举例说明 【学习内容】 一、弱酸或弱碱的滴定 以0.1000mol/L NaOH滴定20mL 0.1000mol/L HAC溶液为例 1、滴定前 溶液的pH取决于pH= 2、滴定开始至化学计量点前 溶液的pH取决于,当加入的NaOH溶液体积达到99.9%,此时消耗mLNaOH,溶液的pH= 3、化学计量点时 此阶段溶液的pH处于突变状态,此时溶液中的溶质为。此时消耗mLNaOH,溶液的pH= 4、化学计量点后 当加入的NaOH溶液体积达到100.1%时,此时消耗mLNaOH,此时溶液的溶质主要为,溶液的pH=

5、滴定曲线和滴定突跃 (1)绘制滴定曲线,描述变化特点 (2)根据突跃范围选择指示剂 (3)影响突跃范围大小的因素 强酸(强碱)滴定弱碱(弱酸)时,溶液越稀,滴定突跃范围。弱碱的Kb值(弱酸Ka值)越小,即酸越弱,突跃范围越 6、弱酸或弱碱准确滴定的条件为。多元弱酸或多元弱碱,若Ka1或Kb1满足上述滴定分析条件,则可以直接滴定;;若相邻两级电离常数之比,还可以分步滴定。 【例题1】 试判断c=1.0mol/L的甲酸、氨水,氢氰酸能否用酸碱滴定法直接滴定。 【例题2】用0.1000mol/LHCl滴定20mL氨水溶液,滴定突跃是多少?化学计量点pH是多少?应选择哪种指示剂? 【课后练习】 1、在酸碱滴定中,化学计量点时溶液的pH ( ) A. 大于7 B. 小于7 C.等于7 D.都有可能 2、在用盐酸测定硼砂时,化学计量点时pH=5.1,应选用下列哪一种指示剂() A.甲基橙 B. 甲基红 C 酚酞D甲基黄(2.9—4.0) 3、0.1000mol/LNaOH滴定20mL 0.1000mol/L HCOOH溶液的化学计量点pH是多少?应选择何种指示剂?

分析化学作业13题答案

分析化学作业13题答案: 一、56.莫尔法的基本原理、滴定条件如何? 答:莫尔法是用K2CrO4作指示剂,用硝酸银作滴定剂,以到达终点时形成Ag2CrO4砖红色沉淀为基础的。若CrO42-的浓度过大,会使测定的结果呈负误差;过小会使测定结果呈现正误差。在一般滴定过程中,CrO42-的浓度以5×10-3为合适。 莫尔法的滴定条件是: (1) 在pH=6.5~10.5下进行; (2) 滴定过程中不应含有氨; (3) 凡能与Ag+生成沉淀的阴离子、能与CrO42-生成沉淀的阳离子、有色离子、在中性或微碱性发生水解的阳离子等均应预先分离; (4) 滴定时应剧烈摇动以免因为吸附产生较大的误差。 57.福尔哈德法的基本原理、滴定条件如何? 答:福尔哈德法是以铁铵矾(NH4Fe(SO4)2·12H2O)作指示剂、以KSCN或NH4SCN为滴定剂、以终点时形成红色FeSCN2+溶液指示终点的方法。用间接法测定Cl-时,为防止AgCl沉淀与SCN-的反应,需要在滴定化学计量点时避免剧烈摇动,或加入硝基苯避免沉淀与滴定的接触。 它的滴定条件是: (1) 在酸性溶液中进行; (2) 强氧化剂、氮的低价化合物、汞盐等能与起反应的物质要预先除去。 58.法扬司法的基本原理、滴定条件如何? 答:法扬司法是以指示剂吸附在沉淀离子上发生颜色变化而指示终点,一般以硝酸银作滴定剂的方法。 它的滴定条件是:(1)沉淀需要保持胶状以使终点颜色明显,一般加入糊精或淀粉溶液来保护胶体;(2)滴定需在中性、弱碱性或很弱的酸性溶液中进行;(3) 因卤化银易感光变灰,影响终点观察,故滴定时应该避免强光;(4)荧光黄作指示剂适于测定高含量的氯化物,曙红适于测定Br-、I-和SCN-。 二、 6、试比较莫尔法和佛尔哈德法所用的指示剂、标准溶液和适用范围。答:指示剂标准溶液适用范围

