文档库 最新最全的文档下载
当前位置:文档库 › 基于混合密码体制的数据加密模型的研究

基于混合密码体制的数据加密模型的研究

基于混合密码体制的数据加密模型的研究
基于混合密码体制的数据加密模型的研究

关于数据加密的重要性及各种方法的区别

关于数据加密的重要性及各种方法的区别 文件加密的重要性: 有些同学以为,自己既不是影视明星,又不是恐怖分子,不需要采用文件加密之类的工具,那就大错特错啦。俺大致介绍一下,文件加密的用武之地。 1、防范失窃 这年头,笔记本电脑、平板电脑越来越流行,而这类便捷的移动设备,也增加了丢失的概率。一旦你的移动设备丢失,存储在上面的个人敏感信息就有暴露的风险。比如用浏览器保存的登录口令、邮件客户端存储的私人邮件、等等。如果你的敏感信息是加密的,失窃后的风险就大大降低。 2、保存个人隐私 很多人的家用电脑,都是几个家庭成员共用的。你可能会有一些个人隐私的信息,不希望被其他家庭成员看到。比如你上网下载的毛片、艳照、等,多半不希望被你父母或子女看到。这时候,文件加密就可以防止你的隐私外泄。 3、加密备份数据 很多同学把电脑中的数据备份到移动硬盘上。有些同学觉得放家里的移动硬盘还不保险。正好近2年,"云"的概念炒得很热。所以,那些忧患意识很强的同学,就开始考虑用"云存储"(俗称网盘)来做异地备份。 一旦你把数据备份到"云端",就得考虑加密问题了。假如你用的是国内公司提供的网盘,那你一定得小心。如果你把数据备份到国外的网盘,也未必安全。这不,连大名鼎鼎的Dropbox,最近都曝出数据安全的丑闻。 加密的方法:、 使用压缩软件 发现很多人(尤其是菜鸟用户),首先想到的加密方式,就是把敏感文件用压缩工具(比如WinRAR,7zip、等)压缩一下,并设置一个口令。 优点: 1)、不需要额外安装软件 压缩软件几乎是装机必备的软件。因此,使用这种方法,多半不需要额外安装其它软件。 2)、便于备份 可以把压缩文件copy到任何地方,只要知道口令就能打开。 缺点: 1)、加密强度没保证 压缩软件的强项是压缩,而不是加密。有些压缩软件,本身的加密强度不够,还有些压

公钥密码体制

数学文化课程报告论文题目:公钥密码体制的现状与发展 公钥密码体制的现状与发展 摘要:文中对公钥密码体制的现状与发展进行了介绍,其中着重讨论了几个比较重要的公钥密码体制M-H背包算法、RSA、ECC、量子密码、NTRU密码体制和基于辫群上的密码体制。 关键词:公钥密码体制;离散对数问题;格基归约;量子密码

1949年,Claude Shannon在《Bell System Technical Journal》上发表了题为“Communication Theory of Secrecy Systems”的论文,它是现代密码学的理论基础,这篇论文将密码学研究纳入了科学轨道,但由于受到一些因素的影响,该篇论文当时并没有引起人们的广泛重视。直到20世纪70年代,随着人类社会步入信息时代才引起人们的普遍重视,那个时期出现了现代密码的两个标志性成果。一个是美国国家标准局公开征集,并于1977年正式公布实施的美国数据加密标准;另一个是由Whitfield Diffie和Martin Hellman,在这篇文章中首次提出了公钥密码体制,冲破了长期以来一直沿用的私钥体制。自从公钥密码体制被提出以来,相继出现了许多公钥密码方案,如RSA、Elgamal密码体制、背包算法、ECC、XTR和NTRU等。 公钥密码体制的发现是密码学发展史上的一次革命。从古老的手工密码,到机电式密码,直至运用计算机的现代对称密码,这些编码系统虽然越来越复杂,但都建立在基本的替代和置换工具的基础上,而公钥密码体制的编码系统是基于数学中的单向陷门函数。更重要的是,公钥密码体制采用了两个不同的密钥,这对在公开的网络上进行保密通信、密钥分配、数字签名和认证有着深远的影响。文章共分为5部分:第1部分首先介绍了Merkle-Hellmen背包算法,第2,3,4,5,5部分分别讨论了RSA、ECC、量子密码、NTUR,同时对公钥密码体制进行了展望。 1、Merkle-Hellmen背包算法 1978年,Ralph Merkle和Martin Hellmen提出的背包算法是公钥密码体制用于加密的第一个算法,它起初只能用于加密,但后来经过Adi Shamtr的改进使之也能用于数字签名。其安全性基于背包难题,它是个NP完全问题,这意味

