文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB的数字通信系统仿真设计

基于MATLAB的数字通信系统仿真设计

基于MATLAB的数字通信系统仿真设计
基于MATLAB的数字通信系统仿真设计

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

基于MATLAB的MIMO通信系统仿真(DOC)

目录 (一)基于MATLAB的MIMO通信系统仿真………………………… 一、基本原理……………………………………………………… 二、仿真…………………………………………………………… 三、仿真结果……………………………………………………… 四、仿真结果分析…………………………………………………(二)自选习题部分…………………………………………………(三)总结与体会……………………………………………………(四)参考文献…………………………………………………… 实训报告 (一)基于MATLAB的MIMO通信系统仿真 一、基本原理 二、仿真 三、仿真结果 四、仿真结果分析 OFDM技术通过将频率选择性多径衰落信道在频域内转换为平坦信道,减小了多径衰落的影响。OFDM技术如果要提高传输速率,则要增加带宽、发送功率、子载波数目,这对于频谱资源紧张的无线通信时不现实的。 MIMO能够在空间中产生独立并行信道同时传输多路数据流,即传输速率很高。这些增加的信道容量可以用来提高信息传输速率,也可以通过增加信息冗余来提高通信系统的传输可靠性。但是MIMO却不能够克服频率选择性深衰落。 所以OFDM和MIMO这一对互补的技术自然走到了一起,现在是3G,未来也是4G,以及新一代WLAN技术的核心。总之,是核心物理层技术之一。 1、MIMO系统理论:

核心思想:时间上空时信号处理同空间上分集结合。 时间上空时通过在发送端采用空时码实现: 空时分组、空时格码,分层空时码。 空间上分集通过增加空间上天线分布实现。此举可以把原来对用户来说是有害的无线电波多径传播转变为对用户有利。 2、MIMO 系统模型: 11h 12 h 21 h 22 h r n h 1r n h 21 R n h 2 R n h 1 n n R h 可以看到,MIMO 模型中有一个空时编码器,有多根天线,其系统模型和上述MIMO 系统理论一致。为什么说nt>nr ,因为一般来说,移动终端所支持的天线数目总是比基站端要少。 接收矢量为:y Hx n =+,即接收信号为信道衰落系数X 发射信号+接收端噪声 3、MIMO 系统容量分析: (附MIMO 系统容量分析程序) 香农公式的信道容量(即信息传送速率)为: 2log (1/)C B S N =+ 4、在MIMO 中计算信道容量分两种情况: 未知CSI 和已知CSI (CSI 即为信道状态信息),其公式推导较为复杂,推导结果为信道容量是信噪比与接收、发射天线的函数。 在推导已知CSI 中,常用的有waterfilling ,即著名的注水原理。但是,根据相关文献资料,通常情况下CSI 可以当做已知,因为发送,接收端会根据具体信道情况估算CSI 的相关参数。 在这里对注水原理做一个简单介绍:之所以成为注水原理是因为理想的注水原理是在噪声大的时候少分配功率,噪声小时多分配功率,最后噪声+功率=定值,这如果用图形来表示,则类似于给水池注水的时候,水池低的地方就多注水,也就是噪声小分配的功率就多,故称这种达到容量的功率分配方式叫做注水原理。通过给各个天线分配不同的发射功率,增加系统容量。核心思想就是上面所阐述的,信道条件好,则分配更多功率;信道条件差,则分配较少的功率。 在MIMO 的信道容量当中要注意几个问题:(下面说已知CSI 都是加入了估计CSI 的算法,并且采用了注水原理。) 1. 已知CSI 的情况下的信道容量要比发送端未知CSI 的情况下的信道容量高,这是 由于当发送端已知CSI 的时候,发送端可以优化发送信号的协方差矩阵。也就是

机械优化设计MATLAB程序文件

机械优化设计作业1.用二次插值法求函数()()()22 ?极小值,精度e=0.01。 t t =t 1- + 在MATLAB的M文件编辑器中编写的M文件,如下: f=inline('(t+1)*(t-2)^2','t') a=0;b=3;epsilon=0.01; t1=a;f1=f(t1); t3=b;f3=f(t3); t2=0.5*(t1+t3);f2=f(t2); c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=0; while(abs(t4-t2)>=epsilon) if t2f4 f1=f2;t1=t2; t2=t4;f2=f4; else f3=f4;t3=t4; end else if f2>f4 f3=f2;t3=t2; t2=t4;f2=f4; else f1=f4;t2=t4; end end c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=k+1; end %输出最优解 if f2>f4 t=t4;f=f(t4); else t=t2;f=f(t2); end fprintf(1,'迭代计算k=%3.0f\n',k) fprintf(1,'极小点坐标t=%3.0f\n',t) fprintf(1,'函数值f=%3.4f\n',f)