金属工艺的名词解释

名词解释 强度——强度是金属材料在静载荷作用下抵抗变形和破坏的能力。 屈服点----开始出现微量的塑性变形的应力。 抗拉强度----断裂之前所受最大应力。 塑性——塑性是金属材料在静载荷作用下产生永久变形而不破坏的能力。塑性指标用伸长率δ和断面收缩率ψ来表示。δ、ψ值越大,表示材料的塑性越好。 硬度——硬度是衡量金属材料软硬的一个指标。 布氏硬度----HBS(钢球)HBW(合金球)-----数值+字符+直径/载荷/时间 洛氏硬度---- HRA与HRC(金刚石顶角为120°的圆锥体)HRB(钢球) 维氏硬度----HV向对面间为136°的正四棱锥金刚石 韧性——金属材料抵抗冲击载荷作用而不破坏的能力,称为韧性。 疲劳强度——金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强 晶体——指其组成微粒(原子、离子或分子)呈规则排列的物质 晶格——抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。 晶胞——组成晶格的最小几何单元称为晶胞。 单晶体—一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。 多晶体——由许多晶粒组成的晶体称为多晶体。 晶界—一将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。 晶粒—一多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。 结晶—一通过凝固形成晶体的过程称为结晶(包含晶核的形成与晶核的长大)。 变质处理—一在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的 合金—一两种或两种以上的金属元素或金属与非金属元素组成的金属材料。 组元—一组成合金最基本的、独立的物质称为组元。 .相—一在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。 组织—一金属及其合金内部涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 固溶体——一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类 型的固态金 属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化——由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高 弥散强化——金属化合物细小均匀分布在固溶体基体上是,能显著提高合金的强度,硬度和耐磨性的现象 化合物——合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物——由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体—一α-Fe内固溶有碳所形成的体心立方的固溶体F(或α) 奥氏体—一γ-Fe内固溶有碳所形成的面心立方的固溶体,常用符号A(或γ)

滴定终点指示剂的选择

滴定终点与指示剂的选择 河北省宣化县第一中学栾春武 酸碱中和滴定的关键:一要准确测定出参加中和反应的酸、碱溶液的体积;二要准确判断中和反应是否恰好完全反应。 酸碱指示剂可在中和反应终点时出现颜色变化,因此终点判断须选择合适指示剂。 酸碱恰好完全中和的时刻叫滴定终点,为准确判断滴定终点,须选用变色明显,变色范围的pH与恰好中和时的pH吻合的酸碱指示剂。 指示剂的变色范围越窄越好,pH稍有变化,指示剂就能改变颜色。石蕊溶液由于变色范围较宽,且在滴定终点时颜色的变化不易观察,所以在中和滴定中不采用。 酚酞和甲基橙是中和滴定时常用的指示剂,其变色范围分别是:甲基橙的pH在3.1~4.4之间,酚酞的pH在8.2~10.0之间。如用0.1000 mol/L的NaOH溶液去滴定20.00 mL 0.1000 mol/L 的盐酸溶液,理论上应用去NaOH溶液20.00 mL,这时溶液的pH=7。但如果用酚酞作指示剂,在它所指示的滴定终点时,pH≠7,而是在8.2~10.0之间。实际计算表明,当滴定到终点时,溶液的pH并不一定等于7,而是存在误差的。这是由指示剂的变色范围所导致的,所造成的误差是在许可范围之内,可以忽略不计。 溶液颜色的变化由浅到深容易观察,而由深变浅不易观察。强酸强碱之间的互滴,尽管甲基橙或酚酞都可以选用。但为了减小误差,应选择在滴定终点时使溶液颜色由浅变深的指示剂。如强酸滴定强碱时,甲基橙加在碱里,达到滴定终点时,溶液颜色由黄色变橙色,易于观察,故选择甲基橙。用强碱滴定强酸时,酚酞加在酸中,达到滴定终点时,溶液颜色由无色变浅红色,易于观察,故选择酚酞。 若酸与碱中有一方是弱的,则要根据中和后所得的盐溶液的pH来确定选择哪一种指示剂。一般说来:强酸中和弱碱时,选择甲基橙(变色范围pH在3.1~4.4之间,生成的强酸弱碱盐显酸性);强碱中和弱酸时,选择酚酞(变色范围pH在8.2~10.0之间,生成的强碱弱酸盐显碱性)。 一、选择指示剂 【例题1】已知常温、常压下,饱和CO2的水溶液的pH=3.9,则可推断用标准盐酸溶液滴定碳酸氢钠水溶液时,适宜选择的指示剂及滴定终点时颜色变化的情况是()。 A. 石蕊,由蓝变红 B. 甲基橙,由橙变黄 C. 酚酞,红色褪去 D. 甲基橙,由黄变橙 解析:标准盐酸溶液滴定碳酸氢钠水溶液时,发生的反应是:NaHCO3 + HCl === NaCl + CO2↑+ H2O,滴定终点时pH=3.9,因此滴定终点时溶液显酸性,指示剂选用甲基橙(3.1~4.4),滴定终点时溶液pH降低到3.9,颜色由黄变橙。 答案:D

