文档库 最新最全的文档下载
当前位置:文档库 › 技术:高盐度废水处理工艺

技术:高盐度废水处理工艺

技术:高盐度废水处理工艺
技术:高盐度废水处理工艺

技术 | 高盐度废水处理工艺

高含盐废水的种类很多,石油、页岩气开采,电镀、制药、印染、发酵工业、海产品加工废水等都含有较高浓度的无机盐组分如Cl-等。生物处理方法是目前广泛采用的高盐废水处理方法,虽然高含盐废水中较高的盐度会影响生物处理的效果,但若采用其他的方法,如膜分离等技术则成本较高,所以生物处理仍是首选的处理方法。

盐度影响生物处理效果的主要原因在于:在生物处理方法中,主要是利用活性污泥或生物膜、颗粒污泥中微生物的新代谢来吸附降解废水中的污染物,而高盐度会引起高渗透压,使微生物细胞脱水,同时也会抑制微生物降解有机物的反应效率,从而影响生物处理方法的效果。因此,在处理高含盐废水时应当选择能够耐受高盐度影响的生物反应器。

迄今为止,已进行过盐度影响实验研究的生物反应器有膜生物反应器、移动床生物膜反应器、升流式厌氧污泥床(up-flowanaerobicsludgeblanket,UASB)反应器、上流式厌氧生物滤池反应器、EGSB反应器等,由于颗粒污泥在盐度负荷冲击下能够体现出更高的适应能力,UASB等能够培养出厌氧颗粒污泥的生物反应器得以在处理高含盐废水时有更多的应用研究,但同时从反应器处理效果和微生物角度分析研究较少。EGSB是在UASB基础上发展起来的第三代厌氧反应器,与UASB相比有更好的运行效果。本次研究利用模拟的高盐度废水,从盐度影响

下EGSB反应器的运行效果和厌氧颗粒污泥两个方面进行分析比较,并对厌氧颗粒污泥做高通量测序,以期为EGSB反应器应用于高含盐工业废水的实际处理提供参考的实验数据。

1、材料与方法

1.1实验装置

实验用EGSB反应器由圆筒形有机玻璃制成,总高1.4m,径0.12m,总容积为15.52L,有效容积为15.18L。回流口在距反应器底部1.19m的位置,三相分离器圆环挡板距离顶部0.16m,三相分离集气罩呈圆锥形,底部直径0.1m,顶部直径

0.03m,高0.08m,排气通道高0.07m,集气罩、排气通道和EGSB反应器上盖密闭。投加颗粒污泥于反应器中,进水和回流分别通过蠕动泵从反应器底部进入。颗粒污泥、沼气、废水三相在反应器中混合,随着水流上升至三相分离器,沼气进入集气罩,而大部分废水通过集气罩与挡板间的缝隙进入出水区,颗粒污泥由于重力作用,在遇到挡板和集气罩壁后,下降至污泥层,因此能很好地实现气、液、固的三相分离。

1.2实验用水

人工配置的模拟高盐废水用于本次实验,通过进水中逐渐增加的盐度对EGSB反应器进行驯化。人工配水主要由葡萄糖、NH4Cl、KH2PO4、

NaHCO3、NaCl和营养液配制而成,葡萄糖、NH4Cl、KH2PO4分别作为人工配水中微生物生长代谢所必须的C、N、P源,三者的投加量比例为C:N:P=250:5:1,后期调整为125:5:1。采用NaCl提供人工配水中的盐度,对微生物进行盐度驯化,其投加量逐渐由0增加到7500mg·L-1。营养液中包含微生物生长所需要的微量元素,其组成成分详见表1。

表1 营养与组成成分

1.3分析项目及方法

COD采用快速测定法,测定仪器为5B-3(C)型COD快速测定仪(中国连华科技);湿式气体流量计用于计量沼气产量;颗粒污泥粒径分布用湿式筛分法测定;颗粒污泥沉降速度采用重量沉降法。

厌氧颗粒污泥高通量测序:按照OMEGA公司的E.Z.N。ATMMag-BindSoilDNAKit试剂盒说明书中的步骤提取厌氧颗粒污泥微生物中的DNA,用琼脂糖凝胶检测DNA完整性。细菌PCR扩增采用引物为

