文档库 最新最全的文档下载
当前位置:文档库 › 等比数列及其前n项和考点与题型归纳

等比数列及其前n项和考点与题型归纳

等比数列及其前n项和考点与题型归纳
等比数列及其前n项和考点与题型归纳

等比数列及其前n 项和考点与题型归纳

一、基础知识

1.等比数列的有关概念

(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1

a n

=q .

(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab .

只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -

1.

(2)前n 项和公式:S n =????

?

na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.

3.等比数列与指数型函数的关系

当q >0且q ≠1时,a n =a 1

q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数

的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上;

对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 1

1-q ,

则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点.

对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点.

二、常用结论汇总——规律多一点

设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n

-m

(n ,m ∈N *).

(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.

(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).

(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和?

???

??

pa n qb n 也是等

比数列.

(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶

=q .

考点一 等比数列的基本运算

[典例] (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;

(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解] (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. (2)若a n

=(-2)n -1,则

S n =1-(-2)n

3

.

由S m =63,得(-2)m =-188,此方程没有正整数解. 若a n =2

n -1

,则S n =1-2n

1-2

=2n -1.

由S m =63,得2m =64,解得m =6. 综上,m =6. [题组训练]

1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=5

2,则a 1=( )

A .2

B .4 C.2

D .22

解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2

q

=4. 2.(2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6

-S 4=6a 4,则a 5=( )

A .4

B .10

C .16

D .32

解析:选C 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.

3.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=7

4,S 6=

63

4

,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,

则?

????

S 3=a 1(1-q 3)1-q

=7

4,

S 6

=a 1

(1-q 6

)1-q =634,

解得?????

q =2,

a 1=1

4,

则a 8=a 1q 7=1

4×27=32.

答案:32

考点二 等比数列的判定与证明

[典例] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.

[证明] 因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a n a n +1-2a n =2.

因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.

所以数列{b n }是首项为3,公比为2的等比数列.

[解题技法]

1.掌握等比数列的4种常用判定方法 定义法 中项公式法 通项公式法

前n 项和公式法

2.等比数列判定与证明的2点注意

(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n 项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.

(2)证明一个数列{a n }不是等比数列,只需要说明前三项满足a 22≠a 1·a 3,或者是存在一个正整数m ,使得a 2m +1≠a m ·a m +2即可.

[题组训练]

1.数列{a n }的前n 项和为S n =2a n -2n ,证明:{a n +1-2a n }是等比数列. 证明:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,由a 1+a 2=2a 2-4得a 2=6.

由于S n =2a n -2n ,故S n +1=2a n +1-2n +1,后式减去前式得a n +1=2a n +1-2a n -2n ,即a n

+1=2a n +2

n

所以a n +2-2a n +1=2a n +1+2n +1-2(2a n +2n )=2(a n +1-2a n ), 又a 2-2a 1=6-2×2=2,

所以数列{a n +1-2a n }是首项为2、公比为2的等比数列.

2.(2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2

=1上.在数列{b n }中,点(b n ,T n )在直线y =-1

2

x +1上,其中T n 是数列{b n }的前n 项和.

(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.

解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1. ∴数列{a n }是一个以2为首项,1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1.

(2)证明:∵点(b n ,T n )在直线y =-1

2x +1上,

∴T n =-1

2

b n +1.①

∴T n -1=-1

2b n -1+1(n ≥2).②

①②两式相减,得

b n =-12b n +1

2b n -1(n ≥2).

∴32b n =12b n -1,∴b n =1

3

b n -1. 由①,令n =1,得b 1=-12b 1+1,∴b 1=23.

∴数列{b n }是以23为首项,1

3

为公比的等比数列.

考点三 等比数列的性质

考法(一) 等比数列项的性质

[典例] (1)(2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16

a 9

的值为( ) A .-2+22

B .-2 C.2

D .- 2 或2

(2)(2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1

a 8

的值为( ) A .2 B .4 C .8

D .16

[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以

a 3·a 15=a 29=2,a 3+a 15

=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29

a 9

=a 9=-2,

故选B.