运行结果如下: 迭代计算k= 7 极小点坐标t= 2 函数值f=0.0001 2.用黄金分割法求函数()32321+-=t t t ?的极小值,精度e=0.01。 在MATLAB 的M 文件编辑器中编写的M 文件,如下: f=inline('t^(2/3)-(t^2+1)^(1/3)','t'); a=0;b=3;epsilon=0.01; t1=b-0.618*(b-a);f1=f(t1); t2=a+0.618*(b-a);f2=f(t2); k=1; while abs(b-a)>=epsilon if f1

matlab通信仿真常用函数

信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式

syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调 ademod 模拟通带解调器 ademodce 模拟基带解调器 amod 模拟通带调制器 amodce 模拟基带调制器 apkconst 绘制圆形的复合ASK-PSK星座图 ddemod 数字通带解调器 ddemodce 数字基带解调器 demodmap 解调后的模拟信号星座图反映射到数字信号dmod 数字通带调制器 dmodce 数字基带调制器 modmap 把数字信号映射到模拟信号星座图(以供调制)qaskdeco 从方形的QASK星座图反映射到数字信号qaskenco 把数字信号映射到方形的QASK星座图 专用滤波器 hank2sys 把一个Hankel矩阵转换成一个线性系统模型hilbiir 设计一个希尔伯特变换IIR滤波器 rcosflt 升余弦滤波器 rcosine 设计一个升余弦滤波器 (专用滤波器的低级函数) rcosfir 设计一个升余弦FIR滤波器 rcosiir 设计一个升余弦IIR滤波器 信道函数

matlab程序设计实践-牛顿法解非线性方程

中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。第一题需要把数据文本文档和m文件放在一起。全部测试无误,放心使用。本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。←记得删掉这段话 班级: ? 学号: 姓名:

一、《MATLAB程序设计实践》Matlab基础 表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散 空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。 由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一 个matlab程序画出如下的几种图形来分析其取向分布特征: (1)用Slice函数给出其整体分布特征; " ~ (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。 (

备注:数据格式说明 解: (1)( (2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如 下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); [ while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1;数据说明部分,与 作图无关此方向表示f随着 φ1从0,5,10,15, 20 …到90的变化而 变化 此方向表示f随着φ 从0,5,10,15, 20 … 到90的变化而变化 表示以下数据为φ2=0的数据,即f(φ1,φ,0)

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

MATLAB通信系统仿真心得体会

MATLAB通信系统仿真心得体会 课程名称(中文) MATLAB通信系统仿真成绩姓名班级学号日期 学习MATLAB通信系统仿真心得体会 经过一学期的MATLAB通信系统仿真的学习,使我对通信原 理及仿真实践有了更深层次的理解。在学习过程当中,了解到了MATLAB的语言基础以及应用的界面环境,基本操作和语法,通信仿真工具箱的应用,simulink 仿真基础,信号系统分析等一系列的内容。我明白学好这门课程是非常的重要。 在学习当中,我首先明白了通信系统仿真的现实意义,系统模型是对实际系统的一种抽象,是对系统本质(或是系统的某种特性)的一种描述。模型可视为对真实世界中物体或过程的信息进行形式化的结果。模型具有与系统相似的特性,可以以各种形式给出我们所感兴趣的信息。知道了通信系统仿真的必要性,利用系统建模和软件仿真技术,我们几乎可以对所有的设计细节进行分层次的建模和评估。通过仿真技术和方法,我们可以有效地将数学分析模型和经验模型结合起来。利用系统仿真方法,可以迅速构建一个通信系统模型,提供一个便捷,高效和精确的评估平台。明白了MATLAB通信系统仿真课程重点就是系统仿真软件 Matlab / Simulink 在通信系统建模仿真和性能评估方面的应用原理,通信系统仿真的一般原理和方法。 MATLAB集成度高,使用方便,输入简捷,运算高效,内容丰富,并且很容易由用户自行扩展,与其它计算机语言相比, MATLAB有以下显著特点:1.MATLAB是一种解释性语言;2(变量的“多功能性”;3.运算符号的“多功能性”;4(人机界面适合科技人员;5(强大而简易的作图功能;6(智能化程度高;7(功能丰富,可扩展性强。在MATLAB的Communication Toolbox(通 信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。