341F:CCCTACACGACGCTCTTCCGATCTG(barcode)CCTACGGGNGGCWGCAG,80 5R:GACTGGAGTTCCTTGGCACCCGAGAATTCCAGACTACHVGGGTATCTAATCC。古菌引用槽式PCR扩增有三轮,第一轮使用引物为340F:CCCTAYGGGGYGCASCAG,1000R:GGCCATGCACYWCYTCTC,第二轮引物为349F:

CCCTACACGACGCTCTTCCGATCTN(barcode)GYGCASCAGKCGMGAAW,806R:GACTGGAGTTCCTTGGCACCCGAGAATTCCAGGACTACVSGGGTATCTAAT,第三轮扩增,引入Illumina桥式PCR兼容引物。PCR结束后,将PCR产物进行琼脂糖电

泳检测,DNA纯化回收,利用Qubit2。0DNA检测试剂盒对回收的DNA精确定量,以方便按照1:1的等量混合后测序。委托生工生物工程(上海)股份有限公司进行IlluminaMiSeq高通量测序,测序数据通过质量控制预处理,去除嵌合体及靶区域外序列后,在OTU聚类结果的基础上进行RDP分析。预处理采用的软件为Prinseq(版本0.20.4)与FLASH(版本1.2.3),去除嵌合体及靶区域外序列采用的软件为Mothur(版本1.30.1),分类采用的软件为RDPclassifier。

1.4实验方法

实验通过调整EGSB反应器进水中Cl-的浓度来增加反应器盐度负荷,在0盐度下连续启动反应器后分4个阶段逐步提高进水中Cl-的浓度,各阶段进水中Cl-浓度依次为2000、3500、5000和7500mg·L-1。在每个阶段测定反应器的进出水COD值、容积产气率、厌氧颗粒污泥的粒径分布和沉降速度。对Cl-浓度为0和5000mg·L-1两个阶段的厌氧颗粒污泥进行高通量测序和因组分析。

接种的厌氧颗粒污泥来自于某饮料生产企业的污水处理站UASB反应器中形成的颗粒污泥,接种颗粒污泥体积占EGSB反应器总容积的50%。反应器水力停留时间(hydraulicretentiontime,HRT)为24h,回流比R为6:1,反应器温度使用电阻丝温控器控制在(35±2)℃,进水pH值维持在6.8-7.2,进水COD浓度维持在3267mg·L-1,COD容积负荷为3.267kg·(m3·d)-1。

2、结果与讨论

2.1盐度对COD降解的影响

EGSB反应器在控制进水COD浓度、进水COD容积负荷、pH等因素基本不变的运行条件下受不同盐度(以Cl-浓度计)影响,COD降解效率的变化情况如图1所示。

图中a、b、c、d、e这5个部分的进水Cl-浓度依次为0、2000、3500、5000、7500mg·L-1,在反应器启动后的114dCl-浓度曾调整为10000mg·L-1,随即停止进水,3d后又恢复到

7500mg·L-1(图中以虚线标示),下同

图1 COD降解效率的变化

Cl-浓度低于7500mg·L-1时EGSB反应器的COD降解效率受到的影响不大,适当地提高盐度更能促进COD的降解。反应器完成启动后,COD平均去除率为76.2%,出水的COD平均浓度为699.2mg·L-1。当进水的Cl-浓度为2000mg·L-1,COD去除率略有降低,但与前一阶段相比仍有升高,且仍然呈增长趋势,平均去除率为79.2%,出水的COD平均浓度为678.25mg·L-1。当进水的Cl-浓度提升到3500mg·L-1,反应器的COD去除率未受到显著影响,持续升高,平均去除率达到87.7%,出水的COD平均浓度为401.9mg·L-1。反应器在2500mg·L-1和

3000mg·L-1的Cl-浓度下COD去除率都能保持较快的增长速率,并且在

3500mg·L-1的Cl-浓度下去除率增长比前一阶段更快。反应器运行的第51d开始,进水的Cl-浓度增加到5000mg·L-1,反应器COD去除率有所降低,但仍然能维持在80%以上,整个阶段中COD去除率在波动中逐渐上升,COD平均去除率为90.5%,出水COD平均浓度为307。1mg·L-1;考虑到出水COD浓度波动较

大,COD去除率应有进一步提高的空间,在反应器运行第91d对进水条件做出调整,将进水中N、P浓度增加一倍,为反应器中微生物增加氮源磷源的供应。当进水的Cl-浓度进一步调整到7500mg·L-1,反应器的COD平均去除率为98.1%,

