文档库 最新最全的文档下载
当前位置:文档库 › 调速器常见故障处理

调速器常见故障处理

调速器常见故障处理
调速器常见故障处理

水轮机微机调速器常见故障的处理所谓常见故障是指调速器投运前或大修后经过调整、试验合格,能投入正常运行,在以后的正常运行中,由于调速器部件产品质量问题,机构松脱变位、机械杂质堵塞、参数设置改变等原因引起的故障。为帮助运行人员迅速判断故障原因和故障部位及时排除故障,本节列举了可编程调速器运行时可能发生的故障及处理措施。

(一)开机、并网及空载运行时常见故障

1.上电后出现电气故障无法开机

该故障的可能原因有:

(1)可编程控制器的运行开关未置于“RUN”位置,“RUN”灯未亮,可编程没有投入运行,可能导致电气故障灯亮。

(2)可编程控制器故障,此时可编程故障灯亮。导致可编程控制器故障有多种原因,主要的有模块故障,程序运行超时,状态RAM故障,时钟故障等。此时应先切手动,暂停运行,过一会儿再重新启动,一般即可恢复正常。如果是常驻性故障,应检查相关模块运行指示灯是否正常,对不正常的模块应进行更换。

(3)“电气故障”继电器接点粘连或继电器损坏。此时可检查可编程控制器“电气故障”端子是否有“电气故障”的信号输出(即观察可编程对应输出端口指示灯是否亮)即可判断是否继电器的问题。

(4)测频故障导致“电气故障”灯亮,观察显示屏是否显示“机频故障”。

2.手动开机并网,切至自动后导叶全关

(1)水机自动屏/LCU的停机令未复归。

(2)电气部分连线接触不良、元件损坏。如PLC的调节输出电压未送至综合放大板,功率管损坏短路,或调节阀的线圈与控制信号线接触不良等。

(3)若调节器输出有开机信号,则可能是电液转换部件卡在关机侧,清除电液转换部件故障。

3.发开机令后调速器不响应

(1)调速器没有切为自动状态。手动状态时,切除了电气部分对机械部分的控制,上位机指令不起作用。

(2)紧急停机电磁阀没有复归。由于采用具有定位功能的两位置电磁换向阀,紧急停机信号解除后,电磁换向阀保持在原紧停位置,必须在复位线圈通电后,紧急停机功

能才能解除。

(3)水机自动屏/LCU的停机令未复归。电站试验、事故检查后,易发生停机令未解除的情况,停机令级别高于开机令,调速器执行停机令。

(4)电液转换部件被机械杂质卡住。在机组运行初期易出现。

4.开机后,机组频率稳定值小于50HZ

(1)调速器未投入跟踪网频时,频率给定值小于50HZ时。可人工调整(增加)按频率给定值调节机组频率;若自动准同期装置投入也会增减频给。

(2)空载开限值小于实际空载开度,故机组频率小于50HZ,适当调大空载开度限制值。

(3)人工给定水头信号时,可能水头给定值偏小,导致空载开限低,调整水头值。 5.机组自动空载频率摆动值过大

(1)如果手动空载频率摆动值过大,例如:在0.5~1.0HZ,而自动空载频率摆动在0.5HZ以上,这是由于机组结构和水流等因素造成,调整调节参数KP、KI和KD有可能使空摆减小一些,调整原则是使调速器动作加快。即适当增大KP和KI整定值。增大KD效果比较明显。若摆动值偏大而且等幅摆动,周期短,可能是调节参数设置不当,适当减少KI。若摆动值偏大,而摆动周期长,可能是随动系统放大系数偏小所至,适当增大随动系统中的放大系数。

(2)调节参数设置不当

积分系数偏大:积分系数过大系统表现为较大的滞后特性,机组频率可能出现较大的等幅振荡;

比例系数偏大:比例系数过大,意味着较的频率偏差也会有较大的调节信号输出,因过调节而造成机频多次振荡。

(3)随动系统放大倍数偏小,死区补偿不足。由于中位密封的需要,各种液压滑阀处于中位时有一定的搭叠量,控制时需由电气部分进行死区补偿。较大的死区会使得机组频率等幅振荡,死区越大,振荡幅值越大。

(4)机组频率信号源受到干扰,导致机频无规则的摆动。常见的问题有:频率线未用屏蔽线或屏蔽线接地不良,或一根频率线悬空;频率信号线与动力线近距离并行;在机组首次开机时残压太低;电站中大功率电气设备启停、直流继电器或电磁铁吸/断造成的强脉冲电磁干扰等。