(2)由分数的性质得到1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2

a 7a 2+…+a 4+a 5a 4a 5

.因为a 8a 1=a 7a 2=

a 3a 6=a 4a 5,所以原式=

a 1+a 2+…+a 8a 4a 5=4

a 4a 5

,又a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,

∴1a 1+1a 2+…+1

a 8

=2.故选A. [答案] (1)B (2)A

考法(二) 等比数列前n 项和的性质

[典例] 各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于

( )

A .80

B .30

C .26

D .16

[解析] 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.

设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ), 解得x =6或x =-4(舍去).

∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30. [答案] B [解题技法]

应用等比数列性质解题时的2个关注点

(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.

(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.

[题组训练]

1.(2019·郑州第二次质量预测)已知等比数列{a n }中,a 2a 5a 8=-8,S 3=a 2+3a 1,则a 1

=( )

A.12 B .-1

2

C .-29

D .-1

9

解析:选B 设等比数列{a n }的公比为q (q ≠1),因为S 3=a 1+a 2+a 3=a 2+3a 1,所以

a 3

a 1

=q 2=2.因为a 2a 5a 8=a 35=-8,所以a 5=-2,即a 1q 4=-2,所以4a 1=-2,所以a 1=-12,故选B.

2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.

解析:由题意,得????? S 奇+S 偶=-240,S 奇-S 偶=80,解得?????

S 奇=-80,

S 偶=-160,

所以q =S 偶S 奇=-160-80=2.

答案:2

[课时跟踪检测]

A 级

1.(2019·合肥模拟)已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q =( )

A .4 B.52

C .2

D.12

解析:选C 由题意,得????? a 1·a 1q 4=16,a 1q =2,解得????? a 1=1,q =2或?????

a 1=-1,

q =-2

(舍去),故选

C.

2.(2019·辽宁五校协作体联考)已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )

A .1

B .2

C .3

D .4

解析:选C 由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.

3.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2

D .±2

解析:选A 因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4

=2q 4=8,所以q 2=2,则a 1=a 3

q

2=1,故选A.

4.(2018·贵阳适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=1

2,a 2a 6=8(a 4-

2),则S 2 019=( )

A .22 018-1

2

B .1-????12 2 018

C .22 019-1

2

D .1-????12 2 019

解析:选A 由等比数列的性质及a 2a 6=8(a 4-2),得a 24=8a 4-16,解得a 4=4.

又a 4=12q 3,故q =2,所以S 2 019=1

2(1-22 019)1-2=22 018-1

2,故选A.

5.在等比数列{a n }中,a 1+a 3+a 5=21,a 2+a 4+a 6=42,则S 9=( ) A .255 B .256 C .511

D .512

解析:选C 设等比数列的公比为q ,由等比数列的定义可得a 2+a 4+a 6=a 1q +a 3q +a 5q =q (a 1+a 3+a 5)=q ×21=42,解得q =2.又a 1+a 3+a 5=a 1(1+q 2+q 4)=a 1×21=21,解得a 1=1.所以S 9=a 1(1-q 9)1-q =1×(1-29)

1-2

=511.故选C.

6.已知递增的等比数列{a n }的公比为q ,其前n 项和S n <0,则( ) A .a 1<0,01 C .a 1>0,0

D .a 1>0,q >1

解析:选A ∵S n <0,∴a 1<0,又数列{a n }为递增等比数列,∴a n +1>a n ,且|a n |>|a n +1|, 则-a n >-a n +1>0,则q =-a n +1

-a n ∈(0,1),

∴a 1<0,0

7.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为________. 解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得16=q 4,解得q =2, 所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.

答案:127

8.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.

所以插入的两个数分别为3×4=12,12×4=48. 答案:12,48

9.(2018·江西师范大学附属中学期中)若等比数列{a n }满足a 2a 4=a 5,a 4=8,则数列{a n }的前n 项和S n =________.

解析:设等比数列{a n }的公比为q ,∵a 2a 4=a 5,a 4=8,

∴????? a 1q ·a 1q 3=a 1q 4,a 1q 3=8,解得?

????

a 1=1,

q =2,

∴S n =1×(1-2n )1-2=2n -1.

答案:2n -1

10.已知等比数列{a n }为递减数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.

解析:设公比为q ,由a 25=a 10, 得(a 1q 4)2=a 1·q 9,即a 1=q . 又由2(a n +a n +2)=5a n +1, 得2q 2-5q +2=0, 解得q =1

2

()

q =2舍去,

所以a n =a 1·q n -1=1

2n .