常见的几种加密算法

1、常见的几种加密算法: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合; 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高; RC2和RC4:用变长密钥对大量数据进行加密,比DES 快;IDEA(International Data Encryption Algorithm)国际数据加密算法,使用128 位密钥提供非常强的安全性; RSA:由RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的DSS(数字签名标准); AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前AES 标准的一个实现是Rijndael 算法; BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快; 其它算法,如ElGamal钥、Deffie-Hellman、新型椭圆曲线算法ECC等。 2、公钥和私钥: 私钥加密又称为对称加密,因为同一密钥既用于加密又用于解密。私钥加密算法非常快(与公钥算法相比),特别适用于对较大的数据流执行加密转换。 公钥加密使用一个必须对未经授权的用户保密的私钥和一个可以对任何人公开的公钥。用公钥加密的数据只能用私钥解密,而用私钥签名的数据只能用公钥验证。公钥可以被任何人使用;该密钥用于加密要发送到私钥持有者的数据。两个密钥对于通信会话都是唯一的。公钥加密算法也称为不对称算法,原因是需要用一个密钥加密数据而需要用另一个密钥来解密数据。

数据加密方案

数据加密方案

一、什么是数据加密 1、数据加密的定义 数据加密又称密码学,它是一门历史悠久的技术,指通过加密算法和加密密钥将明文转变为密文,而解密则是通过解密算法和解密密钥将密文恢复为明文。数据加密目前仍是计算机系统对信息进行保护的一种最可靠的办法。它利用密码技术对信息进行加密,实现信息隐蔽,从而起到保护信息的安全的作用。 2、加密方式分类 数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为对称密钥和非对称密钥两种。 对称密钥:加密和解密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。在对称密钥中,密钥的管理极为重要,一旦密钥丢失,密文将无密可保。这种

方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。 对称加密 对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而如今仍广泛被采用。 DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。 非对称密钥:非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。

数据加密技术

数据加密技术 摘要:由于Internet的快速发展,网络安全问题日益受到人们的重视。面对计算机网络存在的潜在威胁与攻击,一个计算机网络安全管理者要为自己所管辖的网络建造强大、安全的保护手段。数据加密技术是网络中最基本的安全技术,主要是通过对网络中传输的信息进行数据加密起来保障其安全性,这是一种主动安全防御策略,用很小的代价即可为信息提供相当大的安全保护。 现代社会对信息安全的需求大部分可以通过密码技术来实现。密码技术是信息安全技术中的心核,它主要由密码编码技术和密码分析技术两个分支组成。这两个分支既相互对立,又相互依存。信息的安全性主要包括两个方面即信息的保密性和信息的认证性。在用密码技术保护的现代信息系统的安全性主要取决于对密钥的保护,即密码算法的安全性完全寓于密钥之中。可见,密钥的保护和管理在数据系统安全中是极为重要的。人们目前特别关注的是密钥托管技术。 一、信息保密技术 信息的保密性是信息安全性的一个重要方面,加密是实现信息保密性的一种重要手段。加密算法和解密算法的操作通常都是在一组密钥控制下进行的,分别称为加密密钥和解密密钥。根据加密密钥和解密密钥是否相同,可将现有的加密体制分为两种:一种是私钥或对称加密体制,其典型代表是美国的数据加密标准(D E S);另一种是公钥或非对称加密体制,其典型代表是R S A体制。 目前国际上最关心的加密技术有两种:一种是分组密码。另一种是公钥密码。 1. 分组密码技术 DES是目前研究最深入、应用最广泛的一种分组密码。针对DES,人们研制了各种各样的分析分组密码的方法,比如差分分析方法和线性分析方法,这些方法对DES的安全性有一定的威胁,但没有真正对D E S的安全性构成威胁。 2. 公钥加密技术 私钥密码体制的缺陷之一是通信双方在进行通信之前需通过一个安全信道事先交换密钥。这在实际应用中通常是非常困难的。而公钥密码体制可使通信双方无须事先交换密钥就可建立起保密通信。在实际通信中,一般利用公钥密码体制来保护和分配密钥,而利用私钥密码体制加密消息。公钥密码体制主要用于认证和密钥管理等。 下面是A使用一个公钥密码体制发送信息给B的过程: (1)A首先获得B的公钥;

几种常用的数据加密技术

《Network Security Technology》Experiment Guide Encryption Algorithm Lecture Code: 011184 Experiment Title:加密算法 KeyWords:MD5, PGP, RSA Lecturer:Dong Wang Time:Week 04 Location:Training Building 401 Teaching Audience:09Net1&2 October 10, 2011

