文档库 最新最全的文档下载
当前位置:文档库 › 人工智能实践:Tensorflow笔记 北京大学 4 第四讲神经网络优化 (4.6.1) 助教的Tenso

人工智能实践:Tensorflow笔记 北京大学 4 第四讲神经网络优化 (4.6.1) 助教的Tenso

人工智能实践:Tensorflow笔记 北京大学 4  第四讲神经网络优化 (4.6.1)  助教的Tenso
人工智能实践:Tensorflow笔记 北京大学 4  第四讲神经网络优化 (4.6.1)  助教的Tenso

Tensorflow笔记:第四讲

神经网络优化

4.1

√神经元模型:用数学公式表示为:f(∑i x i w i+b),f为激活函数。神经网络是以神经元为基本单元构成的。

√激活函数:引入非线性激活因素,提高模型的表达力。

常用的激活函数有relu、sigmoid、tanh等。

①激活函数relu: 在Tensorflow中,用tf.nn.relu()表示

r elu()数学表达式 relu()数学图形

②激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示

sigmoid ()数学表达式 sigmoid()数学图形

③激活函数tanh:在Tensorflow中,用tf.nn.tanh()表示

tanh()数学表达式 tanh()数学图形

√神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示

√神经网路的层数:一般不计入输入层,层数 = n个隐藏层 + 1个输出层

√神经网路待优化的参数:神经网络中所有参数w 的个数 + 所有参数b 的个数 例如:

输入层 隐藏层 输出层

在该神经网络中,包含1个输入层、1个隐藏层和1个输出层,该神经网络的层数为2层。 在该神经网络中,参数的个数是所有参数w 的个数加上所有参数b 的总数,第一层参数用三行四列的二阶张量表示(即12个线上的权重w )再加上4个偏置b ;第二层参数是四行两列的二阶张量()即8个线上的权重w )再加上2个偏置b 。总参数 = 3*4+4 + 4*2+2 = 26。

√损失函数(loss ):用来表示预测值(y )与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。 √常用的损失函数有均方误差、自定义和交叉熵等。

√均方误差mse :n 个样本的预测值y 与已知答案y_之差的平方和,再求平均值。

MSE(y_, y) =

?i=1n (y?y_)

2n

在Tensorflow 中用loss_mse = tf.reduce_mean(tf.square(y_ - y)) 例如:

预测酸奶日销量y ,x1和x2是影响日销量的两个因素。

应提前采集的数据有:一段时间内,每日的x1因素、x2因素和销量y_。采集的数据尽量多。 在本例中用销量预测产量,最优的产量应该等于销量。由于目前没有数据集,所以拟造了一套数据集。利用Tensorflow 中函数随机生成 x1、 x2,制造标准答案y_ = x1 + x2,为了更真实,求和后还加了正负0.05的随机噪声。

我们把这套自制的数据集喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。

代码如下:

运行结果如下:

由上述代码可知,本例中神经网络预测模型为y = w1*x1 + w2*x2,损失函数采用均方误差。通过使损失函数值(loss )不断降低,神经网络模型得到最终参数w1=0.98,w2=1.02,销量预测结果为y = 0.98*x1 + 1.02*x2。由于在生成数据集时,标准答案为y = x1 + x2,因此,销量预测结果和标准答案已非常接近,说明该神经网络预测酸奶日销量正确。

√自定义损失函数:根据问题的实际情况,定制合理的损失函数。 例如:

对于预测酸奶日销量问题,如果预测销量大于实际销量则会损失成本;如果预测销量小于实际销量则会损失利润。在实际生活中,往往制造一盒酸奶的成本和销售一盒酸奶的利润是不等价的。因此,需要使用符合该问题的自定义损失函数。 自定义损失函数为:loss =∑n f(y_,y) 其中,损失定义成分段函数:

f (y_,y )={PROFIT ?(y_?y ) y

COST ?(y ?y_) y >=y_

损失函数表示,若预测结果y 小于标准答案y_,损失函数为利润乘以预测结果y 与标准答案y_之差;若预测结果y 大于标准答案y_,损失函数为成本乘以预测结果y 与标准答案y_之差。 用Tensorflow 函数表示为:

loss = tf.reduce_sum(tf.where(tf.greater(y,y_),COST(y-y_),PROFIT(y_-y)))

① 若酸奶成本为1元,酸奶销售利润为9元,则制造成本小于酸奶利润,因此希望预测的结果y 多

一些。采用上述的自定义损失函数,训练神经网络模型。 代码如下:

运行结果如下:

由代码执行结果可知,神经网络最终参数为w1=1.03,w2=1.05,销量预测结果为y =1.03*x1 + 1.05*x2。由此可见,采用自定义损失函数预测的结果大于采用均方误差预测的结果,更符合实际需求。

②若酸奶成本为9元,酸奶销售利润为1元,则制造成本大于酸奶利润,因此希望预测结果y小一些。采用上述的自定义损失函数,训练神经网络模型。

代码如下:

运行结果如下:

由执行结果可知,神经网络最终参数为w1=0.96,w2=0.97,销量预测结果为y =0.96*x1 + 0.97*x2。因此,采用自定义损失函数预测的结果小于采用均方误差预测的结果,更符合实际需求。

√交叉熵(Cross Entropy):表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似。

交叉熵计算公式:H(y_ ,y)=?∑y_?log y

用Tensorflow函数表示为

ce= -tf.reduce_mean(y_* tf.log(tf.clip_by_value(y, 1e-12, 1.0)))

例如:

两个神经网络模型解决二分类问题中,已知标准答案为y_ = (1, 0),第一个神经网络模型预测结果为

y1=(0.6, 0.4),第二个神经网络模型预测结果为y2=(0.8, 0.2),判断哪个神经网络模型预测的结果更接近标准答案。

根据交叉熵的计算公式得:

H1((1,0),(0.6,0.4)) = -(1*log0.6 + 0*log0.4) ≈-(-0.222 + 0) = 0.222

H2((1,0),(0.8,0.2)) = -(1*log0.8 + 0*log0.2) ≈-(-0.097 + 0) = 0.097

由于0.222>0.097,所以预测结果y2与标准答案y_更接近,y2预测更准确。

√softmax函数:将n分类的n个输出(y1,y2…yn)变为满足以下概率分布要求的函数。

(X=x)=1

?x P(X=x)∈[0,1]且∑P

x

softmax函数表示为:softmax(y i)=e yi

n e yi

∑j=1

softmax函数应用:在n分类中,模型会有n个输出,即y1,y2…yn,其中yi表示第i种情况出现的可能性大小。将n个输出经过softmax函数,可得到符合概率分布的分类结果。

√在Tensorflow中,一般让模型的输出经过sofemax函数,以获得输出分类的概率分布,再与标准答案对比,求出交叉熵,得到损失函数,用如下函数实现:

ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

cem = tf.reduce_mean(ce)

4.2

√学习率 learning_rate:表示了每次参数更新的幅度大小。学习率过大,会导致待优化的参数在最小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。

在训练过程中,参数的更新向着损失函数梯度下降的方向。

参数的更新公式为:

w n+1=w n?learning_rate?

