文档库 最新最全的文档下载
当前位置:文档库 › 球罐结构设计

球罐结构设计

球罐结构设计
球罐结构设计

第二章 球罐结构设计

球壳球瓣结构尺寸计算 设计计算参数:

球罐内径:D=12450mm []23341-表P

几何容积:V=974m 3 公称容积:V 1=1000m 3

球壳分带数:N=3 支柱根数:F=8

各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7

图 2-1混合式排板结构球罐

混合式结构排板的计算:

1.符号说明:

R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16)

0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2

弧长L )=1800βR π =180

70622514.3??=

弦长L =2Rsin(20β)=2x6225×sin(2

70

)=7141mm

弧长1B )=N R π2cos(20β)=16

14.362252?x ×cos 270

=

弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2

5

.22=

弧长2B )=N R π2=16

14

.362252?x =

弦长2B =2Rsin 2α=2x6225×sin(2

5

.22)=

弦长D =2R )2

(cos )2(

cos 120

β- =2x6225x )2

5.22(cos )270(

cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225

7413.0

) =

极板(图2-3)尺寸计算:

图2-3

对角线弧长与弦长最大间距: H=)2

(

sin 121

2ββ++=)112

44

(

sin 12++ = 弦长1B =

H R )2sin(

221

ββ+=139

.1)

11244

sin(62252+x x =

弧长1B )=90R πarcsin(2R B 1)=906225

14.3x arcsin(2x62253.5953)=

弦长0D =21B )

=2×=

弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225

8774)=

弦长2B =2Rsin(

21

2ββ+)=2x6225xsin(

112

44

+)=

弧长2B )=180)2(21ββ+R π=180

2x11)(44622514.3+??=

(1)极中板(图2-4)尺寸计算:

图2-4

对角线弦长与弧长的最大间距:

A=)2

(

sin )2

(

sin 121

21

2βββ+-=

弧长2B )=180

1

βR π=

弦长2B =2Rsin(

2

1

β)= 弧长2L )=180)2(R 21ββ+π=

弦长2L =2Rsin(21

2ββ+)=

弦长1L =A )

2sin()2cos(2R 21

1βββ+= 弧长1L )=90

R πarcsin(R L 21

)=

弦长1B =

A

R )

2

cos()2

sin(

221

1

βββ+=

弧长1B )=90R πarcsin(2R

B 1)=

弦长D =2211B +L =

弧长D )=90

R πarcsin(2R D )=

(2)侧极板(图2-5)尺寸计算:

图2-5

弦长1L =2Rcos(

21β)sin(21

2

ββ+)/A= 弧长1L )=90

R πarcsin (R L 21

)=

弦长 2L =2Rsin(

21

2

ββ+)/H=

弧长 2L =90

R

πarcsin(R L 22)=

K=2Rsin(21β)cos(21

2

ββ+)/A= 式中 同前

1ε=arcsin(

R L 22)-arcsin (2R

K )=

弧长2B )=180

2

βR π=

弦长2B =2Rsin(

2

2

β)=

弧长1B )=180

1

επR =

弦长D =21L L 1+B =

弧长D )=90

R πarcsin(2R D

)=

4.极边板(图2-6)尺寸计算:

图2-6

弧长1L )=2R πcos(2

β)=

弦长1L =2Rcos(

2

β)=

弦长3L =2Rsin(

22

2

ββ+)/H=

弧长3L )=90

R πarcsin(2R L 3

)=

弧长2B )=180

2

βR π=

弦长2B =2Rsin(2

2

β)=

式中 2α=

2

1800

β--arcsin(R 2D 0)= M=22Rsin(

21

2

ββ+)/H=

3α=90°-

2

β+arcsin(

R

M

2)= 4α=2 arcsin[

2

2

sin(23α)]=

弧长1B =180

2

αR π=

弦长1B =2Rsin(2

2

α)=

弦长D =3112L L B +=

弧长D )=90

R πarcsin(2R D )=

弧长2L =

180

4

απR = 弦长2L =2Rsin(

2

3

α)=

第四章 强度计算

球壳计算

设计压力:

设计温度:-20 — 40℃

试验压力: + H*ρ*g*10-6 = 壳壁厚度

球壳材料采用1Gr17,σ

b =450MPa,常温下许用应力为[σ]t=150MPa.[]14

14

3-

P

取焊缝系数:φ=[1]P110

腐蚀裕量C

2=2mm,钢板厚度负偏差C

1

=0mm,

故厚度附加量C=C

1+C

2

=2mm.[]13

6

3-

P

液柱高度H: H=K

1

R=*6225=9960mm

液体的静压力P=ρgH = 6225**9960*10-9 =计算压力:Pc = + =

球壳所需壁厚:

δ

1=C

P

D

P

c

t

c+

-

?

σ]

[4

[]8

4

69

1-

P= + 2 =

圆整可取δ=38mm

4.2接管和法兰的选择

接管根据JBM0503-08选用DN25 DN40 DN50接管。

法兰由JBT 81—1994选择。

4.3

人孔尺寸组合如下图所示:

盘梯

近似球面的螺旋形盘梯的设计计算

R 1 = R + δ + t R

1

---假想圆球的半径;

R = 6225mm----球罐的内半径

δ= 38mm---球甲壁板厚度

t = 200 —梯子或者顶平台与球面最小距离R

1

=6225 + 38 + 200 = 6463mm

R

2max = (R

1

2-(R+δ

1

– b

1

)2)