没有明显波动,出水的COD平均值为61.08mg·L-1;因为COD去除率在

7500mg·L-1的进水Cl-浓度下没有受到影响,在反应器启动的第114d曾一度将进水Cl-浓度提升到10000mg·L-1,但在调整次日EGSB反应器中的厌氧颗粒污泥即出现了严重的上浮流失现象,随即停止进水,2d后将进水Cl-浓度恢复为

7500mg·L-1。由于调整及时,在此期间的COD降解并未受到很大影响,反应器也很快恢复如前。在5000mg·L-1的Cl-浓度下,EGSB反应器经过接近2个月的驯化后COD的降解能力还能进一步提高,Cl-浓度达到7500mg·L-1时,反应器的COD去除率能够不受影响稳定维持在最高水平。

2.2盐度对容积产气率的影响

容积产气率主要反映了厌氧反应器的产沼气情况,其在很大程度上反映了厌氧反应器的有机物降解情况。

当进水Cl-浓度在7500mg·L-1以下时,反应器的容积产气率随盐度的提升会在出现一定的波动后逐渐提升,最终稳定维持在一个较高水平。从图2可以看出,在a、b段,反应器的容积产气率都比较稳定,没有太大变化,平均为

0.91m3·(m3·d)-1.42d后,随着Cl-浓度增大到3500mg·L-1,容积产气率波动很大,但整个阶段的平均值比前一阶段有增长,为1.19m3·(m3·d)-1;结合同阶段COD去除率的变化可见,与整体的厌氧消化过程相比,产甲烷过程对盐度的变化更敏感。当Cl-浓度为5000mg·L-1,反应器的容积产气率在初期有下降趋势,在延长驯化时间并调整进水N、P浓度后,容积产气率又逐渐上升,整个阶段的平均值为

1.39m3·(m3·d)-1;这个阶段的变化趋势与COD去除率的变化相近。在图中e段,反应器的容积产气率在7500mg·L-1的Cl-浓度下略有下降,经过一段时间驯化后,反应器的容积产气率又逐渐回复到原来的水平,维持在1。63m3·(m3·d)-1左右。

图2 容积产气率的变化

反应器的容积产气率受到盐度影响的变化情况与COD降解的变化情况比较相似,在盐度提升时会受一定影响,而持续驯化一段时间后又逐渐恢复并能在原有水平上进一步提高;不同的是盐度变化对产气的影响更大,在图2中容积产气率的数据波动很大,不如COD降解率的变化平稳。

2.3盐度对厌氧颗粒污泥的影响

在反应器运行的不同阶段分别取样测定了反应器中厌氧颗粒污泥的粒径分布与沉降速度参数,粒径分布与沉降速度能够体现颗粒污泥整体状态与降解性能,作为反应器厌氧污泥的主体,EGSB反应器中颗粒污泥的状态是反应器运行效果的关键,颗粒污泥的状态与特性影响着厌氧反应器的处理效率、体系活性及系统稳定性等。

从图3及表2可以看出,在盐度冲击下,大颗粒污泥受到影响解体为小颗粒污泥,使小颗粒污泥所占的比重上升。当Cl-浓度增加到7500mg·L-1且短暂调至10000mg·L-1后,粒径在0.9-0.6mm的颗粒污泥大量解体成为粒径小于0.6mm 的微小颗粒污泥,与前面的几个运行阶段相比变化较大。在徐英博等的实验中,颗粒污泥的粒径分布在高负荷下也表现出相同的变化,分析其原因为大颗粒污泥中微生物较为丰富,结构复杂,生长优势明显,而0.9-0.6mm颗粒污泥较易受影响出现解体,粒径减小。在其他较低盐度下,颗粒污泥粒径分布变化可以保持在一个较小围。Cl-浓度在0-7500mg·L-1变化时,粒径大于2mm的大颗粒污泥所占的质量分数始终在50%以上,并且在Cl-浓度调整到3500mg·L-1后,粒径大于2mm的大颗粒污泥所占的质量分数还有较低增幅,可见颗粒污泥在这个等级的盐度负荷下适应良好。

图3 厌氧颗粒污泥照片

表2 厌氧颗粒污泥粒径分布(质量分数)/%

如图4所示,同等粒径围厌氧颗粒污泥的沉降速度受盐度影响不大,粒径大于0.9mm的颗粒污泥的沉降速度始终在60m·h-1以上,除粒径大于2mm的颗粒污泥外的其他粒径较小的颗粒污泥的沉降速度都有一定的提升。研究表明,废水浮力随盐度增加而提升,导致高含盐量的体系可以在系统中保留更为密实的颗粒污泥,而大颗粒污泥部容易营养不足引起细胞自溶形成空腔,从而密度下降,影响沉降速度。