实验目的: 1,通过对MD5加密和破解工具的使用,掌握MD5算法的作用并了解其安全性; 2,通过对PGP加密系统的使用,掌握PGP加密算法的作用并了解其安全性; 3,对比MD5和PGP两种加密算法,了解它们的优缺点,并总结对比方法。 实验环境: 2k3一台,XP一台,确保相互ping通; 实验工具:MD5V erify, MD5Crack, RSA-Tools,PGP8.1 MD5加密算法介绍 当前广泛存在有两种加密方式,单向加密和双向加密。双向加密是加密算法中最常用的,它将明文数据加密为密文数据,可以使用一定的算法将密文解密为明文。双向加密适合于隐秘通讯,比如,我们在网上购物的时候,需要向网站提交信用卡密码,我们当然不希望我们的数据直接在网上明文传送,因为这样很可能被别的用户“偷听”,我们希望我们的信用卡密码是通过加密以后,再在网络传送,这样,网站接受到我们的数据以后,通过解密算法就可以得到准确的信用卡账号。 单向加密刚好相反,只能对数据进行加密,也就是说,没有办法对加密以后的数据进行解密。这有什么用处?在实际中的一个应用就是数据库中的用户信息加密,当用户创建一个新的账号或者密码,他的信息不是直接保存到数据库,而是经过一次加密以后再保存,这样,即使这些信息被泄露,也不能立即理解这些信息的真正含义。 MD5就是采用单向加密的加密算法,对于MD5而言,有两个特性是很重要的,第一是任意两段明文数据,加密以后的密文不能是相同的;第二是任意一段明文数据,经过加密以后,其结果必须永远是不变的。前者的意思是不可能有任意两段明文加密以后得到相同的密文,后者的意思是如果我们加密特定的数据,得到的密文一定是相同的。不可恢复性是MD5算法的最大特点。 实验步骤- MD5加密与破解: 1,运行MD5Verify.exe,输入加密内容‘姓名(英字)’,生成MD5密文;

背包密码体制

背包密码体制 作者: 指导老师: 摘要背包公钥加密是第一个具体实现了的公钥加密的方案.本文主要分析背包公钥加密算法的 数学理论基础,描述背包公钥加密算法的体制,讨论背包公钥加密算法的加密算法与解密算法的过 程和原理。采用MH法通过掩盖超递增背包序列,进而对背包公钥加密算法加以该进,用实例加以 实现,并对它的安全性进行讨论和分析. 关键字模逆; 同余式; 欧几里德算法; 超递增序列;掩盖超递增序列 1 引言 加密技术是一门古老而深奥的学科,它对一般人来说是陌生而神秘的,因为长期依赖,它只在很少的范围内,如军事、外交、情报等部门使用.计算机机密技术是研究计算机信息加密、解密及其变换科学,是数学和计算机的交叉学科,也是一门新兴的学科,但它已成为计算机安全主要的研究方向,也是计算机安全课程教学中主要内容. 密码学(Cryptology)一词源自希腊语“krypto’s”及“logos”两词,意思为“隐藏”及“消息”.它是研究信息系统安全保密的科学.其目的为两人在不安全的信道上进行通信而不被破译者理解他们通信的内容. 密码学根据其研究的范围可分为密码编码学和密码分析学.密码编码学研究密码体制的设计,对信息进行编码实现隐蔽信息的一门学问,密码分析学是研究如何破译被加密信息或信息伪造的学问.它们是相互对立、相互依存、相互促进并发展的.密码学的发展大致可以分为3个阶段: 第一阶段是从几千年前到1949年.这一时期密码学还没有成为一门真正的科学,而是一门艺术.密码学专家常常是凭自己的直觉和信念来进行密码设计,而对密码的分析也多给予密码分析者(即破译者)的直觉和经验来进行的. 第二阶段是从1949年到1975年.1949年,美国数学家、信息论的创始人Shannon,Claude Elwood发表了《保密系统的信息理论》一文,它标志这密码学阶段的开始.同时以这篇文章为标志的信息论为对称密钥密码系统建立了理论基础,从此密码学成为一门科学.由于保密的需要,这时人们基本上看不到关于密码学的文献和资料,平常人们是接触不到密码的.1976年Kahn出版了一本叫做《破译者》的小说,使人们知道了密码学.20世纪70年代初期,IBM发表了有关密码学的几篇技术报告,从而使更多的人了解了密码学的存在,但科学理论的产生并没有使密码学失去艺术的一面,如今,密码学仍是一门具有艺术性的科学. 第三阶段为1976年至今.1976年,Diffie和Hellman发表了《密码学的新方向》一文,他们首次证明了在发送端和接受端不需要传输密码的保密通信的可能性,从而开创了公钥密码学的新纪元.该文章也成了区分古典密码和现代密码的标志.1977年,美国的数据加密标准(DES)公布.这两件事情导致了对密码学的空前研究.从这时候起,开始对密码在民用方面进行研究,密码才开始充分发挥它的商用价值和社会价值,人们才开始能够接触到密码学.这种转变也促使了密码学的空前发展.密码学发展至今,已有两大类密码系统:第一类为对称密钥(Symmetric Key)密码系统,第二类为非对称密钥(Public Key)密码系统. 和RSA公钥体制一起,背包公钥体制被认为是两个著名的公钥体制之一.1978年Merkle 和Hellman首先提出了一个现在称为MH背包体制的密码体制,虽然它和其几个变形在20世纪80年代初被Shamir等人破译了,但是,它的思想和有关理论首先解释了公钥密码算法的本质,所以仍然具有深刻的理论研究价值. 自从Merkle和Hellman提出第一个背包型公钥密码以来,许多陷门背包被提了出来.背包型公钥密码的设计极大地丰富了公钥密码,在陷门背包的发展过程中,人们使用了各种各样