(5)接力器与导水机构间有过大的机械死区。这种情况下,调速器手动时机组频率

摆动可达0.2~0.3Hz甚至更大,自动时机组频率摆动则大于或等于上述值,调节PID 参数也无明显效果,应停机检查并处理。

(6)导叶位移传感器松动或在某区域接触不良,使得反馈信号不是随接力器的行程线性变化,甚至造成反馈信号无规则的跳动。

(7)调速器至接力器的油管路中存在空气,导致接力器的不规则抽动。

(二)机组带负荷运行时常见故障

1.溜负荷

所谓溜负荷是指在系统频率稳定,也没有进行减负荷操作的情况下,机组负荷全部或部分自行卸掉。其原因可能有:

(1)电液转换部件卡在偏关侧,此时开机侧线圈虽有电压,而接力器却一直向关机方向运动,导致机组负荷全部卸掉。

(2)综合放大板开启方向功率放大管损坏,造成调速器只能关,不能开。当系统频率稍高时,调速器会不断自行关小导叶,使机组卸掉部分负荷;但当系统频率稍低时,它又不能开大导叶,增加负荷。对此情况,可以人为增减功率给定,检查接力器开度能否随之增大减少,就可作出判断。

(3)导叶位移传感器因定位螺钉松动,导致传感器传动部分移位,致使传感器输出的反馈值大于实际导叶开度,此时,并网运行机组将自行卸掉部分负荷。

(4)因干扰或其他原因导致机频的测频出错。若瞬时的干扰使调速器测得一个较高频率,则调速器因频率升高而关闭导叶,由于功给仍保持原值,导叶又会慢慢恢复到原有开度。

与溜负荷相对应的是自行增负荷故障,其原因与上述分析类似,但方向相反。

2.接力器抽动

其故障原因可能有:

(1)位移传感器松动或在某区域接触不良,使得反馈信号时有时无,产生错误的反馈信号,引起接力器的抽动。

(2)随动系统死区补偿过大,使接力器在调节时出现过调,导致抽动。

3.负荷突减至零并能稳定运行

(1)一般是断路器辅助接点接触不良。

(2)可能是断路器位置信号回路断开。

4.调速器不能紧急停机

调速器不能紧急停机的主要原因可能有:

(1)紧急停机令没有送到微机调速器的相应输入端。可观察紧停指示灯是否亮或用万用表测量。

(2)紧急停机信号未送达紧急停机电磁阀线圈。可测量紧急停机电磁阀线圈插头是否带电。如未带电,可能是相应连接线连接错误或接线松动。

(3)如紧急停机电磁阀线圈插头有电,而接力器不关机,则可能是紧急停机电磁阀故障或损坏。可检测线圈电阻以判断线圈是否断线。如线圈正常,应检查电磁阀芯是否卡死,液压系统有无故障。

(三)甩负荷及停机过程中的不正常现象

(1)甩负荷时,机组转速上升过大,超过调保计算给定值。可能是调整关闭时间的限位机构松动,使接力器关闭过慢,重新调整接力器关闭时间。

(2)甩负荷时蜗壳压力上升过大,超过调保计算值,可能是调整接力器关闭时间的限位机构松动。使接力器关闭过快。重新调整接力器关闭时间。

(3)甩负荷过程中,超过3%的波峰多于2次且转速波动大,调节时间长,原因详见空载转速摆动值偏大一节。

(四)水轮机微机调速器自检发现的故障及处理原则

水轮机微机调速器都设置有故障自诊断功能,各调速器厂生产的产品还不尽相同,但一般设置了如下故障自诊断项目:

(1)机频和网频信号输出突然消失或变化;

(2)导叶位置传感器输出突变或消失;

(3)水头信号突变或消失;

(4)主配压阀卡阻;

(5)电液随动系统故障(包括电液转换部件故障);

(6)计算机主要模块故障。

微机调速器检测到以上故障后,均会自动作出处理,例如:自动转入手动运行并发出故障报警信号。各生产厂家的处理措施不尽相同,但一般产品产品说明书中会说明故障的相应处理措施。不论那种自检出的故障,都会以有故障报警信号送到中控室或上位机,运行人员接到报警以后,无论调速器是否自动排除故障,运行人员都必须检查故障是否排除,未能排除的故障应即时处理

电风扇无级调速变速原理

电风扇无级调速变速原理 【学习目标】: 完成本课题的学习后,能够: 1. 1. 用万用表测试双向晶闸管的好坏。 2. 2. 掌握双向晶闸管工作原理。 3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。 4. 4. 了解交流开关、交流调功器、固态开关原理。 【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。 (a ) (b) 图3-1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 【相关知识点】: 一、双向晶闸管的工作原理 1. 1. 双向晶闸管的结构 双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。 调速 旋钮