答案:1

2

n

11.(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n

n .

(1)求b 1,b 2,b 3;

(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.

解:(1)由条件可得a n +1=2(n +1)

n a n .

将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4.

将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.

(2)数列{b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a n

n

,即b n +1=2b n ,

又b 1=1,

所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n

n

=2n -1,所以a n =n ·2n -1.

12.(2019·甘肃诊断)设数列{a n +1}是一个各项均为正数的等比数列,已知a 3=7,a 7=127.

(1)求a 5的值;

(2)求数列{a n }的前n 项和.

解:(1)由题可知a 3+1=8,a 7+1=128, 则有(a 5+1)2=(a 3+1)(a 7+1)=8×128=1 024, 可得a 5+1=32,即a 5=31. (2)设数列{a n +1}的公比为q ,

由(1)知????? a 3+1=(a 1+1)q 2,a 5+1=(a 1+1)q 4

,得?????

a 1+1=2,

q =2,

所以数列{a n +1}是一个以2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n -1,

利用分组求和可得,数列{a n }的前n 项和S n =2(1-2n )

1-2

-n =2n +1-2-n .

B 级

1.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2

n -1)在直线x -9y =0上,则

数列{a n }的前n 项和S n 等于( )

A .3n

-1 B.1-(-3)n 2

C.1+3n 2

D.3n 2+n 2

解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2

n -1=0,即(a n +3a n -1)(a n -

3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a n

a n -1=

3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =2(1-3n )

1-3

=3n -1.

2.(2019·郑州一测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+

a 10=1,则log 2(a 101+a 102+…+a 110)=________.

解析:因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.

答案:100

3.已知数列{a n }中,a 1=1,a n ·a n +1=????12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -

1,n ∈N

*.

(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .

解:(1)∵a n ·a n +1=????12n , ∴a n +1·a n +2=????12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,

∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +1

2a 2n -1a 2n +a 2n -1=1

2, ∵a 1=1,a 1·a 2=12,

∴a 2=12,∴b 1=a 1+a 2=32

.

∴{b n }是首项为32,公比为1

2的等比数列.

∴b n =32×????12n -1=3

2n .

(2)由(1)可知,a n +2=1

2

a n ,

∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=

1

2为首项,以1

2

为公比的等比数列,

∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-????12n 1-12+12????1-????12n 1-12

=3-3

2n .

等比数列及其前n项和

等比数列及其前n 项和 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【知识通关】 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用 字母q 表示,定义的数学表达式为a n +1a n =q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m q n -m . (2)前n 项和公式: S n =??? na 1(q = 1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). [常用结论] 1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k . 2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),???? ??1a n ,{a 2n },{a n ·b n },???? ??a n b n 仍然是等比数列. 3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项?G 2=ab .( ) (3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )

最新等比数列知识点总结及题型归纳(1)

等比数列知识点总结及题型归纳 1、等比数列的定义: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?= ?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= =-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)数列{}n a ,{}n b 为等比数列,则数列{}n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 为非零常数)均为等比数列。 (5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++???仍为等比数列 (6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比数列

高中数学《等比数列的前n项和(第一课时)》教学设计

高中数学《等比数列的前n项和(第一课时)》教学设计 一.教材分析。 (1教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思 维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

等比数列及其前n项和(作业)

等比数列及其前n 项和(作业) 例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31 2 a ,22a 成等差数列,则 910 78 a a a a +=+( ) A .1 B .1 C .3+D .3- 【思路分析】 设公比为q ,则0q >,21a a q =,231a a q =, ∵1a ,31 2 a ,22a 成等差数列, ∴3122a a a =+,即21112a q a a q =+, 解得1q =+ 1, ∴22910787878()3a a a a q q a a a a ++===+++. 故选C . 例2: 若等比数列 {} n a 中,25112a a a ++=,58146a a a ++=,那么 2581114a a a a a ++++的值为( ) A .8 B .9 C .242 31 D . 240 41 【思路分析】 设公比为q ,则335814251125112511() a a a q a a a q a a a a a a ++++==++++,即33q =, ∴38553a a q a ==,9145527a a q a ==, 由58146a a a ++=,得5553276a a a ++=,解得56 31 a = , ∴2581114251158145242 ()()31 a a a a a a a a a a a a ++++=+++++-=. 故选C . 例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{} n c