加密算法介绍及加密算法的选择

加密算法介绍及如何选择加密算法 加密算法介绍 一.密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二.加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高; AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AES。 Rijndael是在 1999 年下半年,由研究员 Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准(AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。 AES与3DES的比较 非对称算法

五种常用的数据加密方法

五种常用的数据加密方法.txt22真诚是美酒,年份越久越醇香浓型;真诚是焰火,在高处绽放才愈是美丽;真诚是鲜花,送之于人手有余香。一颗孤独的心需要爱的滋润;一颗冰冷的心需要友谊的温暖;一颗绝望的心需要力量的托慰;一颗苍白的心需要真诚的帮助;一颗充满戒备关闭的门是多么需要真诚这一把钥匙打开呀!每台电脑的硬盘中都会有一些不适合公开的隐私或机密文件,如个人照片或客户资料之类的东西。在上网的时候,这些信息很容易被黑客窃取并非法利用。解决这个问题的根本办法就是对重要文件加密,下面介绍五种常见的加密办法。加密方法一: 利用组策略工具,把存放隐私资料的硬盘分区设置为不可访问。具体方法:首先在开始菜单中选择“运行”,输入 gpedit.msc,回车,打开组策略配置窗口。选择“用户配置”->“管理模板”->“Windows 资源管理器”,双击右边的“防止从“我的电脑”访问驱动器”,选择“已启用”,然后在“选择下列组合中的一个”的下拉组合框中选择你希望限制的驱动器,点击确定就可以了。 这时,如果你双击试图打开被限制的驱动器,将会出现错误对话框,提示“本次操作由于这台计算机的限制而被取消。请与您的系统管理员联系。”。这样就可以防止大部分黑客程序和病毒侵犯你的隐私了。绝大多数磁盘加密软件的功能都是利用这个小技巧实现的。这种加密方法比较实用,但是其缺点在于安全系数很低。厉害一点的电脑高手或者病毒程序通常都知道怎么修改组策略,他们也可以把用户设置的组策略限制取消掉。因此这种加密方法不太适合对保密强度要求较高的用户。对于一般的用户,这种加密方法还是有用的。 加密方法二:

利用注册表中的设置,把某些驱动器设置为隐藏。隐藏驱动器方法如下: 在注册表HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\E xplorer中新建一个DWORD值,命名为NoDrives,并为它赋上相应的值。例如想隐藏驱动器C,就赋上十进制的4(注意一定要在赋值对话框中设置为十进制的4)。如果我们新建的NoDrives想隐藏A、B、C三个驱动器,那么只需要将A、B、C 驱动器所对应的DWORD值加起来就可以了。同样的,如果我们需要隐藏D、F、G三个驱动器,那么NoDrives就应该赋值为8+32+64=104。怎么样,应该明白了如何隐藏对应的驱动器吧。目前大部分磁盘隐藏软件的功能都是利用这个小技巧实现的。隐藏之后,WIndows下面就看不见这个驱动器了,就不用担心别人偷窥你的隐私了。 但这仅仅是一种只能防君子,不能防小人的加密方法。因为一个电脑高手很可能知道这个技巧,病毒就更不用说了,病毒编写者肯定也知道这个技巧。只要把注册表改回来,隐藏的驱动器就又回来了。虽然加密强度低,但如果只是对付一下自己的小孩和其他的菜鸟,这种方法也足够了。 加密方法三: 网络上介绍加密方法一和加密方法二的知识性文章已经很多,已经为大家所熟悉了。但是加密方法三却较少有人知道。专家就在这里告诉大家一个秘密:利用Windows自带的“磁盘管理”组件也可以实现硬盘隐藏! 具体操作步骤如下:右键“我的电脑”->“管理”,打开“计算机管理”配置窗口。选择“存储”->“磁盘管理”,选定你希望隐藏的驱动器,右键选择“更改驱动器名和路径”,然后在出现的对话框中选择“删除”即可。很多用户在这里不