假设损失函数为loss = (w + 1)2。梯度是损失函数loss的导数为?=2w+2。如参数初值为5,学习率为0.2,则参数和损失函数更新如下:

1次参数w:5 5 - 0.2 * (2 * 5 + 2) = 2.6

2次参数w:2.6 2.6 - 0.2 * (2 * 2.6 + 2) = 1.16

3次参数w:1.16 1.16 – 0.2 * (2 * 1.16 + 2) = 0.296

4次参数w:0.296

损失函数loss = (w + 1)2的图像为:

由图可知,损失函数loss的最小值会在(-1,0)处得到,此时损失函数的导数为0,得到最终参数w = -1。代码如下:

运行结果如下:

由结果可知,随着损失函数值的减小,w无限趋近于-1,模型计算推测出最优参数w = -1。

√学习率的设置

学习率过大,会导致待优化的参数在最小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。

例如:

①对于上例的损失函数loss = (w + 1)2。则将上述代码中学习率修改为1,其余内容不变。

实验结果如下:

由运行结果可知,损失函数loss值并没有收敛,而是在5和-7之间波动。

②对于上例的损失函数loss = (w + 1)2。则将上述代码中学习率修改为0.0001,其余内容不变。

实验结果如下:

由运行结果可知,损失函数loss值缓慢下降,w值也在小幅度变化,收敛缓慢。

√指数衰减学习率:学习率随着训练轮数变化而动态更新

学习率计算公式如下:

Learning_rate=LEARNING_RATE_BASE*LEARNING_RATE_DECAY*global_step

LEARNING_RATE_BATCH_SIZE

用Tensorflow的函数表示为:

global_step = tf.Variable(0, trainable=False)

learning_rate = tf.train.exponential_decay(

LEARNING_RATE_BASE,

global_step,

LEARNING_RATE_STEP, LEARNING_RATE_DECAY,

staircase=True/False)

其中,LEARNING_RATE_BASE为学习率初始值,LEARNING_RATE_DECAY为学习率衰减率,global_step记录了当前训练轮数,为不可训练型参数。学习率learning_rate更新频率为输入数据集总样本数除以每次喂入样本数。若staircase设置为True时,表示global_step/learning rate step取整数,学习率阶梯型衰减;若staircase设置为false时,学习率会是一条平滑下降的曲线。

例如:

在本例中,模型训练过程不设定固定的学习率,使用指数衰减学习率进行训练。其中,学习率初值设置为0.1,学习率衰减率设置为0.99,BATCH_SIZE设置为1。

代码如下:

运行结果如下:

由结果可以看出,随着训练轮数增加学习率在不断减小。

4.3

√滑动平均:记录了一段时间内模型中所有参数w和b各自的平均值。利用滑动平均值可以增强模型的泛化能力。

√滑动平均值(影子)计算公式:

影子 = 衰减率 * 影子 +(1 - 衰减率)* 参数

其中,衰减率=min{MOVING AVERAGE

DECAY ,1+轮数

10+轮数

},影子初值=参数初值

√用Tesnsorflow函数表示为:

√ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)

其中,MOVING_AVERAGE_DECAY表示滑动平均衰减率,一般会赋接近1的值,global_step表示当前训练了多少轮。

√ema_op = ema.apply(tf.trainable_variables())

其中,ema.apply()函数实现对括号内参数求滑动平均,tf.trainable_variables()函数实现把所有待训练参数汇总为列表。

√with tf.control_dependencies([train_step, ema_op]):

train_op = tf.no_op(name='train')

其中,该函数实现将滑动平均和训练过程同步运行。

查看模型中参数的平均值,可以用ema.average()函数。

例如:

在神经网络模型中,将MOVING_AVERAGE_DECAY设置为0.99,参数w1设置为0,w1的滑动平均值设置为0。

①开始时,轮数global_step设置为0,参数w1更新为1,则w1的滑动平均值为:

w1滑动平均值=min(0.99,1/10)*0+(1– min(0.99,1/10)*1 = 0.9

③当轮数global_step设置为100时,参数w1更新为10,以下代码global_step保持为100,每

次执行滑动平均操作影子值更新,则滑动平均值变为:

w1滑动平均值=min(0.99,101/110)*0.9+(1– min(0.99,101/110)*10 = 0.826+0.818=1.644

③再次运行,参数w1更新为1.644,则滑动平均值变为:

w1滑动平均值=min(0.99,101/110)*1.644+(1– min(0.99,101/110)*10 = 2.328

④再次运行,参数w1更新为2.328,则滑动平均值:

w1滑动平均值=2.956

代码如下:

运行程序,结果如下:

从运行结果可知,最初参数w1和滑动平均值都是0;参数w1设定为1后,滑动平均值变为0.9;当迭代轮数更新为100轮时,参数w1更新为10后,滑动平均值变为1.644。随后每执行一次,参数w1的滑动平均值都向参数w1靠近。可见,滑动平均追随参数的变化而变化。

4.4

√过拟合:神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较低,说明模型的泛化能力差。

√正则化:在损失函数中给每个参数w加上权重,引入模型复杂度指标,从而抑制模型噪声,减小过拟合。

使用正则化后,损失函数loss变为两项之和:

loss = loss(y与y_) + REGULARIZER*loss(w)

其中,第一项是预测结果与标准答案之间的差距,如之前讲过的交叉熵、均方误差等;第二项是正则化计算结果。

√正则化计算方法:

①L1正则化:loss L1=∑i|w i|

用Tesnsorflow函数表示:loss(w) = https://www.wendangku.net/doc/3f16897491.html,yers.l1_regularizer(REGULARIZER)(w)

②L2正则化:loss L2=∑i|w i|2

用Tesnsorflow函数表示:loss(w) = https://www.wendangku.net/doc/3f16897491.html,yers.l2_regularizer(REGULARIZER)(w)