δ

1

= 5mm——顶平台板厚度

b

1

= 180mm——梯子侧板宽

R

2max

=2273mm

R 2 <= R

2max

选R

2

=2000mm

R

2

——顶部平台半径

Z 1 = b

1

+ (R

1

2-R

2

2)=

b = 1500mm ——梯子宽度

r = R

1

2 + R

1

b + (

b

2

)2 - R

2

2

2R

1

+ b

= ——梯子中心回转半径

|X

0| =

R

1

2 + R

1

b + (

b

2

)2 + R

2

2

2R

1

+ b

= ——盘梯圆柱中心轴线与球心的距离 X

在坐标中的值为负

α终 = arccos(r

X

) =

洒水孔

1000m3以上的中型球罐可设置内部转梯,本球罐采用内部转梯淋水管的洒水孔径为4mm以上

球罐直径: D

f

= 12450mm

壁厚 t = 38mm

设计压力P =

球罐外表面: A = 4πR2 =

洒水量 2 L/min*m2

水流速度 v = 2m/s = 120m/min

水压:

所需撒水量 Q = * 2 = 980L/min*m2

所需管径: D = 2d = * (4Q

πv

) = ≈ 11mm

洒水孔数:

算的N = ≈ 82个

保冷措施:

压力表

压力表的最大刻度为正常运转压力的倍以上(不要超过3倍)

取:最大刻度 Mpa

压力表表面直径应大于150mm

压力表前应安装截止阀,以便于在仪表标校时可以取下压力表

支柱拉杆

球罐支座是球罐中用以支承本体质量和储存物料质量的结构部件,为了对付各种影响因素,结构形式比较多,设计计算也比较复杂。

支撑主要可分为柱式支撑和裙式支撑,此外,还有 V型柱式支撑,三桩合一型柱式支撑,裙式支撑,锥底支撑,钢筋混凝土连续基础支撑,半埋式支撑,高架式支撑,可胀缩的支撑

赤道正切柱式支座设计

a)赤道正切柱式支座必须能够承受作用于球罐的各种载荷,支柱构建要由足

够的强度和稳定性

b)

拉杆结构:

拉杆是作为承受风载荷以及地震载荷的部件,增加球罐的稳定性而设置的,栏杆结构可分为可调式和固定式。目前,国内自行建造的球罐和引进球罐的大部分采用可调式拉杆,本球罐的支承结构采用单层可调式拉杆结构,如图(3-13)

1 -支柱

2 - 支耳

3 –长拉杆

4 –调节螺母

5 –段拉杆

支柱外直径d

= 526mm;

内直径 d

1

=506mm

支柱计算长度L=8000mm

支柱金属横截面积 A:648096mm2

支柱横截面的惯性矩:π

64

(d

4-d

1

4) = *108mm4

基本雪压值q:550N/m2

支柱材料:Q235A

支柱材料屈服极限σ

s

:235Mpa

支柱数目n: 8 根

支柱载荷计算

静载荷

球壳质量计算:

球壳平均直径:D=12450+42=12492mm

M1 =πD2*δ*ρ

=*124922x38x10-9x7900Kg/m3 ≈ (吨)

液体NH

3

质量(装满 M2 = 1000 x 625kg/m3 x10-9x ≈ (吨)液压实验时液体的质量:M3=1000*1000Kg/m3 *=900吨

雪压质量 M4=(π/4g)D2 qCs*10-6= (吨)

保温层质量

M5=π(D+ t)2 tρ*10-9 +400 = 吨

支柱和拉杆的质量:M6=吨

附件的质量:M7=吨

操作状态下的球罐质量:

M0 = M1+M2+M4+M5 +M7=吨

液压状态下的球罐的质量:

Mf = M1+ M3+ M6+M7 = 吨

球罐最小质量

Mmin = M1+M6+M7=吨

球罐每根支柱承受的静载荷:

G 0 =

m

g

n

=

++++*103*

8

= 907480N

液压试验条件下:

液压实验时液体的质量:M3=1000*1000Kg/m3 *=900吨Mt = M1+M3+M6+M7

Gt = m t g n = +900++*103*8 = 1327吨

动载荷

地震水平载荷

拉杆影响系数:λ = 1 – (L 1L )2 (3-2L 1L ) = 1- (52009000 )2 (3-2x5200

9000 ) =

球罐中心处单位力引起的水平位移

v = λL 12nEJ *103 =*800012*8*192000**108 *10

3

= *10-8 基本自震周期 T= 2πv m 0 = S

设计地震烈度为7度,按表4-2,地震影响系数的最大值αmax = , α= (T g

T

)αmax =

地震水平力

Q z = C z αm 0g = **740800* = 303824N 风载荷

球罐建造的基本风压值: q 0 = 600N/m 2 查表4-9,风压值高度变化系数f 1 = , 查表4-10,动载荷系数ξ= ,故风振系数k 2 = 1+m ξ= 水平风力:

Q f = 1

4

π(D 0 + 2t)2 k 1k 2q 0f 1f 2*10-8

=1

4

**(12450 + 2*65)2 **600***10-6 = 50933N Q z > Q f 取水平载荷F = Q z = 303824N 推到弯矩形成的支柱垂直力 推到弯矩:

M=FL 2 = 303824* 2500 = ×108 N*mm 由M 对各支柱产生的垂直力 F i =

Mcos θi ηR η= n

2

Fa = 错误!= 30522N Fb = 错误!= 21579N Fc = 错误!= 0N

剪切力形成的支柱垂直载荷如图4-8,水平力F的方向为A向,拉杆构架的方为角θ

AB

=,

θ

AC

=

于是:

C ij =

L

2

Fsinθ

ij

nRsin

180

n

C ab =

5500* 303824*

8*6225sin

180

8

= 33555N

C bc =

5500* 303824*

8*6225sin

180

8

=80410N

T

ijmax =

C

ijmax

cosα

=

80410N

5500

6225

=

拉杆直径:

d=2(

T

ijmax

π[α]