互联网数据加密技术

所谓数据加密(Data Encryption)技术是指将一个信息(或称明文,plain text)经过加密钥匙(Encryption key)及加密函数转换,变成无意义的密文(cipher text),而接收方则将此密文经过解密函数、解密钥匙(Decryption key)还原成明文。加密技术是网络安全技术的基石。 密码技术是通信双方按约定的法则进行信息特殊变换的一种保密技术。根据特定的法则,变明文(Plaintext)为密文(Ciphertext)。从明文变成密文的过程称为加密(Encryption); 由密文恢复出原明文的过程,称为解密(Decryption)。密码在早期仅对文字或数码进行加、解密,随着通信技术的发展,对语音、图像、数据等都可实施加、解密变换。密码学是由密码编码学和密码分析学组成的,其中密码编码学主要研究对信息进行编码以实现信息隐蔽,而密码分析学主要研究通过密文获取对应的明文信息。密码学研究密码理论、密码算法、密码协议、密码技术和密码应用等。随着密码学的不断成熟,大量密码产品应用于国计民生中,如USB Key、PIN EntryDevice、 RFID 卡、银行卡等。广义上讲,包含密码功能的应用产品也是密码产品,如各种物联网产品,它们的结构与计算机类似,也包括运算、控制、存储、输入输出等部分。密码芯片是密码产品安全性的关键,它通常是由系统控制模块、密码服务模块、存储器控制模块、功能辅助模块、通信模块等关键部件构成的。 数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息

用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。 分类 专用密钥 专用密钥,又称为对称密钥或单密钥,加密和解密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。在对称密钥中,密钥的管理极为重要,一旦密钥丢失,密文将无密可保。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。 对称密钥 对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而如今仍广泛被采用。 DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。

公钥密码体制的介绍

目录 第一章绪论 (1) 1.1 研究背景与意义 (1) 第二章预备知识 (7) 2.1 复杂性理论 (7) 2.2 可证明安全理论 (8) 2.2.1 困难问题假设 (8) 2.2.2 形式化证明方法 (10) 2.3 公钥密码体制 (11) 2.3.1 PKE形式化定义 (11) 2.3.2 PKE的安全模型 (12) 2.5 密钥泄露 (12) 2.5.1 问题描述 (12) 2.5.2 解决方法 (13) 2.6 本章小结 (14) 致谢 (16)

第一章绪论 第一章绪论 本章主要阐述了公钥密码体制的研究背景和积极意义,并简单介绍了代理重加密体制的研究现状以及该密码体制在云存储数据共享领域的独特优势。最后,本章介绍了本文的主要研究工作和论文结构。 1.1 研究背景与意义 密码学是伴随着信息保密而产生的,但是随着密码学技术本身的不断发展和通信网络技术的不断发展,现代的密码学研究已经远远超越了信息保密的范围,被广泛应用于各种安全和隐私保护应用之中。它是一门古老的学科,又是一门新兴的交叉学科,在今后人类社会的发展历程中必将发挥越来越重要的作用。密码学的发展可分为3个阶段: 第一阶段:从古代一直到1949年,密码学都是停留在应用于军事政治等神秘领域的实践技术。从1949年香农(Shannon)发表了《保密系统的信息理论》错误!未找到引用源。后,密码学才由理论基础指导而上升为学科。这一阶段,密码学研究的突破并不大,而且应用方面仍然只局限于特殊领域。 第二阶段:以1976年迪菲(Diffie)与赫尔曼(Hellman)发表的论文《密码学的新方向》错误!未找到引用源。以及1977年美国发布的数据加密标准(DES)加密算法为标志,密码学进入了现代密码学。 第三阶段:伴随着相关理论的完善,以及由集成电路和因特网推动的信息化工业浪潮,密码学进入了一个全新爆发的时代:研究文献和成果层出不穷,研究的方向也不断拓展,并成为了一个数学、计算机科学、通信工程学等各学科密切相关的交叉学科,同时各种密码产品也走进了寻常百姓家,从原来局限的特殊领域进入了人民群众的生产、生活之中。 在信息社会,加密体制为保证信息的机密性提供了重要的技术手段。根据密钥的特点,可将加密体制分为对称密钥体制和非对称密钥体制两种。在对称加密体制中,通信双方为了建立一个安全的信道进行通信,需要选择相同的密钥,并将密钥秘密保存。根据对明文的加密方式不同,对称密码算法又分为分组加密算法和流密码算法。分组加密算法将明文分为固定长度的分组进行加密,而流密码算法则将明文按字符逐位加密,二者之间也不是有着不可逾越的鸿沟,很多时候,分组加密算法也可以用于构建流密码算法。目前,世界上存在的分组密码算法可能有成千上万种,而其中最有名的就是美国的DES、AES以及欧洲的IDEA算法。

DES数据加密算法

上海电力学院 实验报告 课程名称信息安全/计算机安全实验项目实验一DES数据加密算法 姓名张三学号班级专业电子信息工程 同组人姓名指导教师姓名魏为民实验日期2011年月日 一、实验目的 通过本实验的学习,深刻理解DES加密标准,提高算法设计能力,为今后继续学习密码技术和数字签名奠定基础。 二、实验内容 根据DES加密标准,用C++设计编写符合DES算法思想的加、解密程序,能够实现对字符串和数组的加密和解密。 三、实验步骤 1. 在操作系统环境下启动VC++集成环境(Microsoft Visual C++ 6.0 ,其中6.0为版本号,也可为其它版本),则产生如图1所示界面。 图1 VC++ 集成环境界面 2. 选择“文件”菜单下的“新建”命令,出现如图2所示界面(不可直接按“新建”按钮,此按钮是新建一个文本文件)。此界面缺省标签是要为新程序设定工程项目,但编辑小的源程序也可以不建立项目,可以直接选择其左上角的“文件”标签,产生如图3所示界面。 3. 在图3所示的界面中左边选定文件类型为“C++ Source File”,右边填好文件名并选定文件存放目录,