图3-2 双向晶闸管的外形 双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。 图2-3 双向晶闸管内部结构、等效电路及图形符号 (a ) 内部结构 (b ) 等效电路 (c )图形符号 从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 常见的双向晶闸管引脚排列如图3-4所示。 螺栓式 平板式

BWT-1B调速器说明书

BWT-1B步进式可编程调速器 说明书 重庆水轮机厂水电控制设备分公司 2010.9

目录 一、系统概述-----------------------------------------------------------------------------------------------------------------2 二、调速系统的技术标准--------------------------------------------------------------------------------------------------2 三、微机调速器主要技术性能和参数-----------------------------------------------------------------------------------2 1)基本技术参数------------------------------------------------------------------------------------------------------2 2)调节规律------------------------------------------------------------------------------------------------------------3 3)机械液压部分主要参数------------------------------------------------------------------------------------------3 4)电源电压------------------------------------------------------------------------------------------------------------3 5)油压装置主要技术参数------------------------------------------------------------------------------------------3 6)主要配置------------------------------------------------------------------------------------------------------------3 7)技术指标------------------------------------------------------------------------------------------------------------3 四、调速系统的工作性能-------------------------------------------------------------------------------------------------4 1)主要功能------------------------------------------------------------------------------------------------------------5 2)在线故障诊断功能------------------------------------------------------------------------------------------------6 3)离线功能------------------------------------------------------------------------------------------------------------6 4)孤立电网------------------------------------------------------------------------------------------------------------6 5)故障保护------------------------------------------------------------------------------------------------------------6 6)显示及操作功能---------------------------------------------------------------------------------------------------6 7)抗干扰措施---------------------------------------------------------------------------------------------------------7 8)计算机接口功能---------------------------------------------------------------------------------------------------7 五、调速系统的组成-------------------------------------------------------------------------------------------------------7 1)整体布置------------------------------------------------------------------------------------------------------------7 2)调节规律------------------------------------------------------------------------------------------------------------8 3)电气部分------------------------------------------------------------------------------------------------------------8 4)软件------------------------------------------------------------------------------------------------------------------11 5)步进电机及驱动器------------------------------------------------------------------------------------------------11 6)电气反馈------------------------------------------------------------------------------------------------------------12 7)机械部分------------------------------------------------------------------------------------------------------------12 六、实验-----------------------------------------------------------------------------------------------------------------------13 七、技术服务和人员培训--------------------------------------------------------------------------------------------------14 1)现场技术服务------------------------------------------------------------------------------------------------------14 2)服务承诺------------------------------------------------------------------------------------------------------------14 3)人员培训------------------------------------------------------------------------------------------------------------14

调速器基本组成

试验站调速器培训 试验站目前用电子调速器有模拟的和电子的,模拟的目前常用的有711产ESG1000A (用于234机)、ESG1000B(用于604机),孚创产ESG1000型(用于234机)、ESG1500型(用于604、620机)。德国海茵茨曼DC9(用于234机),DC6(用于236、604、620机),DC2(用于620机)。此外还有大同FSK模拟调速器,不常用。 电子调速器基本组成:转速传感器、控制单元、执行器等主要部件及转速设置电位器、升/降速开关或按钮、控制开关、连接电缆等附件构成。 ESC1000 控制器:DC24V(范围16~32V) 转速传感器:内阻约450Ω,输出电压:1~18 V AC 一、接线方法: 电源:1号线为负极2号线为正极 转速传感器:5#、6#线 高低速:7#、8#线断开为怠速 转速电位器:9#、10# 状态试验:11#、12#短接为最大油量 执行器:3#、4#、12#、13#、14# 二、检测方法: 接通电源后用万用表电压档(直流)测量1#(-)、2#(+)端电压应为24V,起动瞬间也不得低于16V,检测电源电压。用万用表电阻档(200Ω)测量3#、4#执行器内部电阻为4Ω左右,检测执行器或连接电缆。用万用表电阻档(1K)测量5#、6#转速传感器为450Ω左右,检测转速传感器线圈的好坏。用万用表电压档(直流)12#(+)、14#端电压为9V,13#