金属学金相学名词解释

金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。 点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。 晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。 空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位; 位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。基本类型有两种:即刃型位错和螺型位错。 晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。小角度晶界位相差小于10°,基本上由位错组成。大角度晶界相邻晶粒位相差大于10°,晶界很薄。 亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。 柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。使畸变能降低,同时使位错难以运动,造成金属的强化。这就是利用溶质原子与位错交互作用的柯垂尔气团--柯氏气团。用以解释钢的脆化、强度提高等宏观现象。 元:组成合金的最基本的独立的物质,简称元 相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分,称之为相。 组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体 化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质 相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。 表象点:位于相图中,并能表示合金成分、温度的点称表象点。 吉布斯相律:相律是表示平衡条件下,系统的自由度数、组元数和相数之间的关系,是系统平衡条件的数学表达式。相律可用下式表示:f = c -p +2 当系统的压力为常数时,则为:f = c-p + 1式中,c 系统的组元数,p 平衡条件下系统中相数,f 为自由度数。 自由度:是指在保持合金系中相的数目不变的条件下,合金系中可以独立改变的影响合金状态因素的数目 匀晶转变:从液相结晶出单相的固溶体,这种结晶过程称匀晶转变 异分结晶:固溶体结晶过程中,结晶出的固相与母相成分不同,这种结晶也称为选择结晶。

微专题 中和滴定指示剂的选择

微专题酸碱中和滴定指示剂的选择 新洲一中张新平 [知识点] 1.石蕊的变色范围是5~8,变色范围较宽(氢离子浓度跨度高达1000倍),比起甲基橙、酚酞就显得非常不灵敏。且在溶液处在一个不断稀释的过程,从紫色到蓝色的色差人眼识别困难,也就难以依据颜色突变判断滴定终点了,所以不能做中和滴定时的指示剂。 2. 常用滴定指示剂是甲基橙和酚酞——其变色范围窄,突变颜色明显易识别。 [典型范例] [2016·全国I.T12]298K时,在20.0 mL 0.10 mol·L-1氨水中滴入0.10 mol·L-1的盐酸,溶液的pH与所加盐酸的体积关系如图所示。已知0.10 mol·L-1氨水的电离度为1.32%,下列有关叙述正确的是() A.该滴定过程应该选择酚酞作为指示剂 B.M点对应的盐酸体积为20.0 mL C.M点处的溶液中c(NH4+)=c(Cl-)=c(H+)=c(OH-) D.N点处的溶液中pH<12 [解析]在经历多年高考的全国卷中后,偶然出现了“关于强酸滴定弱碱的指示剂的选择”问题的选项A、以及“关于弱电解质的电离度的计算”问题选项D,这都是高于教材的。也正因为该题的出现,所以在2017年新修订的“高考大纲”中就添加了“能利用电离平衡常数进行相关计算”。 A.依据指示剂选择的一般规律,其指示的(即发生颜色突变)点是恰好完全中和、或前后的点(即等当点)。氨水中滴入盐酸,恰好完全反应所生成的氯化铵溶液因水解而显酸性,因此,应该选择在酸性范围变色的指示剂——甲基橙。 B. 恰好完全反应时,消耗盐酸的体积为20.00 mL,而此时pH<7。 C. M点处的溶液为中性溶液,有电荷守恒:c(NH4+)+c(H+)=c(Cl-)+c(OH-),大小关系是c(NH4+)=c(Cl-)>c(H+)=c(OH-)。 D.N点处的溶液中:c(OH-)=0.10 mol·L-1×1.32%=1.32×10-3mol·L-1,