)+C = 2(错误!)+ 2 =

取拉杆直径为φ30mm

连接部位强度计算

支柱与拉杆,支柱与球壳以及支柱底座等结构图4-13 图4-15相同

销钉、耳板

销钉直径的计算销钉材料选用Q235-A钢

d

销 =(

2T

ijmax

π[τ]

)= ( 错误!)=

取销钉直径为φ25mm

耳板和翼板厚度计算耳板和翼板都选用Q235-A钢。耳板和翼板厚度

t =

T

ijmax

[σ]d

= 错误!=

取耳板厚度为18mm。翼板厚度为9mm

支柱附加压缩载荷本球罐无允许沉降差的数据,为示例起见,以允许沉降误差为1mm计算附加压缩载荷,操作条件下:

ΔL =

液压试验条件下:

P = G

t

= 1327吨

ΔL` = PL EA = 1327000*8000

192000*12450

=

P`T = (ΔL`-α)EA L =192000*12450

8000 = 1027872N

P`e = P- P`T 2 = 1327000- 1027872

2

=149564N

载荷组合 在载荷组合中,以每根支柱都可以承受附加压缩载荷计,那么在操作状态下每根支柱的载荷情况最大的一组如下: G 0=Pg = 907480N

Qmax=P g +F c +C bc + P`e = 907480 + 0 + 80410 + 149564 = 1137454N(参考支柱载荷组合表得出公式p82)

Q`t = P`t + P`e = 1345682N 此钢许用应力 ψ = **235 =

支柱压缩应力σ=

1345682

12505

= MPa <ψ 满足条件 C bc = 5500* 303824*8*6225sin 180

8

=80410N

F `ijmax = C bc tan α= 80410*4764

5500 = 146201N (4764 为支杆每45度角一个所对应的弦长)

地脚螺栓

地脚螺栓的计算,每根支柱采用2个地脚螺栓,于是: dB = (4* F `ijmax

πn d [τ]B

)+C B = (错误!)+ =

采用M36的地脚螺栓 支柱地板

支柱地板的直径和厚度计算 查地板基础材料的允许压应力[σ]bc =295Mpa 地板直径:

D h1=(4*Q`i π[σ]bc )=(4*1345682 π*295 *100)

=

取地板直径为φ770mm.

地板厚度:

支柱作用于地板上的压缩应力为:

σ

t =

Q`

i

π*D

h1

2/4

=

1345682

π*7702/4

=

t=(3*σ

t

* b2

[σ]

bc

) + C

b

= (错误!)+ 2 =

取垫板厚度为20mm。

球罐热处理

2000m3球罐整体热处理工法 *****第四安装防腐有限公司 球罐的整体热处理是一个特殊过程,具有不可逆性的特点。对各方面的要求比较高,从外部条件来讲,必须选择良好的天气,必须保证电源供应。从内部条件来讲,必须做好整套热处理设备的预试验工作,确保各部位如供油系统、供风系统、测温系统等运行正常,同时要准备好备品备件及机械仪表抢修工作。热处理还需要多工种紧密配合,分工明确,责任到人。我公司承建的******公司LPG储运项目的两台2000m3LPG球罐,内径为φ15700mm,材质16MnR,共有34块球壳板,球壳板厚度为49mm。该两台罐容积较大,厚度较厚,由于国外施工条件限制,造成热处理难度较大,在施工过程中经我公司技术人员的积极努力,保证了整体热处理的一次成功,经认真总结,形成了此工法。 1. 热处理前应具备的条件 1.1所有球壳板焊缝、预焊板与球壳板间焊缝及产品试板焊缝均已焊接完毕。 1.2球罐内外所有组装用工卡具、吊耳均已清除,焊缝打磨完毕,球壳板缺陷修补完毕。 1.3焊缝的各项无损检测工作全部完成。 1.4产品试板均匀布置在球壳高温区,与球壳贴紧。 1.5全部接管已用盲板封堵。 1.6球罐几何尺寸符合规范要求。 1.7已采取防雨、防风、防火、防停电等措施。 2热处理工艺

柴油雾化内燃法,使用我公司自行研制的整套热处理设备。 2.1升温速度,300℃以下不限;300℃以上,升温速度应控制在50-80℃/h 范围内。 2.2恒温温度和时间:恒温温度为625±25℃,恒温时间为120分钟。 2.3降温速度:300℃以上应控制在30-50℃/h范围内,300℃以下可自然冷却。 2.4在300℃以上阶段,球壳表面上任意两测温点的温差不得大于130℃。3热处理前的准备工作 3.1球体的保温 a为了尽量减少热量散失,球体外表面采用两层软质保温材料,内外层均为60mm厚的硅酸铝缝合毡。 b在上、下人孔位置附近各放置1个Φ2600mmδ4mm的环形钢板带圈,在赤道带上环缝附近放置1个由40×4mm扁钢制作的环形扁钢带圈,将焊有铁钉的扁钢带在环形钢板带圈与环形扁钢带圈固定,其布置间距如下图所示: c保温被挂于铁钉上,并紧贴球壳表面,接缝处要搭接严密,外层与内层保温被接缝要错开300mm。