端电压为0V,油量大13#端电压增大,检测执行器位置传感器是否故障。盘车时用万用表电压档(交流)测量转速传感器电压应为2~4V左右。 三、调试:一般情况 1、微分和增益的调整: 机器大幅剧烈波动,将微分置于11点方向,逆时针适当减小增益;机器缓慢游车,将微分置于12点方向,逆时针适当增大增益。 通过实践证明:微分、增益的稳定区大约是在9点到3点位置。 对于发电机组用要求到2级或3级电站指标时,应在卸负荷时调整: 将增益置于2点至3点方向,微分置于10点方向,此时发动机可能会出现波速,逆时针逐渐减小微分,到柴油机稳定。 2、稳态调速率的调整: 在卸去负荷时发现稳态调速率超,可调整“稳态调速率”(速降) 逆时针调整为稳态调速率减小,此时转速升高。 四、首次起动前的检查 1.检查所有连接线应正确,接触良好;磁速传感器应安装正确; 2. 将机旁控制箱(柜)上的高低速控制开关扳至低速位置; 3.对于没有控制箱的机器,电调上接有一个开关,将开关扳至OFF(低速状态)。 4.调速电位器逆时针旋转到底。(最小转速位置) 5.将控制器上的“最大油量限制”顺时针旋转到底(最大油量位置) 6.打开执行行器上方的观察孔。 电调控制器在通电状态,然后短接11#、12#线,此时齿条就处在最大位置。 调整“最大油量限制”一边逆时针调整,一边通过观察孔看齿条位置,齿条到最大位置后,

欧陆590直流调速器调试步骤

欧陆590直流调速器调试步骤 目录 型号说明 (2) 操作面板的使用 (3) 接线 (4) 1、主回路接线 (4) 2、控制端子接线 (5) 3、查看控制端子配置 (7) 默认控制端子基本接线 (8) 必要的修改参数 (10) 浏览内部设置 (11) 系统菜单目录 (13) 通电运行 (15) 中英文对照报警说明 (16) 附录参数表 (24)

一、型号说明

二、操作面板的使用。 面板示意图

三、接线 1、主回路接线 (1)L、N(辅助电流输入。作为控制器控制电源输入)端子接AC220V 为控制电路供电。 (2)L1、L2、L3(三相主电源输入)接AC380V为主电路供电。 (3)A+、A-(电枢输出,A+正极,A-负极)接电枢端口。 (4)F+、F- (励磁输出。F-为负,F+为正。)接励磁端口。 上述端子一般分布图 2、控制端子接线。

(1)、模拟端子 A1 零伏电位,与 B1、C1 同电位,与地线隔离。 A2 模拟输入 1。默认功能为速度输入,可修改。 A3 模拟输入 2。默认功能为辅助速度或电流输入,在默认功能下,由 C8 来切换其输入功能。C8 低态时为速度输入量,C8 高态时为电流量(电流控制方式),不可修改。 A4 模拟输入 3。默认功能为斜坡速度输入,可修改。 A5 模拟输入 4。默认功能为辅助(负)电流箝位,默认功能下由 C6 确定其是否使用。C6 为低态时不使用此功能,C6 为高态时使用其功能来对负电流进行箝位。可修改。 A6 模拟输入 5。默认功能为主电流箝位或辅助(正)电流箝位,默认功能下由 C6 切换其输入功能,C6 为低态时为主电流箝位,同时作用于正负电流的箝位,可修改。 A7 模拟输出 1。默认功能为速度反馈输出,可修改。 A8 模拟输出 2。默认功能为速度给定输出,可修改。 A9 模拟输出 3。默认功能为电流反馈输出,不可修改。 (2)数字端子 B5 数字输出 1,默认功能为电机零速检测,当电机零速时为高态(+24V 输出),当电机运转时为低态(0V 输出)可修改。 B6 数字输出 2,默认功能为控制器正常状态检测,当控制器正常,没有报警或报警复位时为高态(24V 输出),出现报警时为低态(0V 输出)可修改。 B7 数字输出 3,默认功能为控制器准备就绪状态检测,当控制器准备就绪,主电源合闸时为高态(24V 输出),当控制器分闸、停止、出现报警或主电源分闸时为低态(0V 输出),可修改。 C6 数字输入 1 默认功能为电流箝位选择,C6 为低态时为(A6)主电流箝位,C6 为高态时为(A5、A6)双极电流箝位,此时 A5 为负电流箝位,A6 为正电流箝位。可修改。 C7 数字输入 2,默认功能为斜坡保持,当 C7 为高态时,斜坡输出保持在斜坡输入的最后值,此时不管斜坡输入值为多少,输出都一直保持为这个值,当 C7 为低态时,斜坡输出跟踪斜坡输入值。可修改。