图4 颗粒污泥沉降速度的变化

2.4盐度对微生物群落多样性的影响

为进一步分析盐度对厌氧颗粒污泥体系中微生物群落多样性的影响,分别对Cl-浓度为0和5000mg·L-1两个反应器运行阶段的厌氧颗粒污泥进行高通量测序和因组分析,表3、4及图5、6分别展示了2个阶段中古菌和细菌在门水平和属水平分类层面上的类群分布情况。

表3 古菌门水平类群分布

表4 细菌门水平类群分布

图5 古菌属水平类群分布

图6 细菌属水平类群分布

在盐度的影响下,微生物群落的优势菌群变化很大。Cl-浓度为0时,古菌中的优势菌属是Methanoregula与Methanothrix,分别占总数的50.01%与32.59%,而当Cl-浓度达到5000mg·L-1,占据优势的菌属则是

Methanobacterium(57.5%),Methanospirillum(21.9%)和Methanothrix(13.91%)。Methanoregula属于广古菌门(β-Euryarchaeota)甲烷微菌目(β-Methanomicrobiales),主要代谢底物是H2、CO2。Methanothrix之前曾用名是Methanosaeta,属于专性乙酸营养型产甲烷古菌,有研究显示Methanosaeta适于在高负荷下生长。Methanobacterium属于广古菌门甲烷杆菌目(β-Methanobacteriales),可以利用H2、甲酸盐、甲醇等底物生产甲

烷,Methanospirillum属于广古菌门甲烷微菌目,其主要代谢底物为甲酸。Methanoregula,Methanothrix,Methanobacterium,Methanospirillum等都是厌氧消化器中常见的产甲烷菌属。

在细菌群中,Cl-浓度为0时的门水平上的主要菌群是β-Chloroflexi(23.86%),β-Proteobacteria(18.99%),β-Bacteroidetes(11.27%),当Cl-浓度达到5000mg·L-1,占据主体的菌群则变为β-Bacteroidetes(29%),β-Proteobacteria(23.17%)和β-Firmicutes(18.06%)。在属水平上没有特别优势的菌属,在两个不同阶段优势最大的细菌分别是Longilinea(7.49%)与Paludibacter(7.69%)。Longilinea属于绿弯菌门(β-Chloroflexi)的厌氧绳菌目(β-Anaerolineales),可代谢多种碳水化合物。Paludibacter属于拟杆菌门(β-Bacteroidetes)的紫单胞菌科(β-Porphyromonadaceae),能发酵多种单糖和二糖产丙酸、乙酸和少量丁酸。当Cl-浓度为0时,在细菌的测序分析中发现了古菌的β-Euryarchaeota,因为细菌与古菌的16SrDNA基因序列有较高的同源性,在对细菌测序分析时也有可能发现古菌,β-Euryarchaeota在Cl-浓度达到5000mg·L-1时在细菌的测序中不再占据优势,表明盐度的增高影响了古菌的生长。

3、结论

(1)在COD容积负荷为3.267kg·(m3·d)-1的运行条件下,EGSB反应器在Cl-浓度小于7500mg·L-1时运行效果较好,随着Cl-浓度的提高,反应器运行效果基本表现出波动后提升的变化。最终Cl-浓度在7500mg·L-1时,反应器的COD平均去除率在98.1%,容积产气率能够基本稳定在1.3m3·(m3·d)-1以上。在盐度驯化后,适当提高盐度能够提高反应器的运行效果。

(2)保持反应器COD容积负荷为3.267kg·(m3·d)-1,反应器中的厌氧颗粒污泥对于0-7500mg·L-1围的Cl-浓度体现出良好的适应性,大颗粒污泥在盐度提升的影响下仍然占据反应器颗粒污泥的主体,而在Cl-浓度短暂提升到10000mg·L-1的冲击下,粒径较小的颗粒污泥容易受到影响,出现解体现象。同等粒径围厌氧颗粒污泥的沉降性能在高盐废水的影响下有小幅度的提升,并且大颗粒污泥的沉降速度保持在60m·h-1以上。