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

5000立方米球罐整体热处理方案

5000立方米球罐整体热处理方案 、概况 根据设计要求和按照GB12337-1998《钢制球形储罐》有关技术标准,需进行焊后整体热处理,采用燃油进行热处理。为确保热处理工程质量按技术要求顺利进行,特制定如下热处理实施方案。 1、球罐主要设计参数(见表一) 球罐主要设计参数表一 序号项目参数 1 球罐直径21200mm 2 设计壁厚4 3 mm 3 公称容积7000m3 4 球罐材质15MnNiR 5 操作介质二甲醚 6 柱腿数量12根 7 柱腿直径Φ760mm 2、热处理依据 本次热处理按GB12337-1998《钢制球形储罐》标准进行整体热处理。 3、热处理的目的 为了消除球罐组装与焊接的残余应力,稳定球罐的几何尺寸,改善焊接接头和热影响区的组织和性能,达到降低硬度,提高塑性和韧性的目的,进一步释放焊缝中的有害气体,防止焊缝的氢脆和裂纹的产和生。 二、热处理方法及工艺规范 1、热处理方法 采用燃油法进行热处理 以球罐内部为炉膛,选用0号柴油为燃料,球罐外部用保温材料进行绝热保温,通过鼓风机送风和喷嘴将燃料油喷入并雾化,由电子点火器点燃,随着燃油不断燃烧产生的高温气流在球罐内壁对流传导和火焰热辐射作用,使球罐升温到热处理所需的温度。 2、热处理工艺规范 按照GB12337-1998《钢制球形储罐》选择如下热处理工艺参数和工艺曲线: (1)恒温温度600±20℃ 恒温时间2h 升温速度50-80℃/h(≤300℃时可不予控制) 降温速度30-50℃/h(≤300℃时可不予控制) 升温时的最大温差≤130℃ 降温时的最大温差≤130℃ (2)热处理工艺曲线(见图一) 三、热工计算 1、热工计算参数(见表二) 热工计算参数(表二) 序号项目参数 1 球罐内径d 21200mm 2 球壳板厚度δ43mm 3 材质15MnNiR

南京球罐施工组织设计

南京金浦锦湖化工有限公司8万吨/年丙烷装置2台1000m3丙烯球罐安装工程 施工组织设计 编制: 审核: 批准: 中国石油天然气第一建设公司 二○○七年六月

1.编制说明 1.1 本施工组织设计仅适用于南京金浦锦湖化工有限公司8万吨/年环氧丙烷装置丙烯罐区2台1000m3 丙烯球罐安装工程。 1.2 编制及施工验收依据 ●施工蓝图 ●《压力容器安全技术监察规程》质技监局锅发[1999] ●《钢制球形储罐》GB12337—1998 ●《钢制压力容器》GB150—1998 ●《球形储罐施工及验收规范》GB50094—98 ●《承压设备无损检测》JB47030.1-4730.6-2005 ●《熔敷金属中扩散氢测定方法》GB/T3965-1995 ●《金属夏比缺口冲击实验方法》GB/T229-94 ●《压力容器涂敷与运输包装》JB/T4711-2003 ●《钢制压力容器焊接工艺评定》JB4708-2000 ●《压力容器用钢板》GB6654-1996 ●《碳钢焊条》GB/T5117-1995 ●《压力容器用碳素钢和低合金钢锻件》JB4726-2000 ●《低合金钢焊条》GB/T5118-1995 ●《钢制压力容器产品焊接试板的力学性能检验》JB4744-2000 ●《压力容器用钢焊条订货技术条件》JB4747-2002 ●公司《压力容器现场组焊质量保证手册》及《质量管理手册》 2.工程概况 本工程南京金浦锦湖化工有限公司8万吨/年环氧丙烷装置2台1000m3球罐安装工程新建设备。 2.1 建设单位:南京金浦锦湖化工有限公司。 2.2 设计单位:中国天辰化学工程公司 2.3 1000m3丙烯球罐设计参数 设计压力:2.18Mpa 设计温度:50℃

丙烷丙烯储罐

丙烷丙烯储罐 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

设计依据 《化工工艺设计手册》中国石化集团上海工程有限公司第三版化学工业出版社丙烷储罐 根据要求,使用地点为室外,储存温度为--10—40℃,介质为易燃易爆的气体。温度从40℃降到-10℃时,丙烷的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。由上述条件选择危险温度为设计温度。为保证安全,对设计温度留一定的富裕量,取最高设计温度 t=50℃,最低设计温度t=﹣20℃。50℃下丙烷的饱和蒸汽压为P=,取最高工作压力Pw=。 丙烷物理性质 储存管理 储存于阴凉、干燥、通风良好的不燃库房。远离火种、热源。库温不宜超过40℃。保持容器密封。应与氧化剂、还原剂、酸类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料,储存于阴凉、干燥、通风良好的不燃库房 罐体积计算 丙烷的年产量暂定:20万吨 每天原料需求:吨

丙烷密度:吨/立方米 装料系数K : 贮存时间:1d 储罐容积: 228 6 8.04995.09 .547=??m3 设计条件 设计温度:50℃ 设计压力: 极端温度:最高50℃,最低-15℃ 抗震烈度:7 罐的选型 HG5-1580-85卧式椭圆形封头贮罐系列 该种设计罐的设计参数为: 盛装液体密度≤1200kg/m3 设计压力,,1MPa ,,,2MPa , ,3MPa ,4MPa 设计温度-20—200℃ 容器材料根据设计温度和设计压力决定罐壁材料 公称容积—100m3 公称直径DN600—DN3200mm 腐蚀裕度 由于储存条件符合HG5-1580-85卧式椭圆形封头贮罐系列,选择公称容积为100m3,公称直径为3000mm ,材料为16MnR 的卧式椭圆形封头贮罐,总数量6个,其标准代号为HG5-。 丙烯储罐 根据要求,使用地点为室外,储存温度为--10—40℃,介质为易燃易爆的气体。温度从40℃降到-10℃时,丙烯的饱和蒸气压力下降的很厉害,可以推断,在低

2000立方米大型球罐设计说明书

课程设计资料标签 资料编号: 题目球形储罐设计 姓名学号专业材料成型 指导教师成绩 资料清单 注意事项: 1、存档内容请在相应位置填上件数、份数,保存在档案盒内。每盒放3-5名学生资料,每份按序号归档, 如果其中某项已装订于论文正本内,则不按以上顺序归档。各专业可依据实际情况适当调整保存内容。 2、所有资料必须保存三年。课程设计论文(说明书)装订格式可参照毕业设计论文装订规范要求。 3、资料由学院资料室统一编号。编号规则是:年度—资料类别代码·学院代码·学期代码—顺序号,顺 序号由四位数字组成(参照《西安理工大学实践教学资料整理归档要求》)。 4、各院、系应在课程设计结束后一个月内按照规范进行资料归档。 5、特殊情况请在备注中注明,并把相关资料归档,应有当事人和负责人签名。