GYT型高油压可编程水轮机调速器说明书

GYT型高油压 可编程水轮机调速器说明书 一概述 GYT型高油压可编程水轮机调速器,是在先进而成熟的电子、液压技术的基础上,研制成功的水轮机调速器。它具有结构简单、运行可靠、性能优良、操作维护方便等突 出特点,是水轮机调速器更新换代的理想产品。 二主要功能 ·测量机组和电网频率,实现机组空载及孤立运行时的频率调节; ·空载时机组频率自动跟踪电网频率,便于快速自动准同期; ·手动开停机、增减负荷及带负荷运行; ·自动开停机,并网后根据永态转差率(bp)自动调整机组出力; ·无条件、无扰动地进行自动和手动的相互切换; ·液晶屏采集并显示机频、网频、导叶开度等调速器主要参数,以及手动、自动等运行状态; ·通过按键及液晶屏整定、记忆并显示调速器的运行参数; ·检测到电气故障时,能自动地切为手动,并将负荷固定于故障前的状态; ·电控柜采用交、直流同时供电。任一种电源消失后调速器仍能运行。但如果厂用直流消失,调速器将不能进行手自动切换和紧急停机。 三电气部分的主要特点 ·采用可靠性极高的可编程(PLC),体积小,抗干扰能力强,能适应恶劣的工业环境,平均无故障时间达三十万小时以上; ·采用内部测频方式,可同时满足适时性和测频精度的要求,机频故障时可自动地切为手动; ·调节规律为 PID 智能控制,具有良好的稳定性及调节品质; ·具有可扩展通讯接口,通过外挂通讯模块与上位机通讯十分方便(外挂通讯模块需单独订货)。 四机械液压部分的主要特点 ·采用了电液比例随动装置、高压齿轮泵等现代电液控制技术,具有优良的速动性及稳定性,工作可靠,标准化程度高。 ·工作油压提高到16MPa,减少了调速器的液压放大环节,体积小,重量轻,结构简单。·采用囊式蓄能器储能,胶囊内所充氮气与液压油不直接触,油质不易劣化,氮气极少漏失,不需经常补气,电站可省去相应的高压空气系统。 ·液压缸(即接力器,下同)与回油箱分开安装,便于电站布置。 ·具有液压锁定装置,确保机组停机可靠。

调速器的功能及工作原理

一、调速器功用及分类 调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。 在柴油机上装设调速器是由柴油机的工作特性决定的。汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。这时,惟有借助调速器,及时调节喷油泵的供油量,才能 汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。 按调速器起作用的转速范围不同,又可分为两极式调速器和全程式调速器。中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速范围内的任何转速起 二、两极式调速器 两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。 (一)RQ 通常调速器由感应元件、传动元件和附加装置三部分构成。感应元件用来感知柴油机转速的变化,并发出相应的信号。传动元件则根据此信号进行供油量的调节。

(二)RQ型调速器基本工作原理 1)起动 将调速手柄从停车挡块移至最高速挡块上。在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。 2)怠速 柴油机起动之后,将调速手柄置于怠速位置。这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于内弹簧座与安装飞锤的轴套

电风扇无级调速器模板

电风扇无级调速器 电风扇无级调速器在日常生活中的应用非常广泛,本课题通过对与电路相关的知识:双晶闸管、单相交流调压、交流开关等内容的介绍和分析。 一、本课题学习目标与要求 1.掌握用万用表测试双向晶闸管好坏的方法。 2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。 3.分析单相交流调压电路 4.了解交流开关、交流调功器、固态开关原理。 二、主要概念提示及难点释疑 1.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式 主极T1为正,T2为负;门极电压G 为正,T2为负。 2)Ⅰ-触发方式 主极T1为正,T2为负;门极电压G 为负,T2为正。 3)Ⅲ+触发方式 主极T1为负,T2为正;门极电压G 为正,T2为负。 4)Ⅲ-触发方式 主极T1为负,T2为正;门极电压G 为负,T2为正。 2.双向晶闸管的参数 1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。例如双向晶闸管额定通态电流为100A ,若用两个反并联的普通晶闸管代替,按有效相等的原则,得 2100 57.1)(=AV T I ,所以,A I AV T 45257.1100 )(==。因此一个100A 的双向晶闸管与两 个45A 反并联的普通晶闸管等效。 2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力