(3)盐度影响了厌氧颗粒污泥中微生物的类群分布,群落中优势菌群的变化很大。当Cl-浓度由0增加到5000mg·L-1,古菌群中的优势菌群由Methanoregula(50.01%)和Methanothrix(32.59%)变为

Methanobacterium(57.5%),Methanospirillum(21.9%)和Methanothrix(13.91%);细菌群中,原本数量较多的Longilinea(7.49%)受盐度影响丰度降低,Paludibacter(7.69%)成为占据优势的菌群。

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

高含盐、氨氮、COD_化工废水处理[1]

江苏莱茵河医药化工材料有限公司 年产200吨4,4-二氨基苯酰替苯胺、200吨N-(乙氧基羰基苯基)-N’-甲基-N’-苯甲脒、150吨3,4’-二氨基二苯醚、300吨双(2, 2, 6, 6-四甲基-4-哌啶基)癸二酸酯、100吨4-叔丁基-4’-甲氧基二苯酰甲烷、50吨3,3’-双(对甲苯磺酰氨基羰基氨基)二苯甲酸-1,5-(3-氧代戊酯)、50吨4,4’-双(对甲苯磺酰氨基羰基氨基)二苯甲烷、100吨4-氨基-N-甲基苯甲酰胺、100吨1,3-双(4-氨基苯氧基)苯、200吨对硝基苯甲酰胺、120吨2-(4-氨基苯基)-5-氨基苯并咪唑技改项目 废水处理工艺 项 目 方 案 及 报 价 书 江苏穆玉耳环境工程有限公司 二○一○年六月

目录 一、公司简介 (1) 二、项目概况 (1) 三、项目基本资料 (1) 四、方案设计 (1) 4.1 工艺选择说明 (2) 4.2 工艺说明 (2) 4.3污水处理设备技术性能参数及说明 (3) 1、高含盐、高含有机物废水收集池(前置格栅井) (3) 2、三效蒸发器 (4) 3、蒸发集水池 (4) 4、铁碳微电解池 (5) 5、水质水量的调节——调节池 (6) 6、混凝沉降器 (6) 7、酸化水解池(上流式兼氧滤池) (7) 8、接触氧化池 (8) 9、斜管沉淀池 (9) 10、清水池 (9) 11、污泥浓缩池 (10) 12、机房 (10) 五、设备配置及报价 (10)

5.1 土建费用概算 (10) 5.2 主要机电设备及器材概算 (11) 5.3 工程总概算 (12) 附表:进水水质及园区污水处理厂水质接受标准 (13)

高氨氮废水处理方法

一高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作般上ph 在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水用,ph 一种是无机氨形一种是氨水形成的氨氮,中氨氮的构成主要有两种,成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 形态比例NH3升高,氨在水中PH氨氮在水中存在着离解平衡,随着.升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里( Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持

“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。.2 生物脱氮法 传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。 O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于L,O 段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解

高含盐废水处理方法

高含盐废水处理方法 生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离; ②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。 许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。 我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。 1 污泥的来源与驯化 盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。高含盐废水生物处理关键是要驯化出耐盐微生物。 我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结 构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。经逐步驯化至耐盐为3%。将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。用实际工业废水在不同盐浓度下经过3个月试验,两种方法培养的微生物试验结果分别见表1和表2。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

某厂氨氮废水处理工程设计方案

氨氮废水处理工程 设计方案 废水水量及水质确定 一、废水的水量 根据业主提供的废水处理量为:Q=240T/d, 二、废水的水质 根据业主提供的资料,废水水质如下: NH4-N:6000mg/L T:30℃PH=7-8 SO42-:10000mg/L 废水处理要求 本项目设计废水处理能力为240T/d。 本工程废水处理后废水中氨氮含量达到国家一级排放标准, 即:NH3-N≤15mg/L 废水处理工艺方案 一、工艺确定原则 1、严格执行有关环境保护的各项规定,废水处理后氨氮含量达到该地区的地方排放标准氨氮小于15mg/L; 2、依据废水水质特点,在充分论证的基础上,选用先进合理的废水处理工艺,保证废水达标排放; 3、治理方案力求工艺简洁,方法原(机)理清晰明了; 4、处理系统具有灵活性和操作弹性,以适应废水水质、水量的变化; 5、本方案力求达到工艺先进、运行稳定、管理简单、能耗低、维修方便等特点; 6、处理后不造成二次污染。 二、工艺设计范围 1.废水处理工艺流程、工艺高程和各处理单元设计; 2.废水处理平面布置、设备选型、布置和控制设计; 3.废水处理区1.00m以内的所有工艺管道和线路设计; 三、污水处理工艺设计选择依据 1)、本工程的废水中主要污染物和控制指标为氨氮。氨氮废水处理,目前国内采用的处理工艺有以下几种:https://www.wendangku.net/doc/3f14788222.html, 1、生化处理工艺 该工艺利用生物菌将有机氮转化为氨氮,再通过硝化与反硝化将硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。