的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978 B .557 C .467 D .1 023 【思路分析】 设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =, 则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =, ∴2122q d q d +=??+=? ,解得21q d =??=-?, ∴数列{}n a 的前10项之和10110(1) 1 0231a q S q -= =-.故选D . 1. 在等比数列{}n a 中,已知332a = ,前三项和39 2 S =,则公比q =( )

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

(经典)讲义:等比数列及其前n项和

(经典)讲义:等比数列及其前n 项和 1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项 若G 2 =a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +). (2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ ≠0),? ???????? ?1a n ,{a 2n }, {a n ·b n },? ???????? ?a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式 等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q . 【注意】 6.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n 1-q (q ≠1). 7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等比数列及其前n项和(讲义)

等比数列及其前n 项和(讲义) 知识点睛 一、等比数列 1. 等比数列的概念 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0)q ≠表示. (1)等比中项 (2)等比数列的通项公式:11n n a a q -=. 2. 等比数列的性质 (1)通项公式的推广:*(),n m n m a a q m n N -=∈. (2)若{}n a 是等比数列,且*(),,,k l m n k l m n N +=+∈, 则k l m n a a a a =??. (3)若{}n a 是等比数列,则k a ,k m a +,2k m a +,…*(),k m N ∈组成公比为m q 的等比数列. (4)若{}n a 是等比数列,则{}n a λ,{}||n a ,1{}n a ,{}2 n a 也是等比数列. (5)若{}n a ,{}n b 是等比数列,则{}n n a b ?,{ }n n a b 也是等比数列. (6)当数列{}n a 是各项均为正数的等比数列时, 数列{}lg n a 是公差为lg q 的等差数列. 二、 等比数列的前n 项和公式 1. 对于等比数列 1a ,2a ,3a ,…,n a ,…

当1q ≠时, 它的前n 项和的公式为1(1) 1n n a q S q -=-或11n n a a q S q -=-. 当1q =时, 它的前n 项和的公式为1n S na =. 推导过程:错位相减法 2. 等比数列各项和的性质 (1)若m S ,2m S ,3m S 分别是等比数列{}n a 的前m 项,前2m 项,前3m 项的和,则m S ,2m m S S -,32m m S S -成等比数列,其公比为m q . (2)等比数列的单调性 ①当101a q >??>?或10 01a q ??<?时,{}n a 是递减数列; ③当101a q ≠??=?时,{}n a 是常数列; ④当0q <时,{}n a 是摆动数列. 精讲精练 1. 设{}n a 为等比数列,且4652a a a =-,则公比是( ) A .0 B .1或-2 C .-1或2 D .-1或-2

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納 1、等比數列の定義: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m m a a a a q q q a a ---=?=?= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =± 注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個 (2)數列{}n a 是等比數列211n n n a a a -+?=? 4、等比數列の前n 項和n S 公式: (1)當1q =時,1n S na = (2)當1q ≠時,() 11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠?為等比數列 (3)通項公式:()0{}n n n a A B A B a =??≠?為等比數列 6、等比數列の證明方法: 依據定義:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?為等比數列 7、等比數列の性質: (2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t mn st N +=+∈, 則n m s t a a a a ?=?。特別の,當2m n k +=時,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)數列{}n a ,{}n b 為等比數列,則數列{ }n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 為非零常數)均為等比數列。 (5)數列{}n a 為等比數列,每隔*()k k N ∈項取出一項23(,,,,)m m k m k m k a a a a +++???仍為等比數列 (6)如果{}n a 是各項均為正數の等比數列,則數列{log }a n a 是等差數列 (7)若{}n a 為等比數列,則數列n S ,2n n S S -,32,n n S S -???,成等比數列 (8)若{}n a 為等比數列,則數列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比數列

等比数列及其前n项和考点与题型归纳

等比数列及其前n 项和考点与题型归纳 一、基础知识 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1 a n =q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n - 1. (2)前n 项和公式:S n =???? ? na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1. 3.等比数列与指数型函数的关系 当q >0且q ≠1时,a n =a 1 q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数 的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上; 对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 1 1-q , 则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点. 对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点. 二、常用结论汇总——规律多一点 设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *). (2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *. (3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).

相关文档
相关文档 最新文档