的要求。 3.交流调压电路 (1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在α<?(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。 (2)单相交流调压电路电阻性负载时,移相范围是α=0°~180°,而电感性负载时,移相范围是α=?~180° (3)交流功率调节容量较大时,应采用三相交流调压。三相交流调压电路接线方式及性能特点见教材。 (4)交流调压可以采用移相触发也可以采用过零触发来实现。过零触发就是在电压为零附近触发晶闸管导通,在设定的周期内改变晶闸管导通的频率树来实现交流调压或调功率。4.交流开关 交流开关的作用类似普通的接触器,用门极小电流控制阳极大电流的通断,实现开关的无触电化。 三、学习方法 1.对比法:双向晶闸管的学习与普通晶闸管对比,找出他们的异同;移相触发与过零触发比较,找出各自优缺点。 2.波形分析法:交流调压电路的工作原理结合波形来分析,更容易理解。 3.讨论分析法:读者要学习与他人讨论分析问题,并了解其他读者的学习方法和学习收获,提高学习效率。 四、典型题解析 例3-1 在交流调压电路或交流开关中,使用双向晶闸管有什么好处? 解:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只有一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压电路或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投

dcm-直流调速器快速调试汇编

SINAMICS DCM 简明调试指南 SINAMICS DCM Commissioning Guide User Guide Edition (2012年6 月) 摘要 本文介绍了SINAMICS DCM 的选型,基本调试步骤。 关键词 SINMICS DCM, 6RA80,选型,调试 Key Words SINMICS DCM, 6RA80,Selection, Commissioning 目录 1 DCM 介绍 1.1 DCM介绍 1.2 SINAMICS DCM选型和接线 2 调试 2.1 BOP20 调试 2.2 Starter 配置和调试 3 DCM 功能介绍

3.1 优化 3.2 数据组 3.3 参数复位和存储 3.4 第二块CUD 3.5 自由功能块和DCC 1 DCM 介绍 1.1 DCM介绍 SINAMICS DCM 是 SINAMICS家族中的直流驱动装置,包含直流驱动装置和控制模块两种产品。直流驱动装置功率范围从15-3000A,超过3000A可以用装置并联实现。 控制模块主要用来替代原来的SIMOREG CM系列产品,实现设备的改造。 其型谱如图1: 图1 SINAMICS DCM 型谱

1.2 SINAMICS DCM选型和接线 1.2.1 控制单元选件 ?标配的DCM包含以下部分: ?控制单元电子板CUD ?标准面板BOP20 ?三相晶闸管全控桥(2Q和4Q); ?单相励磁模块 ?风扇(125A及以下装置自冷) DCM上有两个控制单元电子板插槽(左槽和右槽)。左槽为整个驱动装置发出控制指令,右槽的CUD的主要功能可以扩展端子数量,增加计算能力(如DCC 的编程),增加选件插槽(如CBE20)等功能。 控制单元CUD分成两类: Standard CUD 和 Advanced CUD (选件G00),其接线如图1-2所示:

柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型 1、喷油泵的速度特性 喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速增大,柱塞有效行程略有增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。 2、柴油机上为什么要安装调速器 喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器。 3、调速器的功用、形式 调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。 型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。 4、机械离心式调速器的工作原理 机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。 反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。

[中学]风扇无极调速器原理

[中学]风扇无极调速器原理 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL 和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。

可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风 (周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。 VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

09325324电子无级调速器设计

《家电原理与检测》课程设计报告 电子无级调速器设计 姓名: 涂国龙 专业: 电子信息工程 班级: 093253 学号: 24 指导老师: 王晓荣 2011年12月20日

摘要 近几年随着科学技术的发展,尤其是生产电机的成本的下降,小功率的减速电机,调速电机,微型减速电机,齿轮减速电机等大量普及,随之出现的交流电子无极调速器品种也大量出现在市场。尽管各种个样的交流电子无极调速器品种繁多,但其功能和工作原理基本相同。主要区分在外型的不同。如上海任重仪表电器有限公司,上海百乐神自动化科技有限公司,中外合作湖州雪峰微电机有限公司等厂家的产品:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104,SCA-B,LSC-C ,LSC-H,LSC-G等,在功能上大致相同,主要的是安装结构存在差异。一般在使用上只要对启动的电容做出选择,改变,不管功率大小基本都能使用。主要分2大类:6-180W功率和180-370W功率。前者选:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104等型号产品。前者选SCA-B,LSC-C ,LSC-H,LSC-G等型号产品。交流电子无极调速器在产品的命

名上也很多:交流电子无极调速器,电子无极调速器,电子无极调速器,交流调速器,数显速控制器等。 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。 交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。 可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。 元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

水轮机调速系统

水轮机调速系统 1、水轮机自动调节系统主要由那几个基本部分组成?各主要元件的作 用是什么? 答: 水水能电能 转速给定 自动调速器由测量元件、放大元件、执行元件和反馈(或稳定)元件构成。测量元件负责测量机组输出电能的频率,并与频率给定值比较,当测得的频率偏离给定值知,发出调节信号 放大元件负责把调节信号放大,然后通过执行元件去改变导水机构的开度,使频率恢复到给定值 反馈元件的作用是使调节系统的工作稳定 2、水轮机调速器的主要作用是什么? 答:(1)根据发电机负荷的增、减,调节进入水轮机的流量,使水轮机的出力与外界的负荷相适应,让转速保持在额定值,从而保持频率(f=50Hz)