√用Tesnsorflow函数实现正则化:

tf.add_to_collection('losses', https://www.wendangku.net/doc/3f16897491.html,yers.l2_regularizer(regularizer)(w)

loss = cem + tf.add_n(tf.get_collection('losses'))

cem的计算已在4.1节中给出。

例如:

用300个符合正态分布的点X[x

0, x

1

]作为数据集,根据点X[x

, x

1

]计算生成标注Y_,将数据集

标注为红色点和蓝色点。

标注规则为:当x

02 + x

1

2 < 2 时,y_=1,标注为红色;当x

2 + x

1

2≥2 时,y_=0,标注为蓝色。

我们分别用无正则化和有正则化两种方法,拟合曲线,把红色点和蓝色点分开。在实际分类时,如果前向传播输出的预测值y接近1则为红色点概率越大,接近0则为蓝色点概率越大,输出的预测值y为0.5是红蓝点概率分界线。

在本例子中,我们使用了之前未用过的模块与函数:

√matplotlib模块:Python中的可视化工具模块,实现函数可视化

终端安装指令:sudo pip install matplotlib

√函数plt.scatter():利用指定颜色实现点(x,y)的可视化

plt.scatter (x坐标, y坐标, c=”颜色”)

plt.show()

√收集规定区域内所有的网格坐标点:

xx, yy = np.mgrid[起:止:步长, 起:止:步长] #找到规定区域以步长为分辨率的行列网格坐标点grid = np.c_[xx.ravel(), yy.ravel()] #收集规定区域内所有的网格坐标点

√plt.contour()函数:告知x、y坐标和各点高度,用levels指定高度的点描上颜色

plt.contour (x轴坐标值, y轴坐标值, 该点的高度, levels=[等高线的高度])

plt.show()

本例代码如下:

执行代码,效果如下:

首先,数据集实现可视化,x

02 + x

1

2 < 2的点显示红色, x

2 + x

1

2≥2 的点显示蓝色,如图所示:

接着,执行无正则化的训练过程,把红色的点和蓝色的点分开,生成曲线如下图所示:

最后,执行有正则化的训练过程,把红色的点和蓝色的点分开,生成曲线如下图所示:

对比无正则化与有正则化模型的训练结果,可看出有正则化模型的拟合曲线平滑,模型具有更好的泛化能力。

4.5搭建模块化神经网络八股

√前向传播:由输入到输出,搭建完整的网络结构

描述前向传播的过程需要定义三个函数:

√def forward(x, regularizer):

w=

b=

y=

return y

第一个函数forward()完成网络结构的设计,从输入到输出搭建完整的网络结构,实现前向传播过程。该函数中,参数x为输入,regularizer为正则化权重,返回值为预测或分类结果y。

√def get_weight(shape, regularizer):

w = tf.Variable( )

tf.add_to_collection('losses', https://www.wendangku.net/doc/3f16897491.html,yers.l2_regularizer(regularizer)(w)) return w

第二个函数get_weight()对参数w设定。该函数中,参数shape表示参数w的形状,regularizer 表示正则化权重,返回值为参数w。其中,tf.variable()给w赋初值,tf.add_to_collection()表示将参数w正则化损失加到总损失losses中。

√def get_bias(shape):

b = tf.Variable( )

return b

第三个函数get_bias()对参数b进行设定。该函数中,参数shape表示参数b的形状,返回值为参数b。其中,tf.variable()表示给b赋初值。

√反向传播:训练网络,优化网络参数,提高模型准确性。

√def backward( ):

x = tf.placeholder( )

y_ = tf.placeholder( )

y = forward.forward(x, REGULARIZER)

global_step = tf.Variable(0, trainable=False)

loss =

函数backward()中,placeholder()实现对数据集x和标准答案y_占位,forward.forward()实现前向传播的网络结构,参数global_step表示训练轮数,设置为不可训练型参数。

在训练网络模型时,常将正则化、指数衰减学习率和滑动平均这三个方法作为模型优化方法。√在Tensorflow中,正则化表示为:

首先,计算预测结果与标准答案的损失值

①MSE:y与y_的差距(loss_mse) = tf.reduce_mean(tf.square(y-y_))

②交叉熵:ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

y与y_的差距(cem) = tf.reduce_mean(ce)

③自定义:y与y_的差距

其次,总损失值为预测结果与标准答案的损失值加上正则化项

loss = y与y_的差距+ tf.add_n(tf.get_collection('losses'))

√在Tensorflow中,指数衰减学习率表示为:

learning_rate = tf.train.exponential_decay(

LEARNING_RATE_BASE,

global_step,

数据集总样本数 / BATCH_SIZE,

LEARNING_RATE_DECAY,

staircase=True)

train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,

global_step=global_step)

√在Tensorflow中,滑动平均表示为:

ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) ema_op = ema.apply(tf.trainable_variables())

with tf.control_dependencies([train_step, ema_op]):

train_op = tf.no_op(name='train')

其中,滑动平均和指数衰减学习率中的global_step为同一个参数。

√用with结构初始化所有参数

with tf.Session() as sess:

init_op = tf.global_variables_initializer()

sess.run(init_op)

for i in range(STEPS):

sess.run(train_step, feed_dict={x: , y_: })

if i % 轮数 == 0:

《智能时代》读书笔记

《智能时代》读书笔记 随着互联网技术和大数据技术的快速发展,人工智能近年来也再次引起了全世界各行各业的极大关注。《智能时代》这本书所讨论的正是当下最热的大数据技术、人工智能技术及二者技术对各行业带来的积极影响和未来的应用方向,是我个人非常感兴趣的内容。通过对本书的阅读,谈如下两个方面的认识和启发。 一、本书中个人比较关注的几个核心观点: 1.大数据带来了思维革命 作者认为,获得和利用数据的水平反映了文明的水平。如果把资本和机械动能作为大航海时代以来全球近代化的推动力,那么数据就是下一次技术革命和社会变革的核心动力。作者强调大数据是一种思维方式,对于大数据的认识不应停留在统计、改进产品、销售或者提供决策支持上,现在的数据量已经由量变引起了质变,它导致了机器智能的产生,这也使得全球兴起了智能革命。 2.现有产业+新技术=新产业 各行各业结合大数据思维均能产生新的产业,大数据将像水电一样普及,成为社会基础资源。作者举了一个利用大数据进行酒吧经营的例子,感觉效果很好,其实就是在每个酒架上安装了RFID进行数据采集,一方面统计酒类的消耗情况,另外一方面也起到了监督的作用,同时利用大数据做精准的营销,我觉得完全可以移植到其他行业。大数据的完备性也有助于新产品的开发,比如无人驾驶汽车、比如阿法狗、比如语音识别。基于此,作者提出:现有产业+新技术=新产业,