金属材料名词解释

名词解释: 1 淬火性:钢的淬透性是指钢在淬火时能获得淬硬深度的能力,它是钢材本身固有的属性。 2 淬硬性:钢的淬硬性也叫硬性,是指钢在淬火后能达到最高硬度的能力,它主要取决于M的含量。 3 贝氏体:贝氏体是由含过饱和碳的铁素体于弥散分布的渗碳体(或碳化物)组成的非层状两相组织, 用“B”表示。 4 残余奥氏体:当奥氏体中碳的百分含量大于0.5%时,由于M F已低于室温,因此淬火室温时,必然 有一部分奥氏体被残留下来,这部分奥氏体称为残余奥氏体。 5 共析转变:由一定成分的固相,在一定温度下,同时析出成分不同的两种固相的转变,称为共析转变。A 727℃ (F+Fe3C) 6 固溶强化:由于固溶体的晶格发生畸变,使塑性变形抗力增大,结果使金属材料的强度、硬度增高。 这种通过溶入溶质元素形成固溶体,使金属材料的强度、硬度升高的形象,称为固溶强 化。 7 等温冷却转变:在A1以下,保持恒温一段时间,让过冷奥氏体完成转化叫过冷奥氏体等温转变。 8 临界冷却曲线:与过冷奥氏体连续冷却转变曲线鼻尖相切的冷却速度,称为马氏体临界冷却速度。 9 共晶转变:一定成分的液相,在一定温度下,同时结晶出成分不同的两种固相的转变,称为共晶转 变。 10调质处理:将淬火加高温回火相结合的热处理称为调质处理,其目的使钢获得强度、硬度和塑性、韧性都较好的综合力学性能。 问题 1力学性能符号含义σs(σ0.2 ) σb HBW(HBS) HRA(B、C) HV δψa kσ-1 σs:在拉伸过程中,当负荷不增加甚至有所降低时。试样仍继续产生变形,此时的最小应力叫屈服点,用σs表示 σ0.2:屈服强度为试样标距部分产生0.2%残余伸长时的应力。 σb试样在拉断前所承受的最大负荷于原始截面积之比。 HBW:当压头为硬质合金球时的布氏硬度符号,适用于布氏硬度值为450~650的金属材料。 HBS:当压头为淬火钢球时的布氏硬度符号,适用于布氏硬度值为低于450的金属材料。 HRA、HRC压头是金刚石圆锥的洛氏硬度符号,HRB是直径1.5488mm钢球的洛氏硬度符号。负荷分别为60、100、150Kg。适用范围70~85、25~100、20~67。 HV维氏硬度符号 δ试样在断裂时的相对伸长。 ψ试样断裂后,试样横截面积减小量与试样横截面积之比。 a k冲击吸收功,即试样变形和断裂所消耗的功。 σ-1光滑试样的对称循环旋转弯曲疲劳极限。 2 铁碳合金组织:A、F、P、Fe3C、Ld、L’d及组成。 A:奥氏体,是碳溶于ㄚ–Fe中的间隙固溶体; F:铁素体,是碳溶于α-Fe中的间隙固溶体; P:珠光体,是 铁素体和渗碳体的机械混合物; Fe3C是一种具有复杂晶格的金属化合物; Ld :莱氏体,是奥氏体和渗碳 体的细密混合物; L’d:变态莱氏体,是珠光体和渗碳体的混合物。 3 钢的精密度如何分级? 一般将N小于4的称为粗晶粒,5~8级称为细晶粒,8以上称为超细晶粒。 4 根据含碳量如何区分钢与铁?根据组织室温下钢可分那三类? 含碳量<2.11%的铁碳合金称为钢,>2.11%的铁碳合金称为生铁,<0.0218%的铁碳合金称为纯铁。根据室温下钢可分为:共析钢、亚共析钢、过共析钢。 5 金属结晶包括那二个过程。细化晶粒措施有那些? 晶核形成和晶核不断长大二个过程。措施有:1增加过冷度2变质处理3附加振动。 6 1227 1538

分析名词解释

分析名词解释 1.分析化学:是关于研究物质的组成、含量、结构和形态等化学 信息的分析方法及理论的一门科学。 2.准确度:指测量值与真值(真实值)接近的程度 3.误差:衡量测量准确度高低的尺度,分为绝对误差和相对误差 4.精密度:测量的各测量值间的相互接近程度。 5.偏差:衡量精密度高低的尺度 6.滴定:将滴定剂通过滴定管滴入待测溶液中的过程。 7.滴定剂:浓度准确已知的试样溶液。 8.指示剂:滴定分析中能发生颜色改变而指示终点的试剂。 9.滴定终点:滴定分析中指示剂发生颜色改变的那一点(ep) 10.化学计量点:滴定剂与待测溶液按化学计量关系反应完全的那 一点(sp) 11.滴定终点误差:滴定终点与化学计量点不一致造成的误差(TE), 简称终点误差,又称滴定误差 12.滴定曲线(Titration curve): 以作图的方式描述滴定过程中组分 浓度的变化。以加入的滴定剂体积(或滴定百分数)为横坐标,溶液的组分浓度或与浓度相关的某种参数(pH, pM等)为纵坐标绘制的曲线 13.滴定突跃范围;在化学计量点前后±0.1%(滴定分析允许误差) 范围内,溶液参数将发生急剧变化,这种参数(如酸碱滴定中的pH)的突然改变就是滴定突跃,突跃所在的范围称为突跃范围。

14.指示剂的变色范围;指示剂由一种型体颜色变为另一型体颜色 的范围称为指示剂的变色范围。 15.指示剂的理论变色点;当两者浓度相等时,即[In]=[XIn],溶 液呈现指示剂的中间过渡颜色,这一点称为指示剂的理论变色点 16.基准物质:能用于直接配制或标定标准溶液的物质. 17.滴定度;T T/B指每毫升滴定剂溶液相当于待测物的质量 18.均化效应(拉平效应):能将不同强度的酸或碱均化到溶剂 化质子(或溶剂阴离子)水平的效应 19.区分效应:能区分酸碱强弱的效应 20.酸效应:由于H+存在,在H+与Y之间发生副反应,使Y参加主 反应能力降低的现象. 21.共存离子效应:溶液中存在其他金属离子N时,Y与N形成配 合物,而使Y参与主反应能力降低的现象 22.配位效应:由于其他配位剂L与M发生副反应,使金属离子 M与配位剂Y参加主反应能力降低的现象. 23.金属离子指示剂:配位滴定中,能与金属离子生成有色配合物 从而指示滴定过程中金属离子浓度变化的显色剂(多为有机染料、弱酸). 24.指示剂的封闭现象:化学计量点时不见指示剂变色 25.指示剂的僵化现象:化学计量点时指示剂变色缓慢. 26.条件电位:一定介质条件下,氧化态和还原态的分析浓度均为