简述基于MATLAB的优化设计

基于MATLAB 的曲柄摇杆机构优化设计 1. 问题的提出 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三种问题:(1)满足预定的运动规律要求;(2)满足预定的连杆位置要求;(3)满足预定的轨迹要求。在在第一个问题里按照期望函数设计的思想,要求曲柄摇杆机构的曲柄与摇杆转角之间按照()f φ?=(称为期望函数)的关系实现运动,由于机构的待定参数较少,故一般不能准确实现该期望函数,设实际的函数为()F φ?=(称为再现函数),而再现函数一般是与期望函数不一致的,因此在设计时应使机构再现函数()F φ?=尽可能逼近所要求的期望函数()f φ?=。这时需按机械优化设计方法来设计曲柄连杆,建立优化数学模型,研究并提出其优化求解算法,并应用于优化模型的求解,求解得到更优的设计参数。 2. 曲柄摇杆机构的设计 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 图1 曲柄摇杆机构简图 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 2.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始运行时,曲柄所处的位置角0?应列为设计变量,即: []12340T x l l l l ?= (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初始 位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()222221243230124225arccos 210l l l l l l l l l l l l ?????++-+-+==????++???????? (3) ()()22222124323034325arccos 210l l l l l l l l l l ????? +--+--==???????????? (4) 因此,只有2l 、3l 为独立变量,则设计变量为[][]2312T T x l l x x ==。 2.2目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即: ()()2 1min m Ei i i f x φφ==-→∑ (5) 式中,Ei φ-期望输出角;m -输出角的等分数;i φ-实际输出角,由图 1 可知: ()()02i i i i i i i παβ?πφπαβπ?π--≤≤??=?-+≤≤?? (6) 式中,222222322132arccos arccos 22i i i i i r l l r x x rl r x α???? +-+-== ? ????? (7) 222241424arccos arccos 210i i i i i r l l r rl r β???? +-+== ? ????? (8) i r == (9) 2.3约束条件

1实验一 Matlab程序设计与M文件(1)

实验一 Matlab 程序设计与M 文件 一、实验目的 1. 掌握Matlab 程序设计常用命令,如,循环、选择、暂停、显示输出、输入变量值等。 2. 掌握Matlab 的M 文件的创建于使用,包括脚本文件和函数文件。 3. 掌握常用的编程技巧。 二、实验内容 1. 输入一个百分制成绩,要求输出成绩等级A 、B 、C 、D 、E 。其中90分~100分为A ,80分~89分为B ,79分~79分为C ,60分~69分为D ,60分以下为E 。 要求: (1) 分别用if 语句和switch 语句实现。 (2) 输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 2. 硅谷公司员工的工资计算方法如下: (1) 工作时数超过120小时者,超过部分加发15%。 (2) 工作时数低于60小时者,扣发700元。 (3) 其余按每小时84元计发。 试编程按输入的工号和该号员工的工时数,计算应发工资。 3. 根据2 222211116123n π=++++,求π的近似值。当n 分别取100、1000、10000时,结果是多少? 要求:分别用循环结构和向量运算(使用sum 函数)来实现。 4. 考虑以下迭代公式: 1n n a x b x +=+ 其中a 、b 为正的学数。 (1) 编写程序求迭代的结果,迭代的终止条件为|x n+1-x n |≤10-5,迭代初值x 0=1.0,迭代次数不超过500次。 (2) 如果迭代过程收敛于r ,那么r 的准确值是,当(a,b)的值 取(1,1)、(8,3)、(10,0.1)时,分别对迭代结果和准确值进行比较。

5. 已知 12312311021 323 n n n n f n f n f n f f f f n ---==??==??==??=-+>? 求f 1~f 100中: (1) 最大值、最小值、各数之和。 (2) 正数、零、负数的个数。 6. 若两个连续自然数的乘积减1是素数,则称这两个边疆自然数是亲密数对,该素数是亲密素数。例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数。求[2,50]区间内: (1) 亲密数对的对数。 (2) 与上述亲密数对对应的所有亲密素数之和。 7. 设2411()(2)0.1(3)0.01 f x x x =+-+-+,编写一个MATLAB 函数文件fx.m ,使得调用f(x)时,x 可用矩阵代入,得出的f(x)为同阶矩阵。 8. 一物理系统可用下列方程组来表示: 111211 12 220cos sin 0sin 0cos 000sin 000cos 1a m m a m g m N m N m g θθθθθθ--??????????????????=??????-??????-?????? 从键盘输入m 1、m 2和θ的值,求a 1、a 2、N 1和N 2的值。其中g 取9.8,输入θ时以角度为单位。 要求:定义一个求解线性方程组AX=B 的函数文件,然后在命令文件中调用该函数文件。