不变或在允许范围内变动 (2)自动或手动启动、停止机组和事故停机 (3)当机组并列运行时,自动地分配各机组之间的负荷 3、水轮机调速器分哪几种类型?调速器型号的含义是什么? 答:按照测速元件的不同型式,可分为机械液压型调速器(简称机调)、电气液压型(简称电液)调速器和微机调速器 按调整流量的操作方式不同分为单调和双调两类。如混流式和轴流定桨式水轮机,只采用改变导叶开度的方法来调节流量的叫单调;而轴流转桨式水轮机采用改变导叶开度同时改变转轮叶片角度的方法来调节流量,此种方法叫双调;冲击式水轮机在改变喷针行程的同时,还采用协联动作改变折向器的方法调节流量,也叫双调 4、电液调速器由那几部分组成?其主要元件叫什么? 答:由电气和机械液压两部分组成。其主要元件包括:永磁(也称测速)发电机、测频回路、信号综合放大回路,调节信号放大回路、电液转换器及机械液压放大装置。 此外还有位移传感器、缓冲回路、功率给定与硬反馈回路、功率给定与频率给定回路以及开度限制机构等 5、电液调速器中,永磁发电机、测频回路和电液转换器各起什么作用?答:永磁发电机是装在机组主轴上,用以反映机组频率(或转速)变化的测速发电机,它供给测频回路频率偏差信号,同时供给调速器中各电气回路的电源 测频回路就是利用电容元件C和电感元件L组成的谐振回路,相当机械调

微机调速器技术说明书

SDT200水轮机微机调速器 说明书 编写:李书明陈军 审核:史恒 批准:郭效军 国电南京自动化股份有限公司 一九九九年二月

目录 1 概述 (1) 2 硬件配置 (3) 3软件结构 (3) 4操作说明 (4) 5 机械结构形式 (7) 6 电柜原理图和端子布置图 (7)

一.概述 SDT200水轮机调速器是以可编程控制器(PLC)为调节控制核心的新型水轮机微机调速装置,配以现代控制理论为核心的软件,与水轮机的电液执行机构组成水轮机调速系统。该种型号的调速器适用于各种不同容量的混流式水轮发电机组和轴流转桨式水轮发电机组的调节控制。与其它类型调速器相比,具有可靠性高,可维护性好,性能价格比高的优点。 1.规格和主要技术指标 型号:SDT200 系统结构:微机调节+电液随动系统 调节规律:变结构、变参数并联PID控制 微机型式:PLC(PLC形式可选GE系列、MODICON系列、三菱系列) 测频方式:数字测频,2-100 Hz 测频分辨率:0.00125 Hz/1LSB 比例增益:Kp= 0-10 积分增益:Ki= 0-5 微分增益:Kd= 0-10 永态转差系数:bp=0-10% 人工转速死区:0-10% 模数与数模转换分辨率:12 位 电柜输出:电压±10 V,电流±0.2 A 供电电源:交流 220 V 和直流 220 V 并联供电 电液转换器:环喷式、双锥式或其他型式电液伺服阀 主接力器反馈:线位移传感器电气反馈 转速死区:〈=0.03% 接力器不动时间: <=0.2 s 2.主要功能 2.1 自动调节和控制功能 1.以最佳过程起动水轮发电机组,启动过程可使机组频率跟踪电网频率;也可以按给定频率启动。 2.保证水轮发电机组稳定运行于下列工况: 单机空载运行; 与大电网或地区电网并列运行; 调相运行; 手动运行; 3.最佳过程使机组停机,根据需要可实现分段关闭过程。 4.能够根据机组运行工况、水头、导叶开度等因素实现变结构、变参数适应式PID自动调节。 5.可以在线修改调节参数,不会引起机组负荷冲击。 6.对于转桨式水轮机,可以实现轮叶转角与净水头及导叶开度之间的协联关系,提高机组发电效率。 7.装置可实现导叶或功率的成组调节。 8.自动按工况修正调速系统的动态灵敏度,以适应各种工况对灵敏度的不同要求。 9.可接受监控系统操作指令实现远程操作,也可现地由面板操作。 10.具有报警功能。 11.能完成手、自动平滑切换。 2.2 容错功能 1.测频断线容错:机频的容错必须在下列运行工况下得到保证(1)空载运行;(2)