但由于生物菌所能承受氨氮的浓度较低,一般不能超过200mg/L,当氨氮高于200-300mg/L 时,会抑制细菌生长繁殖。因此该工艺只适用于氨氮含量200mg/L左右的低浓度氨氮废水。此外,生化处理工艺工程占地面积较大,温度较低时,总脱氮效率也不高。 2、传统填料式的吹脱工艺 该工艺是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮等挥发性物质不断的由液相转移到气相中,从而达到从废水中去除氨氮的目的。 但由于氨氮在水中存在溶解平衡关系,当气液两相的氨处于平衡状态时,水中的氨氮将不能被吹脱逸出,因此该工艺不适用于高浓度氨氮废水。且传统填料式吹脱工艺还存在吹脱效率低,吹脱风量大(气液比3000:1左右)、时间长,对温度要求高、填料易结垢等缺点。 3、蒸氨汽提法 蒸氨气体法也是利用氨氮的气相浓度和液相浓度之间的气液平衡关系对氨氮进行分离,该工艺是把水蒸气通入废水中,当蒸气压超过外界压力时,废水沸腾从而加速了氨氮等挥发性物质的逸出过程。 与传统填料式吹脱相同的是,当气液两相中氨达到平衡时,蒸氨气提法也不能继续使水中氨氮持续逸出,因此单次气提也不能将氨氮完全脱除,若采用连续多次气提进行脱氮则会大大增加投资成本和运行成本。 以上两种方法均只能将氨氮处理至100mg/L左右。 4、沸石离子交换法 沸石是含水的钙、钠以及钡、钾的铝硅酸盐矿物,因其含有一价和二价阳离子,具有离子交换性,因此沸石具有离子交换的能力,可将废水中的NH4+交换出来。 该工艺的缺点是只适用于氨氮含量在50mg/L以下的废水,且交换剂用量大需再生,再生频繁,并且再生液需要再次脱氨氮。采用该工艺还要求对废水做预处理以除去悬浮物,因此此法的成本较高,同等浓度下,处理费用为其他工艺的1.5~2倍。 5、折点加氯工艺 折点加氯工艺是利用氯气通入水中所发生的水解反应生成次氯酸和次氯酸盐,通过次氯酸与水中氨氮发生化学反应,将氨氮氧化成氮气而去除。 此方法的缺点是加氯量大、费用高、操作安全性差,设备腐蚀严重,容易发生危险,工艺过程中每氧化1mg/L的氨氮要消耗14.3mg/L的碱度,从而增加了总溶解固体的含量,比较适合低浓度氨氮废水的处理。 6、超声波吹脱工艺 利用超声波来降解水中的化学污染物,尤其是难降解有机污染物,是一种深度氧化处理废水的新技术。 该工艺利用超声波辐射将压缩空气作为超声波的推动力,产生空化气泡,加强了废水中