然后单击“确定”按钮,出现如图4所示编程界面,开始输入程序。 4. 输入完源程序后,按"编译"菜单下的编译命令,对源程序进行编译。系统将在下方 的窗口中显示编译信息。如果无此窗口,可按"Alt + 2"键或执行"查看"菜单下的"输出"命令。 如果编译后已无提示错误,则可按"编译"菜单下的"构件"命令来生成相应的可执行文件,随后可按"编译"菜单下的"执行"命令运行的程序。 图2 新建VC++工程项目界面 图3 新建VC++源程序文件界面

公钥密码体制原理及展望---读《New Directions in Cryptography》

公钥密码体制原理及展望 ----读《New Directions in Cryptography》 姓名 学号 指导教师 时间2010年11月19日星期五

公钥密码体制原理及展望 ----读《New Directions in Cryptography》 摘要:本文通过读《New Direction in Cryptography》一文,简述了密码学的发展,重点讨论了公钥密码体制的算法及安全性。并在此基础上介绍了ECC和量子密码,了解了非对称密码体制的应用,展望了密码学未来的发展方向。 关键字:公钥密码体制,单向陷门函数、ECC、量子密码 一概述 密码学是研究如何隐密地传递信息的学科。在现代特別指对信息以及其传输的数学性研究,常被认為是数学和计算机科学的分支,和信息论也密切相关。回顾密码学的发展历程: 第一个阶段是古典密码学(19世纪以前),主要包括代替密码、换位密码以及代替密码与换位密码的组合方式等。 第二阶段是中世纪密码学,它是宗教上被刺激的原文分析对Quran那些导致了发明频率分析打破的技术替换密码。它是最根本的cryptanalytic前进直到WWII。所有暗号根本上依然是脆弱直到这个cryptanalytic技术发明polyalphabetic暗号。 第三阶段是从1800到第二次世界大战,由第二次世界大战机械和机电暗号机器在宽用途,虽然这样机器是不切实际的地方继续的人工制在使用中。巨大前进被做了暗号打破所有在秘密。 第四阶段是现代密码学,C.E.Shannon于1949年发表的划时代论文“The Communication Theory of Secret Systems”,这是现代密码学的第一次发展也是开端。而更重要的一次发展是1976年,当时在美国斯坦福大学的迪菲(Diffie)和赫尔曼(Hellman)两人提出了公开密钥密码的新思想,论文《New Direction in Cryptography》把密钥分为加密的公钥和解密的私钥,这是现代密码学的经典之作,是密码学的一场革命。 《New Direction in Cryptography》一文为解决传统密码体制(主要针对对称密码体制)密钥分发困难、密钥集中了密文的安全性等缺陷,设计了公钥密码体制,是非对称密码学的开山之作。下面简要地介绍一下这篇文章的主要内容。 二公钥密码体制基本原理 公钥密码算法中的密钥依性质划分,可分为公钥和私钥两种。用户或系统产生一对密钥,将其中的一个公开,称为公钥;另一个自己保留,称为私钥。任何获悉用户公钥的人都可用用户的公钥对信息进行加密与用户实现安全信息交互。由于公钥与私钥之间存在的依存关系,只有用户本身才能解密该信息,任何未受授权用户甚至信息的发送者都无法将此信息解密。所以在公钥密码系统中,首先要求加密函数具有单向性,即求逆的困难性。即: 一个可逆函数f:A→B,若它满足: 1o对所有x∈A,易于计算f(x)。 2o对“几乎所有x∈A”由f(x)求x“极为困难”,以至于实际上不可能做到,则称f为一单向(One-way)函数。 但是,要做加密处理,对加密函数仅有单向的要求还不够,必须还要满足,

网络数据加密技术概述

课程设计论文报告(大作业)题目:网络数据加密技术概述 课程名称:《计算机信息安全》 课程教师:张小庆 班级:一班 专业:数字多媒体与技术 学号:110511227 姓名:刘天斌 2014年11 月22 日