课程与生产设计(焊) 设计说明书 设计题目球形储罐设计 专业材料成型及控制工程 班级 学生 指导教师 2016年秋学期

目录 一、设计说明 课程设计任务书-------------------------------------------------------------------------------1 1.1 选材-----------------------------------------------------------------------------------------------2 1.2 球壳计算----------------------------------------------------------------------------------------2 1.3 球壳薄膜应力校核---------------------------------------------------- --------------------3 1.4 球壳许用外力----------------------------------------------------------------------- ----------4 1.5 球壳分瓣计算----------------------------------------------------------------------------------5 二、支柱拉杆计算 2.1计算数据---------------------------------------------------------------------------------------9 2.2 支柱载荷计算---------------------------------------------------------------------------------10 2.3支柱稳定性校核-----------------------------------------------------------------------------13 2.4拉杆计算---------------------------------------------------------------------------------------14 三、连接部位强度计算 3.1销钉直径计算-----------------------------------------------------------------------------------15 3.2耳板和翼板厚度计算-------------------------------------------------------------------------15 3.3焊缝剪应力校核-------------------------------------------------------------------------------15 3.4支柱底板的直径和厚度计算---------------------------------------------------------------16 3.5支柱与球壳连接处的应力验算------------------------------------------------------------16 3.6支柱与球壳连接焊缝强度计算------------------------------------------------------------18 四、附件设计 4.1人孔结构-----------------------------------------------------------------------------------------19 4.2 接管结构-----------------------------------------------------------------------------------------19 4.3梯子平台---------------------------------------------------------------------------------------19 4.4液面计--------------------------------------------------------------------------------------------20 五、工厂制造及现场组装 5.1 工厂制造----------------------------------------------------------------------------------------21

球罐整体热处理方案

目录 1、编制依据 (2) 2、球罐热处理前,应具备下列条件 (2) 3、热处理工艺 (3) 4、加热方法 (6) 5、保温方法 (6) 6、热处理设施安装主要要求 (7) 7、温度控制措施 (8) 8、热处理操作进程 (8) 9、热处理人员的组织与管理 (10) 10、安全注意事项 (11) 11、工作计划安排 (11)

2000m3液化石油气球罐热处理方案 一、编制依据 1.1xxx180万吨/年催化裂化装置及配套设施技改工程成品油罐区及泵房4台 2000m3液化石油气球罐施工图; 1.2《钢制球形储罐》GB12337-98; 1.3《球形储罐施工及验收规范》GB50094-98。 二、球罐热处理前,应具备下列条件 2.1球罐球体、入孔、接管及预焊件等必须全部焊接完毕,并经外观检察和无损探伤检查合格。 2.2所有无损探伤检查工作必须作完。 2.3球罐内外表面质量和几何尺寸应检验合格,记录齐全。 2.4产品试板焊接检查合格,并经监检人员确认,试板在球壳上固定应牢固。 2.5所有原始资料齐全,并经质保系责任人员签字认可,经监检单位和甲方确认。 2.6热处理系统装置必须全部安装好,各系统应调试完毕。 2.7供电系统经全面检查合格符合要求,并和有关部门联系,确保热处理期间不断电。 2.8应掌握气象资料,热处理应避开大风与下雨天气。 2.9各岗位人员应齐全到位,并经培训上岗,分工协作。 2.10施工技术方案应向有关人员交底。 2.11在脚手架及外围搭设雨布,以便防雨、防风且备用 20kw 柴油发电

机1台,防止停电,并准备消防器材防止火灾的发生。 三、热处理工艺 3.1热处理工艺系统 本次热处理工程由燃油、供油、测量、柱腿移动和排烟系统组成。3.1.1燃油系统。燃油系统采用枪式燃烧器,燃烧器与球罐下入孔相接,采用一套微机系统对热处理工程进行智能化控制,以满足工艺要求,燃料采用0号柴油通过油泵送油,经电磁阀控制进入喷嘴喷出,燃烧器鼓风机由底部送风助燃,雾化燃烧油,自动电子点火器点为燃燃油进行燃烧。 3.1.2供油系统。根据热工计算,本次罐热处理最大耗油量为874L/h,单台热处理耗油量≤4吨,储油罐一次装油量应保证单台球罐热处理全周期所需油量的1.5倍,故应设备容量为6吨的储油罐。 3.1.3温度测量控制系统。 温度测量监控系统由热电偶,补偿导线和一套PC-WK型集散控制系统对温度进行智能化测量和控制。 3.1.3.1测量点布置。按照GB12337-1998《钢制球形储罐》有关技术标准的要求,本次热处理共设测温点18个,测温点应均匀布置在球壳表面,相邻测温点间距应≤4500mm,距入孔与球壳环缝边缘200mm以内及产品试板上必须设测温点。详见测温点布置图(见下图)