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

高浓度氨氮废水处理工艺

高浓度氨氮废水处理工艺 目前,工业废水、垃圾渗滤液、城市污水等高浓度氨氮废水对水体造成的危害已成为全世界关注的环境问题。绝大部分含氨氮的废水在未经任何处理或处理不达标的情况下直接排入水体,导致水体污染及富营养化,进而影响土壤、空气等。常见的含氮化合物主要包括有机氮、氨氮、亚硝酸盐氮以及硝酸盐氮。其中氨氮是导致水体富营养化的主要污染物,其排放控制已成为目前水处理领域的重点和难点。 氨氮废水的处理方法有很多种,国内外学者针对该问题开展了大量研究。其中吹脱法是传统的高浓度氨氮废水处理方法,其设备占地面积小,操作灵活便捷,但也存在耗能大、处理成本高等缺点。成泽伟等采用超声波强化吹脱去除氨氮,去除率明显高于一般吹脱技术,且升幅超过50%。彭人勇等的研究也显示,超声波对吹脱的强化作用可以让氨氮去除率提升30%~40%。 沸石是含水多孔铝硅酸盐的总称,其晶体构造主要由(SiO)四面体组成,其中的部分Si4+为Al3+取代,导致负电荷过剩,故其结构中有碱金属(碱土金属)等平衡电荷的离子,同时沸石构架中存在较多的空腔和孔道。上述结构决定了沸石具有吸附、离子交换等性质,因此其对氨氮具有很强的选择性吸附能力。 本研究在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的高浓度氨氮废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响,以期为高浓度氨氮废水的处理提供参考。 一、实验部分 1.1材料和仪器 实验所处理废水为模拟高浓度氨氮废水,为NH4Cl和超纯水配制的NH4Cl溶液,氨氮质量浓度约为1200mg/L的,实验中以实测浓度为准。 吸附剂选用浙江省缙云县产天然沸石经复合改性后得到的改性沸石,密度2.16g/cm3,硬度3~4,硅铝比4.25~5.25,孔隙率30%~40%。 D-51型pH计:日本HORIBA有限公司;UV765型紫外-可见分光光度计:上海精密化学仪器有限公司;JJ50型精密电子天平:美国双杰兄弟(集团)有限公司;EVOMA15/LS15型扫描电子显微镜:北京欧波同有限公司。 1.2实验方法 1.2.1超声吹脱 实验装置如图1所示。超声波发生器通过将工频电转变为20kHz以上(一般为

技术:高盐度废水处理工艺

技术 | 高盐度废水处理工艺 高含盐废水的种类很多,石油、页岩气开采,电镀、制药、印染、发酵工业、海产品加工废水等都含有较高浓度的无机盐组分如Cl-等。生物处理方法是目前广泛采用的高盐废水处理方法,虽然高含盐废水中较高的盐度会影响生物处理的效果,但若采用其他的方法,如膜分离等技术则成本较高,所以生物处理仍是首选的处理方法。 盐度影响生物处理效果的主要原因在于:在生物处理方法中,主要是利用活性污泥或生物膜、颗粒污泥中微生物的新代谢来吸附降解废水中的污染物,而高盐度会引起高渗透压,使微生物细胞脱水,同时也会抑制微生物降解有机物的反应效率,从而影响生物处理方法的效果。因此,在处理高含盐废水时应当选择能够耐受高盐度影响的生物反应器。 迄今为止,已进行过盐度影响实验研究的生物反应器有膜生物反应器、移动床生物膜反应器、升流式厌氧污泥床(up-flowanaerobicsludgeblanket,UASB)反应器、上流式厌氧生物滤池反应器、EGSB反应器等,由于颗粒污泥在盐度负荷冲击下能够体现出更高的适应能力,UASB等能够培养出厌氧颗粒污泥的生物反应器得以在处理高含盐废水时有更多的应用研究,但同时从反应器处理效果和微生物角度分析研究较少。EGSB是在UASB基础上发展起来的第三代厌氧反应器,与UASB相比有更好的运行效果。本次研究利用模拟的高盐度废水,从盐度影响

下EGSB反应器的运行效果和厌氧颗粒污泥两个方面进行分析比较,并对厌氧颗粒污泥做高通量测序,以期为EGSB反应器应用于高含盐工业废水的实际处理提供参考的实验数据。 1、材料与方法 1.1实验装置 实验用EGSB反应器由圆筒形有机玻璃制成,总高1.4m,径0.12m,总容积为15.52L,有效容积为15.18L。回流口在距反应器底部1.19m的位置,三相分离器圆环挡板距离顶部0.16m,三相分离集气罩呈圆锥形,底部直径0.1m,顶部直径 0.03m,高0.08m,排气通道高0.07m,集气罩、排气通道和EGSB反应器上盖密闭。投加颗粒污泥于反应器中,进水和回流分别通过蠕动泵从反应器底部进入。颗粒污泥、沼气、废水三相在反应器中混合,随着水流上升至三相分离器,沼气进入集气罩,而大部分废水通过集气罩与挡板间的缝隙进入出水区,颗粒污泥由于重力作用,在遇到挡板和集气罩壁后,下降至污泥层,因此能很好地实现气、液、固的三相分离。 1.2实验用水