MATLAB 2psk通信系统仿真报告

实验一 2PSK调制数字通信系统 一实验题目 设计一个采用2PSK调制的数字通信系统 设计系统整体框图及数学模型; 产生离散二进制信源,进行信道编码(汉明码),产生BPSK信号; 加入信道噪声(高斯白噪声); BPSK信号相干解调,信道解码; 系统性能分析(信号波形、频谱,白噪声的波形、频谱,信道编解 二实验基本原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的

相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为(t)=Acos t+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图2 2PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.

(完整版)基于matlab的通信系统仿真毕业论文

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽
班 级 学 号: 指 导 老 师: 温 靖

二 O 一四年十月十五日
目录
一、引言........................................................................................................................ 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成 ............................................................................................................... 4 2.2 信道编译码 ........................................................................................................................ 4 2.2.1 卷积码的原理 ........................................................................................................ 4 2.2.2 译码原理 ................................................................................................................ 5 2.3 调制与解调 ....................................................................................................................... 5 2.3.1 BPSK 的调制原理 .................................................................................................. 5 2.3.2 BPSK 解调原理 ...................................................................................................... 6 2.3.3 QPSK 调制与解调 ................................................................................................. 7 2.4 信道 .................................................................................................................................... 8

matlab程序设计作业

Matlab程序设计作业 姓名: 学号: 专业:

? MATLAB 程序设计》作业 1、考虑如下x-y 一组实验数据: x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y 二[1.2, 3, 4, 4, 5, 4.7, 5, 5.2, 6, 7.2] 分别绘出plot 的原始数据、一次拟合曲线和三次拟合曲线,给出 原始曲线 MATLAB 代码和运行结果。 7 6 5 4 3 2 2 3 4 5 6 7 8 9 10

7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 10 一次拟合 三次拟合

x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; y=[1.2, 3, 4, 4, 5, 4.7, 5, 5.2, 6, 7.2]; figure; plot(x,y) p1=polyfit(x,y,1); y1=polyval(p1,x); figure; plot(x,y1) p2=polyfit(x,y,3); y2=polyval(p2,x); figure; plot(x,y2) 2、在[0, 3n区间,绘制y二Sin(x)曲线(要求消去负半波,即(n 2n)区间内的函数值置零),求出曲线y 的平均值,以及y 的最大值及其最大值的位置。给出执行代码和运行结果。 x=0:pi/1000:3*pi; y=Sin(x); y1=(y>=0).*y; %消去负半波figure(1); plot(x,y1, 'b' ); a=mean(y1) %求出y1 的平均值 b=max(y1) %求出y1 的最大值b, 以及最大值在矩阵中的位置; d=x(find(y1==b)) >> ex1 a = 0.4243 b = 1 d = 1.5708 7.8540 >>

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

matlab程序设计与应用(第二版)第三章部分课后答案

第三章1. (1)A=eye(3) (2)A=100+100*rand(5,6) (3)A=1+sqrt(0.2)*randn(10,50) (4)B=ones(size(A)) (5)A+30*eye(size(A)) (6)B=diag(diag(A)) 2. B=rot90(A) C=rot90(A,-1) 3. B=inv(A) ;A的逆矩阵 C=det(A) ;A的行列式的值 D=A*B E=B*A D=E 因此A与A-1是互逆的。 4. A=[4 2 -1;3 -1 2;12 3 0]; b=[2;10;8]; x=inv(A)*b x = -6.0000 26.6667 27.3333 5. (1) diag(A) ;主对角线元素 ans = 1 1 5 9 triu(A) ;上三角阵

ans = 1 -1 2 3 0 1 -4 2 0 0 5 2 0 0 0 9 tril(A) ;下三角阵 ans = 1 0 0 0 5 1 0 0 3 0 5 0 11 15 0 9 rank(A) ;秩 ans = 4 norm(A) ;范数 ans = 21.3005 cond(A) ;条件数 ans = 11.1739 trace(A) ;迹 ans = 16 (2)略 6. A=[1 1 0.5;1 1 0.25;0.5 0.25 2] A = 1.0000 1.0000 0.5000 1.0000 1.0000 0.2500 0.5000 0.2500 2.0000