球罐设计

第一章 确定设计参数、选择材料 一、确定设计参数 (一) 设计温度 储罐放在室外,罐的外表面用150mm 的保温层保温。在吉林地区,夏季可能达到的最高气温为40℃。最低气温(月平均)为-20℃。 (二) 设计压力 罐内储存的是被压缩且被冷却水冷凝的液氨。氨蒸汽被压缩到0.9~1.4MPa ,被冷却水冷凝。液氨40℃时的饱和蒸汽压由[1]查得为:P 汽=1.55MPa(绝对压力)。为保证安全,在罐顶装有安全阀,故球罐设计压力为安全阀的启动压力,即: P=(1.05-1.1)P 汽=(1.05-1.1)×1.45=1.523~1.595MPa 取设计压力P=1.6MPa (三) 焊缝系数φ 球罐采用X 坡口,双面对接焊,并进行100%的无损探伤,由[2]知φ=1.0 (四) 水压试验压力 由[4]知水压试验压力为: T P =1.25P [] []t σσ 球壳材料为16MnDR ,初选板厚为36mm,由[3]表3查得[]σ=157MPa, []t σ =157MPa 则 T P =1.25P ×157/157=1.25×1.6×1=2.06 MPa 试验时水温不得低于5℃。 (五) 球罐的基本参数 球罐盛装量为170吨/台。液氨-20℃的密度为0.664吨/M 3,,40℃时0.58吨/M 3。 球罐所需容积(按40℃计)为:V= 58 .0170=293.1M 3 已给盛装系数为0.5,即不得装满,故实际所需容积为:V=5 .0170=340M 3,其小于400M 3, 余容较大,足够用,相差17.6%,符合标准要求。 按公称容积4003设计,由[2]附录一P41查得球罐基本参数如表 一 1-1

液化石油气储罐设计

油气储运课程设计说明书 1、设计题目:卧式液化石油气储罐设计 2、设计条件: (1)操作温度:15℃ (2)设计温度:20℃ (3)操作压力:0.72MPa (4)设计压力:0.79MPa (5)介质:液化石油气 (6)公称直径:3200mm (7)公称容积:100m3 (8)圆筒长度:11300mm (9)L2=9800mm (10)A=750mm (11)设备及附件材料自选 3、设计任务: 设计参数的确定;结构分析;材料选择;强度计算及校核;焊接结构设计;标准零部件的选型;制造工艺及制造过程中的检验;设计体会;参考书目等。 4、设计要求: 由于设计参数是每个人各不相同,所以,基本上能够保证学生独立完成任务能力的锻炼,并可在碰到确实需要讨论的个别难题时仍然可以相互讨论,从而培养学生合作解决问题的能力。课程设计是在课程学习阶段结束后,学生们独立进行的工程设计工作,是总结性的、重要的教学实践环节,其目的是培养学生综合运用所学知识,理论联系实践,分析解决工程实践问题的能力。本设计学生必须完成一张A1装配图、一张A3鞍式支座图、一张A3零件图和编制技术性设计说明书一份。

摘要: 通过本次设计,锻炼了查找文献的能力,提高了计算机水平,并且对卧式储罐等大型储罐有了进一步的了解,加深了对本专业课程的认识,在设计的同时,也锻炼了学习的逻辑思维能力和实际动手能力,为今后的工作奠定了良好的基础。从液化石油气的特点,探讨有关卧式圆筒形液化石油气储罐的设计主要对其设计参数、材料选择、结构设计、安全附件及制造与检验等几个方面进行分析和计算。 关键字: 液化石油气卧式储罐设计强度

丙烯球罐的本质安全设计分析

设计技术石油化工设计 Petrochemical Design2012,29(1)1 3丙烯球罐的本质安全设计分析 王子宗,孙成龙 (中国石化工程建设公司,北京100101) 摘要:介绍了本质安全设计的基本概念。运用本质安全设计的概念对球罐的安全设计进行了分析,特别是对于丙烯球罐在安全阀泄放过程中的温压变化进行了动态模拟;对处于低温状态下球罐的温升进行了模拟,探讨了球罐的材质选择及安全防护策略。通过对丙烯球罐的各种工况进行深入的研究,选择合适的设备材料,对于保证本质安全是至关重要的,并且往往可以去掉冗余的联锁系统或降低其复杂性。 关键词:丙烯球罐本质安全设计泄压动态模拟 丙烯球罐在石油化工行业得到了广泛的使用,它往往作为上下游工艺装置之间工艺物料或最终产品的临时储存设施。因为球罐储存大量危险性很高的丙烯,操作压力比较高,一旦发生泄漏或破裂有可能造成重大的人身伤亡和财产损失。本文结合本质安全设计的一些理念,对丙烯球罐的本质安全设计进行分析研究。 1本质安全设计的基本概念 本质安全的设计主要是依靠基本的物理和化学特征,即化学品的数量、性质和操作条件等来预防人员伤害、环境破坏和财产损失,而不是单纯依靠控制系统、联锁系统、报警和操作程序来阻止事故的发生[1]。本质安全设计的基本理念包括:(1)强化/最小化:如尽量使用最少的危险物质。 (2)替代:用本质安全性更高的物质代替危险的物质,如在循环水系统中用次氯酸钠而不是氯气。 (3)减弱:如在更温和的操作条件下使用危险物质;改变危险物质的状态,尽量降低物料能量释放的影响。 (4)限制影响:如围堤、围堵性质的建筑物;增大安全距离。 (5)简化或容错:如提高设备的设计压力而取消联锁系统等附加设施。2丙烯球罐的本质安全设计分析 2.1强化/最小化 如果工艺装置没有易燃易爆物质,那我们就不用担心泄漏后发生火灾爆炸事故。在很多情况下无法消除危险物质,但可以尽量减少系统中物料的储量。因此在方案设计时,可以考虑是否取消球罐,而使用低温储存系统。很多时候必须采用球罐,此时可以考虑能否在不影响工艺操作的前提下,使球罐和管道的储存量是否可以大大减少?同样体积的球罐,装填系数为50%时,其储存的物料量要远远低于80%、90%等,结果是安全性大大提高。 2.2减弱 在丙烯出装置前或进入球罐前如果能够对物料进行闪蒸降温降压,然后使之储存在一个较低的压力下,则可以增强系统的安全性。 2.3限制影响 对于丙烯球罐,在总平面布置时,应该尽量使之远离有人的建筑物、社区及装置的常压罐区等敏感性地点,使之有足够的安全间距,这样一旦发生爆炸、火灾事故,最大限制事故的影响。图1是用安全计算软件模拟的蒸气云爆炸产生的爆炸冲 收稿日期:2011-12-26。 作者简介:王子宗,男,1988年毕业于天津大学化学工 程专业,硕士,现任中国石化工程建设公司副总经理、总工程师,一直从事技术管理工作。E-mail:Wangzz. sei@sinopec.com