网络数据加密技术概述 信息安全的核心就是数据的安全,也就是说数据加密是信息安全的核心问题。数据数据的安全问题越来越受到重视,数据加密技术的应用极大的解决了数据库中数据的安全问题。 由于网络技术发展,影响着人们生活的方方面面,人们的网络活动越来越频繁,随之而来安全性的要求也就越来越高,对自己在网络活动的保密性要求也越来越高,应用信息加密技术,保证了人们在网络活动中对自己的信息和一些相关资料的保密的要求,保证了网络的安全性和保密性。尤其是在当今像电子商务、电子现金、数字货币、网络银行等各种网络业的快速的兴起。使得如何保护信息安全使之不被窃取、不被篡改或破坏等问题越来越受到人们的重视。 解决这问题的关键就是信息加密技术。所谓加密,就是把称为“明文”的可读信息转换成“密文”的过程;而解密则是把“密文”恢复为“明文”的过程。加密和解密都要使用密码算法来实现。密码算法是指用于隐藏和显露信息的可计算过程,通常算法越复杂,结果密文越安全。在加密技术中,密钥是必不可少的,密钥是使密码算法按照一种特定方式运行并产生特定密文的值。使用加密算法就能够保护信息安全使之不被窃取、不被篡改或破坏。 在加密技术中,基于密钥的加密算法可以分为两类:常规密钥加密(对称加密技术)和公开密钥加密(非对称加密技术)。最有名的常规密钥加密技术是由美国国家安全局和国家标准与技术局来管理的数据加密标准(DES)算法,公开密钥加密算法比较流行的主要有RSA算法。由于安全及数据加密标准发展需要,美国政府于1997年开始公开征集新的数据加密标准AES(Advanced EncryptionStandard),经过几轮选择最终在2000年公布了最终的选择程序为Rijndael算法。 一.数据加密基本概念 1.加密的由来 加密作为保障数据安全的一种方式,它不是现在才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是现在我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。当时埃及人是最先使用别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。 近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是German Enigma机,在第二次世界大战中德国人利用它创建了加密信息此后,由于Alan Turing和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。当初,计算机的研究就是为了破解德国人的密码,人们并没有想到计算机给今天带来的信息革命。随着计算机的发展,运算能力的增强,过去的密码都变得十分简单了,于是人们又不断地研究出了新的数据

公钥密码体制的研究

公钥密码体制的研究

目录 第一章绪论 (1) 1.1 研究背景与意义 (1) 第二章预备知识 (7) 2.1 复杂性理论 (7) 2.2 可证明安全理论 (8) 2.2.1 困难问题假设 (8) 2.2.2 形式化证明方法 (10) 2.3 公钥密码体制 (11) 2.3.1 PKE形式化定义 (11) 2.3.2 PKE的安全模型 (12) 2.5 密钥泄露 (12) 2.5.1 问题描述 (12) 2.5.2 解决方法 (13) 2.6 本章小结 (14) 致谢 (17)

第一章绪论 本章主要阐述了公钥密码体制的研究背景和积极意义,并简单介绍了代理重加密体制的研究现状以及该密码体制在云存储数据共享领域的独特优势。最后,本章介绍了本文的主要研究工作和论文结构。 1.1 研究背景与意义 密码学是伴随着信息保密而产生的,但是随着密码学技术本身的不断发展和通信网络技术的不断发展,现代的密码学研究已经远远超越了信息保密的范围,被广泛应用于各种安全和隐私保护应用之中。它是一门古老的学科,又是一门新兴的交叉学科,在今后人类社会的发展历程中必将发挥越来越重要的作用。密码学的发展可分为3个阶段: 第一阶段:从古代一直到1949年,密码学都是停留在应用于军事政治等神秘领域的实践技术。从1949年香农(Shannon)发表了《保密系统的信息理论》错误!未找到引用源。后,密码学才由理论基础指导而上升为学科。这一阶段,密码学研究的突破并不大,而且应用方面仍然只局限于特殊领域。 第二阶段:以1976年迪菲(Diffie)与赫尔曼(Hellman)发表的论文《密码学的新方向》错误!未找到引用源。以及1977年美国发布的数据加密标准(DES)加密算法为标志,密码学进入了现代密码学。 第三阶段:伴随着相关理论的完善,以及由集成电路和因特网推动的信息化工业浪潮,密码学进入了一个全新爆发的时代:研究文献和成果层出不穷,研究的方向也不断拓展,并成为了一个数学、计算机科学、通信工程学等各学科密切相关的交叉学科,同时各种密码产品也走进了寻常百姓家,从原来局限的特殊领域进入了人民群众的生产、生活之中。 在信息社会,加密体制为保证信息的机密性提供了重要的技术手段。根据密钥的特点,可将加密体制分为对称密钥体制和非对称密钥体制两种。在对称加密体制中,通信双方为了建立一个安全的信道进行通信,需要选择相同的密钥,并将密钥秘密保存。根据对明文的加密方式不同,对称密码算法又分为分组加密算法和流密码算法。分组加密算法将明文分为固定长度的分组进行加密,而流密码算法则将明文按字符逐位加密,二者之间也不是有着不可逾越的鸿沟,很多时候,分组加密算法也可以用于构建流密码算法。目前,世界上存在的分组密码算法可能有成千上万种,而其中最有名的就是美国的DES、AES以及欧洲的IDEA算法。