[V,D]=eig(A) V = 0.7212 0.4443 0.5315 -0.6863 0.5621 0.4615 -0.0937 -0.6976 0.7103 D = -0.0166 0 0 0 1.4801 0 0 0 2.5365

matlab程序设计与应用实验指导书

附件2 《matlab程序设计与应用》实验指导书 山东建筑大学信息与电气工程学院

前言 一、实验目的 本课程是电气工程及其自动化、自动化、电力工程与管理专业本科生的 学科基础选修课,它在线性代数、信号分析和处理、控制系统设计和仿真等 方面有着广泛的应用。主要是学习MATLAB的语法规则、基本命令和使用环境,使学生掌握MATLAB的基本命令和基本程序设计方法,提高使用该语言 的应用能力,具有使用MATLAB语言编程和调试的能力,以便为后续多门课 程使用该语言奠定必要的基础。 通过上机实验,使学生掌握MATLAB在线帮助功能的使用、熟悉MATLAB运行环境和MATLAB语言的主要特点,掌握MA TLAB语言的基本 语法规则及基本操作命令的使用,学会M文件的建立和使用方法以及应用MATLAB实现二维和三维图形的绘制方法,具有使用MATLAB语言编程和 调试的能力。 二、实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。 三、实验注意事项 1.实验开始前,应先检查本组电脑设备是否工作正常,matlab软件工作是否正常。 2.实验时每位同学应独立完成实验任务,避免抄袭。 3.实验后应及时将实验数据进行记录与存盘,避免因电脑故障或其它原因造成实验数据的丢失。 4.实验中严格遵循电脑操作规程,如电脑发生异常现象,应立即切断电源,

报告指导教师检查处理。 5.测量数据或观察现象要认真细致,实事求是。 6.未经许可,不得对电脑进行软件及硬件的更改操作。 7.实验结束后,实验记录交指导教师查看并认为无误后,方可关掉电脑离开。 8.爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 9.自觉遵守学校和实验室管理的其它有关规定。 四、实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验内容 3.实验流程图; 4.程序命令清单; 5.运行结果; 6.实验的收获与体会; 7.回答每项实验的有关问答题。

机械优化设计MATLAB程序

t t t 机械优化设计作业 1.用二次插值法求函数?( )= ( +1)( - 2)2 极小值,精度 e=0.01。 在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: f=inline('(t+1)*(t -2)^2','t') a=0;b=3;epsilon=0.01; t1=a;f1=f(t1); t3=b;f3=f(t3); t2=0.5*(t1+t3);f2=f(t2); c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=0; while(abs(t4-t2)>=epsilon) if t2f4 f1=f2;t1=t2; t2=t4;f2=f4; else f3=f4;t3=t4; end else if f2>f4 f3=f2;t3=t2; t2=t4;f2=f4; else f1=f4;t2=t4; end end c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=k+1; end %输出最优解 if f2>f4 t=t4;f=f(t4); else t=t2;f=f(t2); end fprintf(1,'迭代计算 k=%3.0f\n',k) fprintf(1,'极小点坐标 t=%3.0f\n',t) fprintf(1,'函数值 f=%3.4f\n',f)

3.用牛顿法、阻尼牛顿法及变尺度法求函数 的极小点。( ) ( ) ( )21121 22, xxxxxf -+-= 4 2 (1)在用牛顿法在 MATLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=niudunfa(x0) syms x1 x2 f=(x1-2)^4+(x1-2*x2)^2; fx=0; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e -12; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=0; p=-G1\g1; x0=x0+p; while(norm(g1)>epson) p=-G1\g1; x0=x0+p; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=k+1; end x=x0; fx=subs(f,{x1,x2},{x(1,1),x(2,1)}); 运行结果如下: >> [x,fx,k]=niudunfa([1;1]) x =1.9999554476059523381489991377897 0.99997772380297616907449956889483 fx =0.0000000000000000039398907941382470301534502947647 k =23 (2)用阻尼牛顿法在 MA TLAB 的 M 文件编辑器中编写的 M 文件,如下: function [x,fx,k]=zuniniudunfa(x0)%阻尼牛顿法 syms x1 x2 f=(x1-2)^4+(x1-2*x2)^2; fx=0; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e -12;%停机原则

相关文档
相关文档 最新文档