球罐热处理方案

眉山市奥新能源技术有限公司 8万吨/年丙烯项目 液化烃罐区热处理方案 编制单位:眉山奥新能源项目部 编制人:彭涛 审核人: 批准人: 编制日期:年月日 印号: (盖章受控) 版本:第一版发布日期:年月日

根据GB12337-2010《钢制球形储罐》、GB50094-2010《球形储罐施工规范》有关图样有关技术标准要求,我项目部对液化烃罐区8台2000m3球罐焊后进行整体消除应力热处理。为确保热处理工程质量符合标准要求,特编制如下热处理实施方案。 一、球罐的主要设计参数 序号项目参数 1 容器类别BM-Ⅲ 2 球壳厚度56mm/50mm/42mm 3 球壳材质Q245R/Q370R 4 操作介质不合格液化气/精制液化气/丙烯/成品液化气/醚后C4 5 球罐容积2000m3 二、球罐整体热处理目的 为了消除球罐组装与焊接后的残余应力,稳定球罐的几何形状和尺寸,改善焊接接头和热影响区的组织和性能,达到降低热影响区的硬度,提高焊缝金属的塑性、韧性,进一步释放焊缝中的有害气体,特别是氢气,防止焊缝的氢脆和延迟裂纹的产生。 三、热处理的方法及工艺规范 1、热处理方法 球罐整体热处理采用燃油法进行,施工时将燃烧器安装在球罐的下人孔位置,以球罐本身为燃烧室,选用柴油为燃料,通过鼓风机送风和喷嘴将柴油喷入并雾化,由电子点火器点燃,随着燃油不断燃烧而产生的高温气流在球罐内壁对流传导和火焰热量辐射作用,使球罐不断升温至热处理工艺所要求的温度,同时球罐外表面包保温材料防止热量散失。 2、热处理工艺规范 按照GB12337-2010《钢制球形储罐》、GB50094-2010《球形储罐施工规范》及图样要求,热处理工艺参数和工艺曲线如下:

球罐保冷施工设计

球罐聚氨酯喷涂保冷 施 工 方 案 编制单位:省长兴设备防护公司审核单位: 编制人:苗培坤审核人: 批准人:苗士强批准人:

目录 一、编制依据 (1) 二、保冷工程施工技术方案和技术措施 (1) 1施工前的准备 (1) 2、施工程序和步骤 (1) 3、球罐保冷结构 (2) 4、球罐保冷施工技术措施 (2) 5、交工验收 (4) 6工期保证措施 (5) 7雨季施工保证措施 (6) 三、工程质量保证体系及主要措施 (7) 1质量管理 (7) 2质量控制机构 (7) 3质量检测及控制程序 (9) 3.1 建立、健全质量保证体系,认真落实质量责任制 (9) 3.2 抓好施工和技术准备工作 (9) 3.3 加强材料供应管理,确保材料质量 (10) 3.4 强化施工过程管理,提高过程控制能力。 (10) 3.5 工程质量管理奖惩规定 (10) 3.6 质量控制点 (11) 3.7 关键部位质量预控对策 (13) 四、(HSE)健康、安全、环境保护措施 (13) 1、HSE作业计划 (13) 1.1 HSE承诺、方针和目标 (13) 1.2 HSE人员、组织机构和职责 (14) 1.3 危害识别与控制 (15) 1.4 应急计划 (16) 1.5 应急预案 (16) 1.6 HSE监测和整改 (17) 2HSE作业指导 (19) 2.1 卫生与生活设施 (19) 2.2 个人防护装备(P.P.E) (19) 2.3 交通安全及车辆管理 (19) 2.4 材料的运输、存放、保管与有害材料处理程序 (19) 2.5 机械设备和设施 (19) 2.6 手持和电动工具 (20) 2.7 临时用电安全 (20) 2.8 脚手架、高出作业管理程序 (20) 2.9 保冷作业 (21) 3应急预案 (22) 3.1安装和试运时发生火灾的应急方案 (22)

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

球罐的焊接流程及工艺分析

信阳涉外职业技术学院毕业论文(设计) 开题报告书 论文(设计)题目:球罐的焊接流程及工艺分析 学院:信阳涉外职业技术学院 专业:焊接技术及自动化 专业:2011级焊接 姓名:孙海洋 学号:110301005 指导教师:胡巍巍 二O一三年七月十五日

一、阅读的参考文献 参考文献: [1]GB12337—1998《钢制球形储罐》[M].国家技术监督局. [2] GB150—1998《钢制压力容器》[M].国家技术监督局. [3] 徐英等.化工设备设计全书—球罐和大型储罐[M].北京:化学工业出 版社, 2005. [4] 董大擒袁凤隐.压力容器设计手册[M]. 化学工业出版社,2006. [5] 栾春远编. AutoCAD2005压力容器设计[M]. 北京:化学工业出版社, 2006. [6] 郑津洋,董其伍,桑芝富.过程设备设计[M].化学工业出版社, 2007. [7] 俞逢英.球形储罐焊接工程技术[M].机械工业出版社,2000. [8] 国家质量技术监督局.压力容器安全技术监察规程[M].中国劳动社会保 障出版社,1999. [9] 球型储罐整体补强凸缘SH/T3138—2003 [M].中华人民共和国国家发展 和改革委员会, 2004. [10] 崔忠圻.金属学与热处理[M].哈尔滨工业大学出版社,1989. [11] ANSYS User’s Manual, theo ry reference. Canonsburg, USA:ANSYS Inc.; 2003 [12]王嘉麟,侯贤忠主编.球形储罐焊接工程技术[M].北京:机械工业出版 社,1999 [13] 王宽福编.压力容器焊接结构工程分析[M].北京:化学工业出版社, 1998 [14]古大田,黎廷新.球形容器.国外大型炼油与化工装置关键设备技术水平资 料之二[M].兰州石油机械研究所,1978. [15]韩伟基.引进球罐采用的有关结构形式的比较[J].化工炼油机械通讯.1979 [16] 马秉骞. 实用压力容器知识[M].第一版.北京:中国石油出版社.2000. 1