无机及分析化学课后习习题第九章答案

欢迎阅读 一、选择题 在给出的4个选项中,请选出1个正确答案。 1. 下列物质中,不适宜做配体的是( ) A. S 2O 32- B. H 2O C. Br - D. NH 4+ 解:选D 。NH 4+中的N 没有孤对电子。 2. 下列配离子中,属于外轨配合物的是( ) A. [FeF 6]3- B. [Cr (NH 3) 6]3+ C. [Au(Cl)4]- D. [Ni(CN)4] 2- 3-3+323. A. 解:选轨道杂4. 5. 6. 在强酸 7. A. 时,会发生8. 某金属指示剂在溶液中存在下列平衡: H 2In - ==== HIn 2- ==== In 3- ??? ?紫红???? 蓝 ?橙 它与金属离子形成的配合物显红色,使用该指示剂的pH 范围是( ) A. <6.3???????? B. >6.3????????? C. 7~10?????? D. 6.3±1 解:选C 。该指示剂在pH <6.3??或pH >12时,游离指示剂的颜色与其金属离子配合物的颜色没有明显的差别,在pH 8~10??时进行滴定,终点由金属离子配合物的酒红色变成游离指示剂的蓝色,颜色变化才显着。 9. 在pH 为4左右,用EDTA 滴定Zn 2+,下列哪些离子不干扰滴定( )

A. Al 3+ B. Hg 2+ C. Mg 2+ D. Cu 2+ 解:选C 。比较它们配合物的相对稳定性,并从酸效应曲线上的相对位置判断。 10. 己知Bi 3+的浓度为0.02 mol·L -1,log θBiY K =27.94,则用EDTA 滴定时所允许的最低pH 值 为( ) A. 0.6 B. 0.8 C. 0.9 D. 0.4 解:选A.由单一离子被准确滴定的条件推出: 将数据代入得到 )(lg H Y α≤20.24,查表得到滴定时所允许的最低pH 值。 二、填空题 1. 列表填空,指出下列配合物的中心离子(或原子)、配体、配位原子和配位数;确定配离子和形成体的电荷数,并给出它们的命名。 (1)[CrCl 2(3) K 2(4) Na 3(5)[PtCl 2(H 2O)2(11)K 22. 由于_生成更稳定的配合物[Ag(CN)2]- _______,平衡向 生成S 2O 32-方向 移动。 3. [Fe(SCN)6]3-溶液中存在的配位平衡为_[Fe(SCN)6]3-═ Fe 3+ + 6SCN -_,加入SnCl 2,由于 Fe 3+被还原 ,平衡向 向生成SCN -方向 移动。 4. 单一金属离子用EDTA 直接准确滴定的条件是 6)./lg(/≥θθMY M K c c 。 5. 若溶液中同时存在0.01 mol·L -1的M 、N 两种离子,用EDTA 作滴定剂,要分别测定M 和N 离子含量,则它们应满足6)/lg(θ'MY θM ≥?K c c , 6)/lg(θ'NY N ≥?K c c θ ; 6lg θ'≥?K 6. 以铬黑T为指示剂,溶液pH 值必须维持 7~10 ;滴定到终点时溶液 由 红色 色变为 蓝色 色。 7. 一般要求金属指示剂的≥θ'MIn lg K 2 ,否则,会使终点提前;若金属指示剂的

金属材料学名词解释总

二.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。3)奥氏体形成元素: 在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb, Ti 等。 5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。如V,Nb, Ti等都属于此类型。 7)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。8)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。 9)合金渗碳体:渗碳体内经常固溶有其他元素,在碳钢中,一部分铁为锰所置换;在合金钢中为铬、钨、钼等元素所置换,形成合金渗碳体。 10)二次硬化:淬火钢在较高温度下回火,硬度不降低反而升高的现象称为二次硬化 11)变质处理:就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒。 12)回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解,碳化物的析出与铁素体的再结晶)的抵抗能力。 13)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 14)红硬性:指材料在一定温度下保持一定时间后所能保持其硬度的能力。 15)微合金钢:指化学成分规范上明确列入需加入一种或几种碳氮化物形成元素。 16)蠕变极限:在某温度下,在规定时间达到规定变形时所能承受的最大应力。 17)固溶强化:通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。 18)细晶强化:通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化 19)晶间腐蚀:晶界上析出连续网状富铬的Cr23C6引起晶界周围基体产生贫铬区,贫铬区成为微阳极而发生的腐蚀。