数据加密方法及原理介绍

数据加密方法及原理介绍 一,加密术语 ■加密 ◇透过数学公式运算,使文件或数据模糊化,将容易识别的明文变成不可识别的密文 ◇用于秘密通讯或安全存放文件及数据 ■解密 ◇为加密的反运算 ◇将已模糊化的文件或数据还原,由密文还原出明文 ■密钥 ◇是加密/解密运算过程中的一个参数,实际上就是一组随机的字符串 二,加密方法 1,对称式加密 ◆使用同一把密钥对数据进行加密和解密,又称对称密钥(Symmetric Key) 或(Secret Key) ◆进行加密通信前需要将密钥先传送给对方,或者双方通过某种密钥交换方法得到一个对称密钥 ◆缺点:破解相对较容易 ◆优点:加密/解密运算相对简单,耗用运算较少,加密/解密效率高 ◆常见算法:40Bits~128Bits ●DES,3DES,AES,RC2,RC4等 2,非对称式加密(也称为公钥/私钥加密) ◆公钥加密主要用于身份认证和密钥交换.公钥加密,也被称为"不对称加密法",即加解密过程需要两把不同的密钥,一把用来产生数字签名和加密数据, 另一把用来验证数字签名和对数据进行解密. ◆使用公钥加密法,每个用户拥有一个密钥对,其中私钥仅为其个人所知, 公钥则可分发给任意需要与之进行加密通信的人.例如:A 想要发送加密信息给B,则 A 需要用 B 的公钥加密信息,之后只有 B 才能用他的私钥对该加密信息进行解密. 虽然密钥对中两把钥匙彼此相关, 但要想从其中一把来推导出另一把, 以目前计算机的运算能力来看,这种做法几乎完全不现实.因此,在这种加密法中,公钥可以广为分发,而私钥则需要仔细地妥善保管. ◆双方使用"不同密钥"执行加密/解密工作 ◆又称为不对称密钥(Asymmetric Key) ,由一对公钥(Public Key)和私钥(Private Key)构成一个密钥对 ◆密钥对具有单向性(One Way Function)以及不可推导性.公钥可以对外公开或传给通讯过程的另一方,私钥不可泄露必须由自己妥善保管,采用公钥加密的数据只能通过私钥解密,采用私钥加密的数据也只能通过公钥来解密.所谓有不可推导性是指通过公钥几乎是不可能推导出对方的私钥的, 一般情况下都是采用公钥来加密,私钥用来解密及数字签名等 ◆密钥的保管 ●公钥可传送给需要进行安全通信的计算机或用户 ●私钥必须由自己好好保管,不可泄露 ◆缺点:加密/解密复杂,耗用较多运算,速度慢,效率相对较低

最新-计算机网络安全中的数据加密技术 精品

计算机网络安全中的数据加密技术 [摘要]数据加密,即根据某种密码算法使明文信息转变为加秘钥的基本设置。 数据加密是计算机安全防护的关键技术,设置秘钥的目的在于数据保护。 数据加密大体可分为节点加密、端口加密以及链路加密三种表现形式。 在交换机与防火墙中,它主要是对传输信息实现加密处理与检测,最终达到对计算机系统数据的保护目的。 [关键词]计算机;网络安全;数据加密技术1数据加密技术种类1对称加密技术。 对称加密,又称共享密钥加密,即信息发送、接收方通过某种密钥分别对数据进行加密、解密。 它要求通信双方在密文安全传输前,应先确定某个公用密钥。 所以,只有双方都不透露密钥,方可保证数据传输的可靠性、完整性。 对称加密技术,属于最常见的数据加密技术。 数据加密算法大体包含、与三种。 数据加密标准算法,主要是针对二元数据进行加密,是一种分组密码对称64位数据,密钥可随意设置为56位,剩下8位为奇偶校验。 加密效率较高、速度较快,它的加密范围很广,在各个领域内均有普适应用。 而算法则是在算法的基础上加强密钥,达到128位,使数据更安全。 2非对称加密技术。 非对称加密,又称公钥加密。 简而言之,非对称加密,即信息发送与接收方分别选择不同的密钥,来对数据进行加密、解密,密钥通常包含公开密钥加密与私有密钥解密两类,现有技术与设备还无法从公钥推向私钥。 非对称加密技术的前提在于密钥交换协议,通信双方在不交换秘钥的情况下,便可直接传输通信数据,不存在密钥安全隐患,数据传输的保密性显著提升。 非对称加密技术,通常包含、以及-等数据加密算法。 公钥算法中应用最广的算法是算法,可有效防御现有密码的攻击。 非对称加密技术可应用于数据加密,同时也可认证身份、验证数据的完整性,在数字证书、签名等领域得到广泛应用。

相关文档
相关文档 最新文档