调速器知识

一调节系统参数 1 水流惯性时间常数 w T 水流惯性时间常数是指在额定工况下,表征过水管道中水流惯性的特征时间, 其表达式为 22 3580 r r a r r J GD n T M N ω ==r w r r LV Q L T gH S gH == ∑ ∑ 式中 w T为水流惯性时间常数, Q r 为水轮机设计流量, H r 为水轮机设计水头, S为每段过水管道的截面面积, L为相应每段过水管道的长度, V为响应每段过水管道的流速, G为重力加速度 w T表示过水管道水流的惯性,它是水轮机主动力矩变化存在滞后的主要原因, 也是造成调节系统不稳定和动态品质恶化的主要因素。在其他条件不变时, w T越大,水流惯性越大,水击作用越显着,则调节过程的振幅越大,振荡次数越多,调节时间越长,以至最后超出稳定范围。 2 机组惯性时间常数 机组惯性时间常数是指机组在额定转速时的动量矩与额定转矩之比。其表达式为 式中T a 为机组惯性时间常数, Jω r 为额定转速时机组的动量矩, GD2为机组飞轮力矩,

M r 为机组额定转矩, N r 为发电机额定功率, n r 为机组额定转速 T a 的物理意义是:在与发出额定功率相当的额定转矩下,机组由静止达到额定转速所需要的时间。T a 越大,越有利于调节系统的稳定,而且在调节过程中能够见效转速的偏差和减缓转速的变化,但有可能使调节时间变长。若T a 过小,将使调节系统难以稳定。 3永态转差系数b p 、永态调差系数e p 调节系统的静特性有两种情况:图1(a )为无差静特性,表示机组出力不论 为何值,调节系统均保持机组转速n 0,即静态误差为零。图1(b )为有差静特性,当机组出力增大时,调节系统将保持较低的机组转速,即静态误差不为零,永态调差系数e p 定义为调速系统静特性曲线图上某一规定点的斜率的负数。(反馈为功率反馈) 图1(c )也为有差静特性,它以接力器行程Y 为横坐标,以机组转速n 为纵坐标 (反馈为导叶反馈)。永态转差系数b p 为 max x f b p 图1(b) 有差静特性 r x f e p 图1(c) 有差静特性 永态转 差系数b p 是电力系统各机组负荷分配的关键参数,根据电厂在系统的作用不同,各电厂调速器的b p 有所不同。当系统负荷变化时,首先由b p 小的机组承当变化后的负荷,再由b p 大的机组承当变化后的负荷。一般担任调峰、调频的机组比非调

水轮机调速器与油压装置技术条件

水轮机调速器与油压装置技术条件Specifications of governors and pressure oil supply units for hydraulic turbines GB/T9652.1—1997(代替GB9652—88) 目次 前言 1 范围 2 引用标准 3 工作条件 4 技术要求 5 标志、包装、运输、贮存 6 供货成套性 前言 本标准是在GB9652—88《水轮机调速器与油压装置技术条件》第3章“技术要求”和第5章“标志、包装、运输、贮存”的基础上参考IEC308:1970“水轮机调速器试验国际规范”并结合我国多年来的实践经验编制的,在技术内容上与该国际标准非等效。本标准达到20世纪90年代国际水平。 与原标准相比,本标准各类调速器的转速死区这一重要指标均有不同程度的提高;增加了对微机调速器、电调电气装置电磁兼容性和电气协联函数

发生器等的要求,随着新技术的飞跃发展尚有待进一步提高。 在原标准的第4章“试验项目与试验方法”的基础上充实编制为 GB/T9652.2—1997《水轮机调速器与油压装置试验验收规程》,与GB/T9652.1为独立的两个部分。 本标准自实施之日起,同时代替GB9652—88。 本标准由全国水轮机标准化委员会控制设备分技术委员会提出并归口。 本标准起草单位:机械工业部哈尔滨大电机研究所,中国水利水电科学研究院,机械工业部天津电气传动设计研究所,长江水利委员会长江控制设备研究所,电力工业部自动化研究院。 本标准主要起草人;郜瑞阁、孔昭年、李晃、吴应文、邵宜祥、董于青。 本标准于1988年首次发布,于1997年第一次修订。 本标准委托全国水轮机标准化委员会控制设备分技术委员会负责解释。 1 范围本标准适用于工作容量350N·m及以上的水轮机调速器,包括机械液压调速器(以下简称机调)和电气液压调速器(以下简称电调)以及油压装置。 本标准不适用于可逆式及双向发电机组的水轮机调速器。 2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB150—89 《钢制压力容器》

相关文档