滴定终点与指示剂的选择

滴定终点与指示剂的选择 酸碱中和滴定的关键:一要准确测定出参加中和反应的酸、碱溶液的体积;二要准确判断中和反应是否恰好完全反应。 酸碱指示剂可在中和反应终点时出现颜色变化,因此终点判断须选择合适指示剂。 酸碱恰好完全中和的时刻叫滴定终点,为准确判断滴定终点,须选用变色明显,变色范围的pH与恰好中和时的pH吻合的酸碱指示剂。 指示剂的变色范围越窄越好,pH稍有变化,指示剂就能改变颜色。石蕊溶液由于变色范围较宽,且在滴定终点时颜色的变化不易观察,所以在中和滴定中不采用。 酚酞和甲基橙是中和滴定时常用的指示剂,其变色范围分别是:甲基橙的pH 在3.1~4.4之间,酚酞的pH在8.2~10.0之间。如用0.1000 mol/L的NaOH 溶液去滴定20.00 mL 0.1000 mol/L 的盐酸溶液,理论上应用去NaOH溶液20.00 mL,这时溶液的pH=7。但如果用酚酞作指示剂,在它所指示的滴定终点时,pH ≠7,而是在8.2~10.0之间。实际计算表明,当滴定到终点时,溶液的pH并不一定等于7,而是存在误差的。这是由指示剂的变色范围所导致的,所造成的误差是在许可范围之内,可以忽略不计。 溶液颜色的变化由浅到深容易观察,而由深变浅不易观察。强酸强碱之间的互滴,尽管甲基橙或酚酞都可以选用。但为了减小误差,应选择在滴定终点时使溶液颜色由浅变深的指示剂。如强酸滴定强碱时,甲基橙加在碱里,达到滴定终点时,溶液颜色由黄色变橙色,易于观察,故选择甲基橙。用强碱滴定强酸时,酚酞加在酸中,达到滴定终点时,溶液颜色由无色变浅红色,易于观察,故选择酚酞。 若酸与碱中有一方是弱的,则要根据中和后所得的盐溶液的pH来确定选择哪一种指示剂。一般说来:强酸中和弱碱时,选择甲基橙(变色范围pH在3.1~4.4之间,生成的强酸弱碱盐显酸性);强碱中和弱酸时,选择酚酞(变色范围pH在8.2~10.0之间,生成的强碱弱酸盐显碱性)。 一、选择指示剂 的水溶液的pH=3.9,则可推断用标【例题1】已知常温、常压下,饱和CO 2 准盐酸溶液滴定碳酸氢钠水溶液时,适宜选择的指示剂及滴定终点时颜色变化的情况是()。 A. 石蕊,由蓝变红 B. 甲基橙,由橙变黄 C. 酚酞,红色褪去 D. 甲基橙,由黄变橙

金属指示剂的封闭现象

金属指示剂的封闭现象、僵化现象、氧化现象 (1 )封闭现象 某些金属离子与指示剂形成的络合物较其与EDTA 的络合物更稳定。如果溶液中存在着这些金属离子,即使滴定已经到达计量点,甚至过量EDTA 也不能夺取出MIn 络合物中的金属离子而使游离的指示剂In 释放出来,因而看不到滴定终点应有的颜色突变。这种现象称为指示剂的封闭现象。如果是被测离子导致的封闭,应选择更适宜的指示剂;如果是由共存的其它金属离子导致的封闭,则应采取适当的掩蔽剂掩蔽干扰离子的影响。 (2 )僵化现象 有些指示剂或MIn 络合物在水中的溶解度较小,或因MIn 只稍逊于MY 的稳定性,致使EDTA 与MIn 之间的置换反应速率缓慢,终点拖长或颜色变化很不敏锐。这种现象称为指示剂的僵化现象。克服僵化现象的措施是选择更合适的指示剂或适当加热,提高络合物的溶解度并加快滴定终点时置换反应的速度(接近终点时放慢滴定速度并剧烈振荡) (3 )氧化变质现象 金属指示剂大多是分子中含有许多双键的有机染料,易被日光、空气和氧化剂所分解;有些指示剂在水溶液中不稳定,日久会因氧化或聚合而变质。这种现象称为指示剂的氧化变质现象。克服氧化变质现象的措施一般有二种:一是加入适宜的还原剂防止其氧化,或加入三乙醇胺以防止其聚合;二是配成固溶体,即以NaCl 为稀释剂,按质量比1:100 配成固体混合物使用,这样减小氧化变质的速度,可以保存更长的时间。 有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。 位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的(即形成共价键)。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷、氮等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。 有机化学物质的分类主要是按照其决定性作用,能代表化学物质的基团也就是官能团的不同来进行分类的。可分为:烷烃,烯烃,炔烃,芳香烃(以上为烃类);卤代烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物,胺类,硝基化合物,腈类,含硫有机化合物(如硫醇,硫醚,硫酚,磺酸,砜与亚砜等),含磷有机化合物等元素有机化合物,杂环化合物等(以上为烃衍生物)。