因此:现有产业+大数据=新产业,现有产业+机器智能=新产业。每次技术革命都会诞生新的思维方式和商业模式,企业需要跟上,我们作为个人也应该不断学习,才能提升自我。 3.争当2%的人 机器智能给社会带来了产业结构变革,给我们带来了美好社会。与前几次技术革命相比,智能革命所要替代的是人类最值得自豪的部分——人类的大脑,在各行各业机器逐步取代98%的人后,人类怎么办,我们个人怎么办,作者提到,我们能做的只能是拥抱变化,努力去争当2%的人,我们应该去做社会的引领者,否则就会被淘汰。我们应该拥抱变化,努力学习、研究、利用大数据和智能技术,让自己成为2%的受益者,也去帮助那些被淘汰的人。 二、对个人工作的触动和思考: 1.借助新的营销思维,更加有效的制定并策划符合市场主流营销的 营销策划方案 在营销策划过程中,抓住客户痛点和潜在需求,挖掘客户兴趣点,将是营销策划案中非常难以把握的点。传统的营销方案在这方面比较忽视。要解决以上这个问题,则需要有创新性的营销思维,并结合当前最新的大数据和智能技术,才能更加准确的把握客户真实需求。经过对《智能时代》的学习,进一步强化了自身大数据和人工智能的认知,对其的应用场景和带来的变化也有了较清楚的认识,希望能够结合自己岗位的工作,在今后的工作中能够把大数据和人工智能的思想融入到对一线的营销策划方案中,以大数据应用的思维和智能化的方

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

人工智能教程习题及答案第9章神经网络与遗传算法

第九章神经网络与遗传算法习题参考解答 9.1练习题 9.1 何谓人工神经网络?它有哪些特征? 9.2 生物神经元由哪几部分构成?每一部分的作用是什么?它有哪些特性? 9.3 什么是人工神经元?它有哪些连接方式? 9.4 B-P算法的网络结构是什么?简述B-P算法的学习过程。 9.5 什么是网络的稳定性? Hopfield网络模型分为哪两类?两者的区别是什么? 9.6 有教师学习与无教师学习的区别是什么? 请分析说明。 9.7 Hopfield模型与B-P模型的网络结构有何异同? 9.8 简述简单遗传算法的基本原理和一般过程,说明个体选择的常用策略,以及遗传操作“交叉”和“变异”所起的作用。 9.9 遗传算法有哪些特点?在应用遗传算法时要解决的最关键问题有哪些? 9.2习题参考解答 9.1 答: (略) 9.2 答: 生物神经元主要由三部分构成:细胞体、轴突和树突。 每一部分的作用是:(a)细胞体是神经元的新陈代谢中心,同时还用于接收并处理从其他神经元传递过来的信息。(b)轴突的作用相当于神经元的输出电缆,它通过尾部分出的许多神经末梢以及梢端的突触向其他神经元输出神经冲动。(c)树突的相当于神经元的输入端,用于接收从四面八方传来的神经冲动。 神经元的功能特性包括:(a)时空整合功能。(b)神经元的动态极化性。(c)兴奋与抑制状态。(d)结构的可塑性。(e)脉冲与电位信号的转换。(f)突触延期和不应期。(g)学习、遗忘和疲劳。 9.3 答: (略) 9.4 答: B-P算法的网络结构是一个前向多层网络。网络中不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点,网络中各处理单元间的连接如图6.16所示。当有信息向网络输入时,信息首先由输入层传递到隐层节点,经特性函数(人工神经元)作用后,再

人工智能读后感

人工智能读后感 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《人工智能》(李开复)读后感 本书内容框架如下: 1.关于人工智能的五种定义 2.人工智能发展的三个阶段 3.人工智能是否会威胁人类 4.人类将如何变革 行业的创业概况 时代下的教育和个人发展 一、关于人工智能的五种定义 首先,请抛开人工智能就是人形机器人的固有偏见。 人工智能目前作为一种技术手段,已经成为了不少应用的核心驱动力。 苹果的SIRI、微软的小冰是常见的人工智能助理。当用户与他们对话时,他们会通过事先积累好的人类对话库和互联网资料库中,查找最有可能匹配的回答。 今日头条、淘宝购物推荐,会根据你的浏览习惯、购物历史,学习你的爱好。所以用的越久,它就会越懂你。 人脸识别是目前应用最广泛的机器视觉技术,是人工智能大家庭中的重要分支。用刷脸的方式替代门禁卡,支付宝正在开发的刷脸支付也是依托于人脸识别技术。广义上的机器视觉还包括图像、视频中各种物体识别、场景识别、地点识别乃至语义理解。比如手机中的照片自动分类就是运用了场景识别的功能,还有清理重复照片的功能,也运用到了这个技术。此外,百度中的图片搜索、淘宝中的商品图片搜索,也运用到了人工智能技术。 我们现在用的美图秀秀中的一键P图软件、三生三世画风的一键美妆,都是运用到了人工智能技术。机器通过从大量经典画作中学习到的上色技法、笔触技法、干湿画法、上妆技巧等,来对原始图片进行处理。 搜索引擎根据问题给出最直接的答案,也与SIRI的运行原理相类似。 在机器翻译这一块儿上,通过对语言、语言学的学习,得出的翻译结果也具备较强的可读性。甚至可以通过中文与英文的翻译数据、英文与阿拉伯文的翻译数据,自动学习如何从中文翻译到阿拉伯文。 还有目前在商业化方面已经取得长足进展的自动驾驶技术。也是通过数百万里的驾驶里程学习,来完成车速调整、控制转向、避免碰撞等操作。当然,目前相对比较成熟的还是半自动驾驶技术。完全的无人驾驶或许还要等到十年之后。 还有我们经常在电影中看见的机器人行业。快递分拣机器人、无人飞机、工业机器人,都极大的提高了商业效率。但目前机器人还无法做到像人一样具备完整的思维。大家所期待的人形机器人,其实投资人也是不看好的。原因很简单,机器越像人,就越容易被拿来和真人比较。由于人工智能技术尚未达到十分成熟的阶段,这个机器人的蠢笨会暴露的非常彻底。使期望与现实之间的差距加大,因此难以获得市场认可。 那讲了这么多现象,到底什么是人工智能 目前常见的定义有五种: 第一,人工智能是让人感到不可思议的计算机程序。几十年前的人类,如果能见识到现在手机上常见的人机对战的象棋、跳棋游戏,恐怕会被吓一大跳,甚