球罐结构设计

第二章 球罐结构设计 2.1 球壳球瓣结构尺寸计算 2.1.1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112.5°/7 赤道:67.6°/16 下极:112.5°/7 图 2-1混合式排板结构球罐 2.1.2混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角22.5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601.4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001.4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989.6mm 弧长2B )=N R π2=16 14 .362252?x =2443.3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428.9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413.0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936.4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1.139mm 1B ) = 2001.4 L ) = 7601.4 1B ) = 6204.1 2B ) =7167.1 0D ) =9731.7

第二章 球罐结构设计

第二章 球罐结构设计 2、1 球壳球瓣结构尺寸计算 2、1、1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112、5°/7 赤道:67、6°/16 下极:112、5°/7 图 2-1混合式排板结构球罐 2、1、2混合式结构排板得计算: 1、符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (瞧上图数得) α--赤道带周向球角22、5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601、4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001、4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989、6mm 弧长2B )=N R π2=16 14 .362252?x =2443、3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428、9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413、0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936、4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1、139mm 1B ) = 2001、4 L ) = 7601、4 1B ) = 6204、1 2B ) =7167、1 0D ) =9731、7

3000立方米LPG球罐设计说明书

毕业设计(论文)任务书 题目3000立方米LPG球罐设计 学生姓名学号专业班级 设计(论文)内容及基本要求基本参数 公称容积:3000立方米 储存介质:LPG 设计压力:1.8MP 设计温度:-20℃—50℃ 建设地点:西安 场地类别:Ⅱ类场地土 设计要求 1.撰写设计说明书一份,内容包括: <1>结构设计 <2>强度设计 <3>附件设计等 2.绘零号图三张(总装图机画两张,零件图一张) 3.翻译外文资料一篇(不少于15000字符). 设计(论文)起止时间20xx 年x 月x 日至20xx 年x月x 日设计(论文)地点 指导教师签名年月日 系(教研室)主任签名年月日学生签名年月日

3000立方米LPG球罐设计 摘要:本设计以《GB12337-89钢制球形储罐》和《GB150-89钢制压力容器》为设计依据,综合国内外现有的制造技术设计了3000m3LPG储罐。在以安全为原则的基础上综合考虑经济适用性、产品质量、施工建造可行性、国内现有的建造技术等方面的因素,设计出公称直径为18000mm、壁厚为44mm的大型球罐。本设计在选材方面考虑了多种材料的特性,最后确定07CrMnMoVR为本球罐的材料。同样,本设计在球罐选型及支撑方式的选择上也应用多种形式作比较最终确定混合式结构、可调式拉杆支撑最合理。最后进行强度及稳定性校核,校核结果显示本设计的结构既安全又经济。 关键词:球罐,安全,经济

The Design Of 3000m3 LPG Spherical Tank Abstract: the design Of 3000m3 LPG spherical tank is basis on both the GB12337-89 《steel spherical tanks 》and GB150-89 《design of steel pressure vessel》, considering the existing manufacturing technology of tanks both at home and abroad. In the principles of safety ,consideration of the economic applicability, product quality and construction feasibility, the existing building technology and other factors, at last the spherical tank is designed for nominal diameter 18000mm、wall thickness 44mm. The selection of materials in this design is in consideration, compared with some different properties of materials,finally the 07MnCrMoVR has be choosen.Also, the design and selection of the spherical support is in consideration,finally hybrid strucure and adjustable tension support seems to be the most reasonable. Finally the strength and stability test, the result shows this design of structure is safe and economic. Keywords: spherical tank, safety, economy 目录

球罐结构设计

第二章 球罐结构设计 球壳球瓣结构尺寸计算 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7 图 2-1混合式排板结构球罐 混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算: 图2-2 弧长L )=1800βR π =180 70622514.3??= 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 = 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22= 弧长2B )=N R π2=16 14 .362252?x = 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)= 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) =

极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 弦长1B = H R )2sin( 221 ββ+=139 .1) 11244 sin(62252+x x = 弧长1B )=90R πarcsin(2R B 1)=906225 14.3x arcsin(2x62253.5953)= 弦长0D =21B ) =2×= 弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 8774)= 弦长2B =2Rsin( 21 2ββ+)=2x6225xsin( 112 44 +)= 弧长2B )=180)2(21ββ+R π=180 2x11)(44622514.3+??= (1)极中板(图2-4)尺寸计算: 图2-4 对角线弦长与弧长的最大间距: A=)2 ( sin )2 ( sin 121 21 2βββ+-= 弧长2B )=180 1 βR π= 弦长2B =2Rsin( 2 1 β)= 弧长2L )=180)2(R 21ββ+π= 弦长2L =2Rsin(21 2ββ+)= 弦长1L =A ) 2sin()2cos(2R 21 1βββ+= 弧长1L )=90 R πarcsin(R L 21 )= 弦长1B = A R ) 2 cos()2 sin( 221 1 βββ+=

相关文档
相关文档 最新文档