材料科学基础_名词解释

金属键: 金属键(metallic bond)是化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成. 晶体: 是由许多质点(包括原子、离子或分子)在三维空间作有规则的周期性重复排列而构成的固体 同素异晶转变(并举例): 金属在固态下随温度的变化,由一种晶格变为另一种晶格的现象,称为金属的同素异晶转变。液态纯铁冷却到1538℃时,结晶成具有体心立方晶格的δ-Fe;继续冷到1394℃时发生同素异晶的转变,转变为面心立方晶格γ-Fe;再继续冷却到912℃时,γ-Fe又转变为体心立方晶格的α-Fe。 晶胞: 在空间点阵中,能代表空间点阵结构特点的小平行六面体,反映晶格特征的最小几何单元。 点阵常数: 晶胞三条棱边的边长a、b、c及晶轴之间的夹角α、β、γ称为晶胞参数 晶面指数: 晶体中原子所构成的平面。 晶面族: 晶体中具有等同条件(这些晶面的原子排列情况和面间距完全相同),而只是空间位向不同的各组晶面称为晶面族 晶向指数: 晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

晶向族(举例); 晶体结构中那些原子密度相同的等同晶向称为晶向族。<111>:[111],[-1-11][11-1][-1-1-1][1-1-1][-111][-11-1][1-11] 晶带和晶带轴: 所有相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴。 配位数: 在晶体中,与某一原子最邻近且等距离的原子数称为配位数 致密度: 晶胞内原子球所占体积与晶胞体积之比值 晶面间距: 两近邻平行晶面间的垂直距离 对称:通过某种几何操作后物体空间性质完全还原为原始状态 空间点阵:将构成物质结构的粒子抽象为质点后,质点在三维空间的排列情况 布拉菲点阵:考虑点阵上的阵点的具体排列而得到的点阵具体排列形式,而不是强调是布拉菲数学计算得到的十四种排列 固溶体:溶质原子在固态的溶剂中的晶格或间隙位置存在,晶体结构保持溶剂的物质 中间相:两种或以上元素原子形成与其组元的晶体结构均不相同的化合物 准晶:有独特结构和对称性的物质,原子排列在晶体的有序

酸碱滴定分析中指示剂的选择

酸碱滴定分析中指示剂的选择 摘要:滴定分析法,又叫容量分析法,将已知准确浓度的标准溶液,滴加到被测溶液中(或者将被测溶液滴加到标准溶液中),直到所加的标准溶液与被测物质按化学计量关系定量反应为止,然后测量标准溶液消耗的体积,根据标准溶液的浓度和所消耗的体积,算出待测物质的含量。这种定量分析的方法称为滴定分析法,它是一种简便、快速和应用广泛的定量分析方法,在常量分析中有较高的准确度.一般来说,由于在计量点是试液的外观并无明显变化,应此我们需要加入合适的指示剂,使滴定分析时滴定至颜色发生突变来指示终点,这就要求我们应该寻求什么样的指示剂来指示终点,才能减少滴定误差. 关键词:酸碱滴定、指示剂、突变 滴定分析法是将一种已知准确浓度的试剂溶液,滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量定量反应为止,根据试剂溶液的浓度和消耗的体积,计算被测物质的含量.这种已知准确浓度的试剂溶液称为滴定液.将滴定液从滴定管中加到被测物质溶液中的过程叫做滴定.当加入滴定液中物质的量与被测物质的量按化学计量定量反应完成时,反应达到了计量点。在滴定过程中,指示剂发生颜色变化的转变点称为滴定终点。滴定终点与计量点不一定恰恰符合,由此所造成分析的误差叫做滴定误差。 适合滴定分析的化学反应应该具备以下几个条件: (1)反应必须按方程式定量地完成,通常要求在99.9%以上,这是定量计算的基础。 (2)反应能够迅速地完成(有时可加热或用催化剂以加速反应)。 (3)共存物质不干扰主要反应,或用适当的方法消除其干扰。 (4)有比较简便的方法确定计量点(指示滴定终点)。

指示剂是化学试剂中的一类,在一定介质条件下,其颜色能发生变化 、能产生混浊或沉淀,以及有荧光现象等。常用它检验溶液的酸碱性;滴定分析中用来指示滴定终点;环境检测中检验有害物。一般分为酸碱指示剂、氧化还原指示剂、金属指示剂、吸附指示剂等。 另一种说法是指示剂是一种用以指示滴定终点的试剂,在各类滴定 过程中,随着滴定剂的加入,被滴定物质和滴定剂的浓度都在不断变化,在等当点附近,离子浓度会发生较大变化,能够对这种离子浓度变化作出显示(如改变溶液颜色,生成沉淀等)的试剂就叫指示剂。如果滴定剂或被滴定物质是有色的,它们本身就具有指示剂的作用,如高锰酸钾。 指示剂的分类一般分为以下几种: 4、沉淀滴定指示剂。主要是Ag+与卤素离子的滴定,以铬酸钾、铁铵矾或荧光黄作指示剂。 实验室中常用的酸碱指示剂 通用指示剂是多种酸碱指示剂的混合物,它指在不同的pH值下显示相应不同的颜色下表是一些实验室中常用的酸碱指示剂。指示剂通常会在一些pH值范围显示过渡颜色转变。 例如:酚红在低pH值时呈现黄色,在高pH值时呈现红色,但在pH6.6至8.0间会呈现橙色。其过渡、转变颜色的pH范围会受指示剂的浓度或温度的影响而出现轻微的变化。