BP神经网络实验——【机器学习与算法分析 精品资源池】

实验算法BP神经网络实验 【实验名称】 BP神经网络实验 【实验要求】 掌握BP神经网络模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。其基本组成单元是感知器神经元。 【知识准备】 了解BP神经网络模型的使用场景,数据标准。掌握Python/TensorFlow数据处理一般方法。了解keras神经网络模型搭建,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署TensorFlow,Python。本实验提供centos6.8环境。 【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,把数据集随机划分为训练集和测试集,分别对模型进行训练和测试。 【实验环境】 Pyrhon3.X,实验在命令行python中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。 【实验步骤】 第一步:启动python: 1

命令行中键入python。 第二步:导入用到的包,并读取数据: (1).导入所需第三方包 import pandas as pd import numpy as np from keras.models import Sequential from https://www.wendangku.net/doc/3f16897491.html,yers import Dense import keras (2).导入数据源,数据源地址:/opt/algorithm/BPNet/wine.txt df_wine = pd.read_csv("/opt/algorithm/BPNet/wine.txt", header=None).sample(frac=1) (3).查看数据 df_wine.head() 1

人工智能(部分习题答案)

1.什么是人类智能?它有哪些特征或特点? 定义:人类所具有的智力和行为能力。 特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。 2.人工智能是何时、何地、怎样诞生的? 解:人工智能于1956年夏季在美国Dartmouth大学诞生。此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。 3.什么是人工智能?它的研究目标是? 定义:用机器模拟人类智能。 研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 4.人工智能的发展经历了哪几个阶段? 解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。 5.人工智能研究的基本容有哪些? 解:知识的获取、表示和使用。 6.人工智能有哪些主要研究领域? 解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。 7.人工智能有哪几个主要学派?各自的特点是什么? 主要学派:符号主义和联结主义。 特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。 8.人工智能的近期发展趋势有哪些? 解:专家系统、机器人学、人工神经网络和智能检索。 9.什么是以符号处理为核心的方法?它有什么特征? 解:通过符号处理来模拟人类求解问题的心理过程。 特征:基于数学逻辑对知识进行表示和推理。 11.什么是以网络连接为主的连接机制方法?它有什么特征? 解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。 特征:研究神经网络。 1.请写出用一阶谓词逻辑表示法表示知识的步骤。 步骤:(1)定义谓词及个体,确定每个谓词及个体的确切含义;(2)根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值;(3)根据所要表达的知识的语义用适当的联接符号将各个谓词联接起来,形成谓词公式。 2.设有下列语句,请用相应的谓词公式把它们表示出来: (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词如下: Like(x,y):x喜欢y。 Club(x):x是梅花。 Human(x):x是人。 Mum(x):x是菊花。 “有的人喜欢梅花”可表达为:(?x)(Human(x)∧Like(x,Club(x))) “有的人喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Mum(x))) “有的人既喜欢梅花又喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Club(x))∧ Like(x,Mum(x))) (1)他每天下午都去玩足球。 解:定义谓词如下: PlayFootball(x):x玩足球。 Day(x):x是某一天。 则语句可表达为:(?x)(D(x)→PlayFootball(Ta)) (2)市的夏天既干燥又炎热。 解:定义谓词如下: Summer(x):x的夏天。 Dry(x):x是干燥的。 Hot(x):x是炎热的。 则语句可表达为:Dry(Summer(Taiyuan))∧Hot(Summer(Taiyuan)) (3)所有人都有饭吃。

《人工智能》读后感李开复人工智能读后感

《人工智能》读后感李开复人工智能读后感关于机器能否拥有意识这个论题,其实是关于意识的本质的讨论,以下是分享的《人工智能》读后感的相关资料,欢迎阅读! 关于机器能否拥有意识这个论题,其实是关于意识的本质的讨论,但目前对于意识,人类还没有一个明确的定义。二元论认为,意识是非物质的思维所具有的属性,而思维跟物质的大脑是相互独立的,机器不可能具有意识,除非它可以得到一个非物质的思维,而这是不可能的,所以,机器永远不可能有意识。 还有一些看法认为思维产生于大脑,大脑是一台数字计算机, 而思维是一个计算机程序,这个理论又分为“强人工智慧”与“弱人工智慧”。根据“强人工智慧”,一台计算机只要有了正确的程序就可以拥有像人类一样的智慧与思维;而“弱人工智慧”理论,则认为 计算机可以模拟人的思维,它们可以模拟一系列的思维过程,如思考、决策等。但是,不管它们做得多么出色,它们都不能创造真正的思维或者真正的意识,而只能做到“看起来像”有意识一样。意识尚未被定义,我们也没有鉴别意识的手段,所以更谈不上人工意识能否存在了。与其让这些巨大的难题挡住我们的去路,还不如加紧工作,看看我们究竟能做到什么程度,就像绝大多数机器人学家正在做的那样。我们几乎可以肯定,更好、更聪明的机器将不断出现,而关于它们是否拥有意识的讨论也会继续下去,对于人工意识的探索最终甚至有可

能帮助我们理解意识本身的性质。抛开这些问题,回到电影本身,斯皮尔伯格的这部电影更多的是将科幻与伦理结合在一起,他对人工智能的未来作了一个深刻且悲观的预言。 “人工智慧”旨在用计算机来模拟思维,从而复制思维,产生智慧行为,那么我们是否可以说计算机或者机器人也会产生同人类一样的情感呢,如果机器拥有人类同等的智慧,人类会不会与机器发生情感、人类与机器人如何相处,这就涉及一些伦理道德等社会性的问题。影片中,人类对劣等机器人的猎杀充满了不人道。影片在此表现出一种荒诞的意味:人不像人,机器人才像人,拥有人性情感的他们不会对人类的暴虐熟视无睹,这场激战在斯皮尔伯格的电影中被两千年的沉睡一笔带过,但结局我们看到了,人类作为一个灭绝的物种被缅怀。当机器具有了人类的意识和思维,它们会爱,就会恨,会服从,就会反抗。如果机器人的智慧太高以至于超过了人类的智慧,那么我们就有理由相信它们就很有可能取代人类成为地球的主宰者,人类感受到生存受到威胁后,影片中的行为就不足为奇。有关于这个忧虑,我从相关书籍中了解到这样一点:“人工智慧不是人的智慧,更不会超过人的智慧”。 “机器思维”同人类思维的本质区别:

数据挖掘常用资源及工具

资源Github,kaggle Python工具库:Numpy,Pandas,Matplotlib,Scikit-Learn,tensorflow Numpy支持大量维度数组与矩阵运算,也针对数组提供大量的数学函数库 Numpy : 1.aaa = Numpy.genfromtxt(“文件路径”,delimiter = “,”,dtype = str)delimiter以指定字符分割,dtype 指定类型该函数能读取文件所以内容 aaa.dtype 返回aaa的类型 2.aaa = numpy.array([5,6,7,8]) 创建一个一维数组里面的东西都是同一个类型的 bbb = numpy.array([[1,2,3,4,5],[6,7,8,9,0],[11,22,33,44,55]]) 创建一个二维数组aaa.shape 返回数组的维度print(bbb[:,2]) 输出第二列 3.bbb = aaa.astype(int) 类型转换 4.aaa.min() 返回最小值 5.常见函数 aaa = numpy.arange(20) bbb = aaa.reshape(4,5)

numpy.arange(20) 生成0到19 aaa.reshape(4,5) 把数组转换成矩阵aaa.reshape(4,-1)自动计算列用-1 aaa.ravel()把矩阵转化成数组 bbb.ndim 返回bbb的维度 bbb.size 返回里面有多少元素 aaa = numpy.zeros((5,5)) 初始化一个全为0 的矩阵需要传进一个元组的格式默认是float aaa = numpy.ones((3,3,3),dtype = numpy.int) 需要指定dtype 为numpy.int aaa = np 随机函数aaa = numpy.random.random((3,3)) 生成三行三列 linspace 等差数列创建函数linspace(起始值,终止值,数量) 矩阵乘法: aaa = numpy.array([[1,2],[3,4]]) bbb = numpy.array([[5,6],[7,8]]) print(aaa*bbb) *是对应位置相乘 print(aaa.dot(bbb)) .dot是矩阵乘法行乘以列 print(numpy.dot(aaa,bbb)) 同上 6.矩阵常见操作

人工智能习题&答案-第4章-计算智能1-神经计算-模糊计算

第四章计算智能(1):神经计算模糊计算4-1 计算智能的含义是什么?它涉及哪些研究分支? 贝兹德克认为计算智能取决于制造者提供的数值数据,而不依赖于知识。计算智能是智力的低层认知。 主要的研究领域为神经计算,模糊计算,进化计算,人工生命。 4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。 计算智能是智力的低层认知,主要取决于数值数据而不依赖于知识。人工智能是在计算智能的基础上引入知识而产生的智力中层认知。生物智能,尤其是人类智能,则是最高层的智能。即CI包含AI包含BI 4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域? 人工神经网络具有如下至关重要的特性: (1) 并行分布处理 适于实时和动态处理 (2)非线性映射 给处理非线性问题带来新的希望 (3) 通过训练进行学习 一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题 (4) 适应与集成 神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统 (5) 硬件实现 一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。 4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

生物神经元 大多数神经元由一个细胞体(cell body或soma)和突(process)两部分组成。突分两类,即轴突(axon)和树突(dendrite),轴突是个突出部分,长度可达1m,把本神经元的输出发送至其它相连接的神经元。树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。 轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其它神经元发送信息。对某些突触的刺激促使神经元触发(fire)。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称为被触发。突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。学习就发生在突触附近。 每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。神经元通过突触形成的网络,传递神经元间的兴奋与抑制。大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。 人工神经网络的结构 人工神经网络由神经元模型构成。每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。 人工神经网络的结构分为2类, (1)递归(反馈)网络 有些神经元的输出被反馈至同层或前层神经元。信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是代表。 (2) 前馈网络 具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。多层感知器(MLP),学习矢量量化网络(LVQ),小脑模型连接控制网络(CMAC)和数据处理方法网络(GMDH)是代表。 人工神经网络的主要学习算法 (1) 指导式(有师)学习 根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。包括Delta规则,广义Delta规则,反向传播算法及LVQ算法。 (2) 非指导(无导师)学习 训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。包括

人工智能读书笔记

人工智能 第一章:人工智能 (1)人工智能基本概念、方法和技术:基本技术:知识表示、推理、搜索、规划 (2)人工智能的主要研究、应用领域 机器感知:机器视觉;机器听觉;自然语言理解;机器翻译 机器思维:机器推理 机器学习:符号学习;连接学习 机器行为:智能控制 智能机器:智能机器人;机器智能 智能应用:博弈;自动定理证明;自动程序设计 专家系统;智能决策;智能检索;智能CAD;智能CAI 智能交通;智能电力;智能产品;智能建筑等 (3)人工智能新技术 计算智能:神经计算;模糊计算;进化计算;自然计算 人工生命:人工脑;细胞自动机 分布智能:多Agent , 群体智能 数据挖掘:知识发现;数据挖掘 (4)人工智能研究领域:重点介绍机器学习 机器思维:就是让计算机模仿和实现人的思维能力,以对感知到的外界信息和自己产生的内部信息进行思维性加工。 机器思维包括:推理、搜索、规划等方面的研究。 机器感知是机器获取外界信息的主要途径,也是机器智能的重要组成部分。 所谓机器感知,就是要让计算机具有类似于人的感知能力,如视觉、听觉、触觉、味觉。 机器行为就是让计算机能够具有像人那样地行动和表达能力,如走、跑、拿、说、唱、写画等。 知识表示:知识表示的观点 陈述性观点:知识的存储与知识的使用相分离 优点:灵活、简洁,演绎过程完整、确定,知识维护方便 缺点:推理效率低、推理过程不透明 过程性观点:知识寓于使用知识的过程中 优点:推理效率高、过程清晰 缺点:灵活性差、知识维护不便 知识表示的方法 逻辑表示法:一阶谓词逻辑 产生式表示法:产生式规则 结构表示法:语义网络,框架 谓词逻辑表示的应用 机器人移盒子问题:分别定义描述状态和动作的谓词 描述状态的谓词: TABLE(x):x是桌子 EMPTY(y):y手中是空的 AT(y, z):y在z处