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

高含盐废水处理工艺

高含盐废水处理工艺 一、Fenton或电—Fenton催化氧化预处理工艺 Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。 但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。 二、双膜法预处理工艺 利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。 双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。但要注意以下问题: A.超滤前要调pH为中性、去硬度、去SS净化等; B.原水含盐量在5000mg/L以下,否则透过水量就太低了,脱盐率也降低; C.当含盐原水水量大时投资会很高; D.由于膜要经常水洗、酸洗、碱洗保护,膜的使用寿命也有限,运行成本也是比较高的; E.最大的问题是截留下的更高污染的浓缩液怎么办?如能提取有价物质或有大量可生化废水稀释一起处理还好,否则,如回用会增加污染积累;如焚烧,则投资和运行成本极高; F.对含盐量超过5000mg/L的废水可直接蒸发结晶除盐了,再用膜法没什么意义,但是

SBR工艺处理高COD、高氨氮煤化工工业废水的研究

SBR工艺处理高COD、高氨氮煤化工工业废水的研究 摘要在采用SBR工艺处理煤化工工业废水时,通过考察研究废水的不同投加方式,跟踪分析了COD、NH3-N、NO2--N、NO3--N、PH、DO、碱度及碳源消耗。通过对比确定了最佳废水的投加方式达到了节约碱度、碳源消耗的目的,大大降低了运行成本。 关键词SBR;煤化工工艺废水;碱度;碳源 中图分类号X703 文献标识码 A 文章编号1673-9671-(2012)111-0178-02 SBR(Sequencing Batch Reactor Activated Sludge Process)是序批间歇式活性污泥法污水处理工艺的简称,是一种按照时间顺序改变活性污泥生长环境的污水处理技术,又称序批式活性污泥法,是一种比较成熟的污水处理工艺。它的主要特征是在时间上的有序和空间上的无序,各阶段的运行工况可以根据具体的污水性质和出水功能要求等灵活变化。SBR工艺一个运行周期中进水、反应、沉淀、出水和闲置5个基本工序都在一个设有曝气或搅拌的反应器内依次完成的。进水时间、曝气方式、搅拌时间可以根据具体的进水水质、污泥状况灵活改变。 笔者通过试验研究了在一个运行周期内分别采用不同的进水方式下PH、COD、NH3-N、NO2--N、NO3--N、DO的变化规律,通过对比确定了最佳废水的投加方式,达到了节约碱度消耗、减少外加碳源,降低处理成本的目的。 1 试验部分 1.1 废水的来源与水质 某煤化工工业,以煤为原料采用鲁奇气化工艺将煤加压气化为煤气,供企业和居民使用。在煤气洗涤过程中产生大量污水。污水水质见表1: 1.2 试验装置 试验装置由一组四个尺寸相同的SBR反应器组成,反应器为长55.5米、宽14米、有效水深5.6米。在反应器内装有微孔曝气器及潜水推流搅拌器;采用鼓风机曝气,离心泵进水,滗水器出水,进水由电磁流量计计量,整个系统由一套PLC自动程序控制装置操作运行。每一工作阶段,如进水、缺氧搅拌、曝气、沉淀和排水等工艺参数可根据需要设定。 1.3 分析项目及方法 进水和出水水样的分析项目及分析方法见表2。 2 试验结果与讨论 2.1 冲击性进水非限制性曝气方式 一次性快速向SBR反应池中加入200 m3原污水,好氧曝气去除有机物并进行硝化反应,硝化完成后投加甲醇进行反硝化,跟踪分析一个周期内水中残余COD、NH3-N、NO2--N、NO3--N、PH、DO变化情况见图1。 图1 由图1可以看出: 1)Do的变化规律:在进水阶段,因去除有机物的反应,异养菌的耗氧速率大于供氧速率,因此DO呈下降趋势。当COD接近其难去除浓度时,异养菌的耗氧速率迅速降低,供氧远远大于异养菌的耗氧速率,因此DO急剧上升,随着COD的降低及DO浓度的升高,异养菌因缺少底物而失去竞争力,系统内的硝化菌开始大量的进行新陈代谢。在氨氮去除的过程中,虽然自养菌的耗氧速率较

高盐废水处理方法

高盐废水处理方法 高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。含盐废水的产生途径广泛,水量也逐年增加。去除含盐污水中的有机污染物对环境造成的影响至关重要。 高盐废水如何处理,首先我们对其不同情况做一个简单的分析。 1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。突然高盐环境会造成驯化的失败和启动的延迟。 2、稀释进水盐度。既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。 3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。 高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解: (1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。 在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该

相关文档
相关文档 最新文档