电镀名词解释

电镀专业术语 1 电镀常识 表面处理的基本过程大致分为三个阶段:前处理,中间处理和后处理。 1.1 前处理 零件在处理之前,程度不同地存在着毛刺和油污,有的严重腐蚀,给中间处理带来很大困难,给化学或电化学过程增加额外阻力,有时甚至使零件局部或整个表面不能获得镀层或膜层,还会污染电解液,影响表面处理层的质量。包括除油、浸蚀,磨光、抛光、滚光、吹砂、局部保护、装挂、加辅助电极等。 1.2 中间处理 是赋予零件各种预期性能的主要阶段,是表面处理的核心,表面处理质量的好坏主要取决于这一阶段的处理。 1.3 后处理 是对膜层和镀层的辅助处理。 2 电镀过程中的基本术语 2.1 分散能力 在特定条件下,一定溶液使电极(通常是阴极)镀层分布比初次电流分布所获得的结果更为均匀的能力。亦称均镀能力。 2.2 覆盖能力 镀液在特定条件下凹槽或深孔处沉积金属的能力。亦称深镀能力。 2.3 阳极 能够接受反应物所给出电子的电极,即发生氧化反应的电极。 2.4 不溶性阳极 在电流通过时,不发生阳极溶解反应的电极。 2.5 阴极 反应于其上获得电子的电极,即发生还原反应的电极。 2.6 电流密度 单位面积电极上通过的电流强度,通常以A/dm2 表示。 2.7 电流密度范围 能获得合格镀层的电流密度区间。 2.8 电流效率 电极上通过单位电量时,其一反应形成之产物的实际重量与其电化当量之比,通常以百分数表示。 2.9 阴极性镀层 电极电位的代数值比基体金属大的金属镀层。 2.10 阳极性镀层 电极电位的代数值比基体金属小的金属镀层。 2.11 阳极泥 在电流作用下阳极溶解后的残留物。 2.12 沉积速度 单位时间内零件表面沉积出金属的厚度。 2.13 初次电流分布 在电极极化不存在时,电流在电极表面上的分布。 2.14 活化 使金属表面钝化状态消失的作用。

分析化学复习题(I).doc

分析化学复习题6 一、单项选择题 1.EDTA能与多种金属离子进行配位反应。在其多种存在形式中,以何种形式与金属离子 形成的配合物最稳定?( )A.H2Y2-B.H3Y-C.H4Y D.Y4- 2.金属离子与EDTA形成稳定配合物的主要原因是( ) A.形成环状螯合物B.配位比简单 C.配合物的溶解度大D.配合物的颜色较深 3.浓度为C mol/L的EDTA溶液,在某酸度下Y4-离子的酸效应系数为αY(H),则该离子在 总浓度中所占的比例为() A.1/αY(H)B.αY(H)C.C/αY(H)D.αY(H)×C 4.EDTA(Na2H2Y)水溶液中,无质子弱酸根离子Y4-的酸效应系数αY(H)等于: A.[Y4-]/[Y]总B.[Y]总/[Y4-] C.[H+]/[Y]总D.[Y]总/[H4Y] (式中[Y]总=[H6Y2+]+[H5Y+]+[H4Y]+[H3Y-]+[H2Y2-]+[HY3-]+[Y4-]) 5.l.000mol/L EDTA溶液,Y4-离子的酸效应系数logαY(H)=1.00,则该离子的分布百分比 为()A.20% B.5% C.10% D.0.1% 6.与EDTA配位滴定突跃范围大小关系最小的因素是() A.酸度B.金属离子浓度C.温度D.辅助配体浓度 7.EDTA直接法配位滴定金属离子M,终点时所呈现的颜色通常是() A.金属指示剂与被测金属离子形成配合物的颜色B.游离的金属指示剂的颜色 C.游离的金属离子的颜色D.EDTA与金属指示剂形成配合物的颜色 8.用EDTA法测定自来水的硬度,已知水中含有少量Fe3+,某同学用NH3-NH4Cl调pH=9.6, 选铬黑T为指示剂,用EDTA标准溶液滴定,但溶液一直是红色找不到终点,其原因是()A.Fe3+封闭了指示剂B.pH太高C.缓冲溶液选错D.指示剂失效9.金属指示剂一般为有机弱酸或弱碱,它具有酸碱指示剂的性质,同时它也是()A.有颜色的金属离子B.无颜色的金属离子 C.金属离子的还原剂D.金属离子的配位剂 10.当溶液中有两种金属离子共存时,若要求滴定误差小于0.1%,则两种金属离子的浓度 与条件稳定常数乘积的常用对数差值应大于() A.7 B.6 C.5 D.4 11.用EDTA配位滴定法测定Al3+时,先加入过量EDTA洛液后,用Cu2+标准溶液返滴定,

相关文档