题库深度学习面试题型介绍及解析--第7期

1.简述激活函数的作用 使用激活函数的目的是为了向网络中加入非线性因素;加强网络的表示能力,解决线性模型无法解决的问题 2.那为什么要使用非线性激活函数? 为什么加入非线性因素能够加强网络的表示能力?——神经网络的万能近似定理 ?神经网络的万能近似定理认为主要神经网络具有至少一个非线性隐藏层,那么只要给予网络足够数量的隐藏单元,它就可以以任意的精度来近似任何从一个有限维空间到另一个有限维空间的函数。 ?如果不使用非线性激活函数,那么每一层输出都是上层输入的线性组合;此时无论网络有多少层,其整体也将是线性的,这会导致失去万能近似的性质 ?但仅部分层是纯线性是可以接受的,这有助于减少网络中的参数。3.如何解决训练样本少的问题? 1.利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。CV 有 ImageNet,NLP 有 BERT 等。 2.数据集进行下采样操作,使得符合数据同分布。

3.数据集增强、正则或者半监督学习等方式来解决小样本数据集的训练问题。 4.如何提升模型的稳定性? 1.正则化(L2, L1, dropout):模型方差大,很可能来自于过拟合。正则化能有效的降低模型的复杂度,增加对更多分布的适应性。 2.前停止训练:提前停止是指模型在验证集上取得不错的性能时停止训练。这种方式本质和正则化是一个道理,能减少方差的同时增加的偏差。目的为了平衡训练集和未知数据之间在模型的表现差异。 3.扩充训练集:正则化通过控制模型复杂度,来增加更多样本的适应性。 4.特征选择:过高的特征维度会使模型过拟合,减少特征维度和正则一样可能会处理好方差问题,但是同时会增大偏差。 5.你有哪些改善模型的思路? 1.数据角度 增强数据集。无论是有监督还是无监督学习,数据永远是最重要的驱动力。更多的类型数据对良好的模型能带来更好的稳定性和对未知数据的可预见性。对模型来说,“看到过的总比没看到的更具有判别的信心”。 2.模型角度

神经网络在人工智能中的应用

神经网络在人工智能中的应用 摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关键词:人工智能,神经网络 一、人工智能 “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 二、神经网络

神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。三.神经网络在人工智能中的应用专家系统

李开复的《人工智能》读后感1500字

李开复的《人工智能》读后感1500字 导读:读书笔记李开复的《人工智能》读后感1500字,仅供参考,如果觉得很不错,欢迎点评和分享。 李开复的《人工智能》读后感1500字: 首先感谢刘莉莉的赠送李开复的《人工智能》书本,谢谢其的信任,正因为如此,及个人的薄稀能力未能读懂书中的全部内容,也无法从书中内容里提炼出对自己的工作价值的赋能关键合作点。特此写一份读后感,以便于自己的总结和深度思考,同时也发到朋友圈分享使得感兴趣的朋友、特别对AI有一定期望的人,可建议其阅读一下。 书本总共分为六章,主要涵盖了从身边日常应用的弱人工智能,如头条、客服AI助理、图片人脸视觉识别、电子商务评价信息应用、搜索广告等功能,揭示了人工智能已经是普及的技术应用,且是相对性的成熟。 所以我们有必要放下“固有的偏见”,无论是从高纳德(Gartner)的技术成熟度曲线去评估,即在2015年和2016年间,基于AlphaGo 事件和AI基金的盈利、提前预知金融危机准确性正式推动了AI从曲线中低谷期进入了攀升阶段;而都应做好准备接受这一现实,并基于AI这个是工具论的方式下,第四章论述了AI即将对社会、组织结构、工作流程的改变和机遇,同时在第五章中预防传统的管理模式和“商业利益出发”,系统数据碎片化、孤岛性下,“也为数据的共享和流转限定了基本的规则和边界”。

当然高级AI模式,或许还要攀升阶段中需求几年、甚至一、二十年攀升。正如书中第三章中抽象定义了弱AI、强AI、超级AI三种阶段,质疑AI挑战人类的悲观、乐观论中,明确了计算机在情感跨域推理的缺陷。及第二张的AI定义和第五、六章中讲述了特别成功的场景案例和对个人的教育及发展机会、如何学习。特此总结如下: 一、“AI=大数据+深度学习”,其实深度学习是神经网络算法中经典,主要分为"DNN、CNN、RNN、ResNet(深度残差)、LSTM之外,还有很多其他结构的神经网络。如因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息"。当然不同的深度学习算法是用于不同的领域场景解决范围。如图片、视频和文本、数字。网上一些资料如下: 二、基于成熟曲线下拥抱成熟AI开源技术,因自己不是科研类型,固然无需研究AI背后的科学原理,更多应是拥抱AI应用。如开源可直接免费应用于商业的框架: 基于以上框架,对当前AI的人力需求则可在几个人下就可完成一个乃至一系列的AI平台快速实现能力。 三、“运筹就是AI的灵魂”,对是否能够驾驽AI并结合传统下常规的软件应用,我们应知道AI的灵魂就是运筹,如FaceBook和亚马逊、谷歌等,他们对AI工程师的入门就是面试为一个“动态规划算法”的应用基础。当然很多的运筹就是应用统计学和数学的结合,加上算法编程能力。读后感·而对算法库的支持中最好应该就是R语

人工智能之人工神经网络(PDF 23页)

1 第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐

2 8.1 神经网络的基本概念及组成特性 8.1.1 生物神经元的结构与功能特性 从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。 人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。 生物神经元就通常说的神经细胞,是构成生 物神经系统的最基本单元,简称神经元。 神经元主要由三个部分构成,包括细胞体、 轴突和树突,其基本结构如图所示。 1. 生物神经元的结构 生物神经元结构 吉林大学地面机械仿生技术教育部重点实验室 张锐

3 从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。 2. 神经元的功能特性 (1)时空整合功能 神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。 (2)神经元的动态极化性 尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。 (3)兴奋与抑制状态 神经元具有两种常规工作状态,即兴奋状态与抑制状态。 (4)结构的可塑性 突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。 吉林大学地面机械仿生技术教育部重点实验室 张锐

人工智能习题作业神经计算I习题答案

第五章 神经网络课后习题及答案 一、选择题: 1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况, 我们可求 ,然后进行下列的哪一项? ( B ) A 取最小 B 取最大 C 取积分 D 取平均值 2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作? ( A ) A 权值的修正 B 调整语义结构 C 调整阀值 D 重构人工神经元 3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容? ( D ) A 模糊推理模型 B 非线性辨认 C 自适应控制模型 D 图象识别 4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次? ( C ) A 输入层 B 输出层 C 中间层 D 隐层 5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容? ( ABC ) A 模拟神经元 B 处理单元为节点 C 加权有向图 D 生理神经元连接而成

6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的? ( ABD ) A 反向传递(BP) B Hopfield网 C 自适应共振 D 双向联想存储器 7. 下列的哪一些内容与反向传播学习算法有关? ( ABCD ) A 选取比率参数 B 误差是否满足要求 C 计算权值梯度 D 权值学习修正 8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A ) A 收敛性 B 对称性 C 满秩性 D 稀疏性 9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD ) A 阀值型 B 分段线性强饱和型 C 离散型 D S i gm oid型 10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容? ( ACD ) A NN的结构模型 B NN的推理规则 C NN的学习算法 D 从NN到可解释的推理网 二、填空题: 1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。前馈网络通

人工智能读书笔记范文(精选3篇)

人工智能读书笔记范文(精选3篇) ent learning)——让机器观测到一些输入,并让机器根据输入做特定动作。这些动作导致机器获得收益或者惩罚。机器通过增强学习优化它的动作策略,使得它的长期收益最大化。下棋就是这一类典型的问题,strategy就是行棋策略,reward就是赢棋。 深度学习——事实上不是一类问题,而只是一种方法,一种通过多层神经网络来构建上述三种问题所需要的模型的方法。 人工智能已经来了,它就在我们身边,几乎无处不在。 人工智能技术正在彻底改变人类的认知,重建人机相互协作的关系。史无前例的自动驾驶正在重构我们头脑中的出行地图和人类生活图景,今天的人工智能技术也正在翻译、写作、绘画等人文和艺术领域进行大胆的尝试。 不管怎么说,努力应变吧,这本书讲得还算全面,算是一本入门图书。 人工智能读书笔记2 翻开这本书读到的第一句话,就对这本书产生了好感…… “即使我们可以使机器屈服于人类,比如,可以在关键时刻关掉电源,然而作为一个物种,我们也应当感到极大的敬畏。——阿兰·图灵” 这句话放在几年前,恐怕有太多人是不认同的,但是今日,人工智能已经走进每个人的生活,它似乎不止可以帮助人类,甚至要替代

人类,这让大家不禁开始恐慌,当机器有了人的思想,世界将会怎样? 翻开这本厚重的书,我们可以从技术、产业、战略、法律、伦理、治理、未来,7个篇章中了解人工智能,可以说这事一本在人工智能上及其全面的书,它带着我从了解人工智能,解释人们对人工智能的误区,介绍人工智能的过去现在未来,到人工智能的产业,众所周知的自动驾驶、智能机器人、智能家居,还有在这些背后的一些问题,比如法律问题,当AI犯法,应该由谁负责,如何负责?等等等等…… 作为一个外行,在人工智能刚刚进入大家的视野时,我们注意到的恐怕只有AI机器人、自动驾驶、智能家居……这些看似对生活产生便利的方面,但是读了这本书,我再次体会了,对于机器,要产生敬畏,同时,国家也一应该制定相关的法律法规。在互联网如此发达的今日,必须要把那些妄想利用AI犯罪逃脱法网犯罪分子扼杀在摇篮里。 希望在不远的将来,我们可以因为人工智能时代的到来而庆幸。 人工智能读书笔记3 时光易逝,白云苍狗,我们的世界无时无刻不在变化之中。科技是第一生产力,从第一次科技革命到第二次科技革命,再到现在的信息革命,科学技术曾给人类带来的无穷的变化。当谷歌人工智能“阿尔法围棋”人机围棋大战”中以4:1击败韩国著名棋手李世石九段后,人类不仅在感叹机器智能领域取得又一个里程碑式的胜利,也感叹一个新的时代—智能时代的到来。机器依靠大数据和智能算法“赢了”人类的大脑。”我认为任何一种对人类心灵的冲击都比不

人工智能实践:Tensorflow笔记 北京大学 7 第七讲卷积网络基础 (7.3.1) 助教的Tenso

Tensorflow笔记:第七讲 卷积神经网络 本节目标:学会使用CNN实现对手写数字的识别。 7.1 √全连接NN:每个神经元与前后相邻层的每一个神经元都有连接关系,输入是特征,输出为预测的结果。 参数个数:∑(前层×后层+后层) 一张分辨率仅仅是28x28的黑白图像,就有近40万个待优化的参数。现实生活中高分辨率的彩色图像,像素点更多,且为红绿蓝三通道信息。 待优化的参数过多,容易导致模型过拟合。为避免这种现象,实际应用中一般不会将原始图片直接喂入全连接网络。 √在实际应用中,会先对原始图像进行特征提取,把提取到的特征喂给全连接网络,再让全连接网络计算出分类评估值。

例:先将此图进行多次特征提取,再把提取后的计算机可读特征喂给全连接网络。 √卷积Convolutional 卷积是一种有效提取图片特征的方法。一般用一个正方形卷积核,遍历图片上的每一个像素点。图片与卷积核重合区域内相对应的每一个像素值乘卷积核内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值。 例:上面是5x5x1的灰度图片,1表示单通道,5x5表示分辨率,共有5行5列个灰度值。若用一个3x3x1的卷积核对此5x5x1的灰度图片进行卷积,偏置项

b=1,则求卷积的计算是:(-1)x1+0x0+1x2+(-1)x5+0x4+1x2+(-1)x3+0x4+1x5+1=1(注意不要忘记加偏置1)。 输出图片边长=(输入图片边长–卷积核长+1)/步长,此图为:(5 – 3 + 1)/ 1 = 3,输出图片是3x3的分辨率,用了1个卷积核,输出深度是1,最后输出的是3x3x1的图片。 √全零填充Padding 有时会在输入图片周围进行全零填充,这样可以保证输出图片的尺寸和输入图片一致。 例:在前面5x5x1的图片周围进行全零填充,可使输出图片仍保持5x5x1的维度。这个全零填充的过程叫做padding。 输出数据体的尺寸=(W?F+2P)/S+1 W:输入数据体尺寸,F:卷积层中神经元感知域,S:步长,P:零填充的数量。 例:输入是7×7,滤波器是3×3,步长为1,填充为0,那么就能得到一个5×5的输出。如果步长为2,输出就是3×3。 如果输入量是32x32x3,核是5x5x3,不用全零填充,输出是(32-5+1)/1=28,如果要让输出量保持在32x32x3,可以对该层加一个大小为2的零填充。可以根据需求计算出需要填充几层零。32=(32-5+2P)/1 +1,计算出P=2,即需填充2

相关文档
相关文档 最新文档