文档库 最新最全的文档下载
当前位置:文档库 › 除氟树脂吸附原理及应用

除氟树脂吸附原理及应用

除氟树脂吸附原理及应用
除氟树脂吸附原理及应用

除氟树脂

蓝晓科技Seplite LX-760

1.除氟树脂简述

Seplite LX-760树脂是西安蓝晓科技( tel:一八六,八一八三,五四八五)自主研发的一款用于去除矿井水、饮用水、电镀废水等水体中氟化物的专用离子交换树脂,特有的纳米金属铝负载官能团,确保了树脂对于氟离子具有极强的选择性。由于环保形势的严峻,石灰沉淀或其他药剂法除氟要达到1ppm以下排放成本较高,而树脂吸附法特有的官能团,对于水中微量的氟化物极强的选择性,可以非常低成本的解决药剂法后续的低浓度氟化物问题。前段使用石灰沉淀粗除,后端使用树脂法精除,已经越来越多的在工业化中使用。

2.除氟机理简述

传统除氟工艺,除了药剂法之外,还有一些企业使用常规弱碱阴离子交

换树脂进行除氟,虽然有一定的除氟效果,但是由于常规弱碱阴离子交换树

脂对氟离子的选择性太低(离子选择顺序:ClO4-> I->CrO42->SO42- >Br- >

CN- >NO3- > Cl- > F- ),当水体中同时含有SO42-、NO3-、Cl-等其他阴离子

时,对氟的选择性会变得很低,导致实际的除氟效果很差

Seplite LX-760除氟树脂,特有的纳米金属铝负载官能团,可以在其他

离子共存的情况下,对氟离子表现出极强的选择性,同时吸附量大,吸附精

度高,可以将水中的氟离子含量从几十或几百ppm降到1ppm以下,目前

已经广泛用于矿井水、废水、饮用水等的除氟处理。

LX-760除氟树脂,除氟原理简图

3.树脂理化指标

产品名称LX-760

外观米灰色至米黄色不透明球状颗粒粒度(0.4-1.25mm)(%) ≥95

含水量(%)50-60

湿视密度(g/ml)0.72-0.78

F- 吸附量(g/L)≥2.5

整球率(%)≥95.0

4.

使用温度(℃)≤60

PH 6-9

总硬(ppm,碳酸钙计)≤500

5.

含氟废水送入树脂系统,经除氟树脂吸附后,出水氟含量<1ppm。系统运行一段时间后树脂达到饱和状态,需要用铝盐溶液(可用8%左右的明矾溶液)作为再生剂进行再生,树脂性能得以恢复而实现循环重复使用。

再生液中主要成分为硫酸铝钾,氟化物含量约1000ppm,可将再生液作为絮凝剂加入到前段沉淀池中去进行沉淀处理,最终废水中的氟化物均是以污泥形式排出。

西安蓝晓科技是专业从事吸附树脂、离交树脂、层析色谱等分离纯化材料的研发生产,树脂配套的连续离交装置及模拟移动床色谱系统装置生产的国家重点高新技术企业;国内A股上市公司(股票代码:300487)。蓝晓科技专注于吸附分离材料新产品的研发及新兴应用领域的拓展,产品广泛应用于食品加工、生物发酵、生物制药、植物提取、工业废水处理、湿法冶金和固定化酶载体等领域。

公司现有1个公司总部,4个树脂生产基地,2个树脂配套设备制造基地,共7个组成部分,年产树脂5万立方米,提供各类分离装置百余套,拥有员工700余人,2018年新增销售订单17.19亿元。

变压吸附原理

1.什么叫吸附? 答:当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 2.气体分离的原理是什么? 当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 3.什么叫化学吸附?什么叫物理吸附? 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。物理吸附通常分为变温吸附和变压吸附。 4.变压吸附属化学吸附或物理吸附? 分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。 5.变压吸附常用吸附剂有哪几种?他们各自的作用是什么? 变压吸附常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。 硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。它是用[wiki]硫酸[/wiki]处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及[wiki]石油[/wiki]组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。 活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初[wiki]氢[/wiki]氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。在一定操作条件下,它的干燥深度可达[wiki]露点[/wiki]-70℃以下。 活性炭是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造,所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。

变压吸附技术在焦炉煤气制氢中的应用

变压吸附技术在焦炉煤气制氢中的应用 戴四新 (厦门市建坤实业发展公司,福建厦门 361012) 摘要:介绍了变压吸附(PSA)技术的基本原理及其应用于焦炉煤气提氢的Sysiv和Bergbau PSA制氢典型工艺。指出PSA技术是近年国内外发展最快、技术最成熟、成本最低的煤气制氢方法,在国内焦炉煤气制氢中最具发展前途,应大力推广应用。 关键词:变压吸附(PSA)技术;焦炉煤气;制氢技术 中图分类号:TQ028.1+5 文献标识码:B 文章编号:1004-4620(2002)02-0065-02 Application of the Pressure Shift Absorbing Technique in Hydrogen Making Process from COG DAI Si-xin (Xiamen Jiankun Industry Developing Corp.,Xiamen 361012,China) Abstract:The basic pinciple of the Pressure Shift Absorbing(PSA) Technique and the representative technics(Sysiv and Bergban)of it`s application for hydrogen making process from COG are discribing.It is pointed out that in recend past years the development of the PSA technique for the hydrogen-making process from COG is the most rapid and the technique is also the most perfect and economical way in the world,and it has the best developing foreground in hydrogen-making process from COG in China.It should be expanded and applied widely soon. Key words:pressure shift absorbing(PSA);coke oven gas(COG);hydrogen making technology

渗透作用

第一节细胞的吸水和失水 【课标要求】观察植物细胞的质壁分离和复原。 【考向瞭望】细胞质壁分离和复原的探究过程和实验结果分析。 【教学目标】 1、知识与技能 (1)理解细胞吸水和失水的原理。 (2)初步学会设计实验的能力。 (3)学会观察植物细胞质壁分离现象。 2、过程与方法 (1)能通过图示和实验来归纳问题、总结规律; (2)能运用细胞吸水和失水的原理来解释生活和生产实践中的有关现象。 3、情感态度与价值观 体验并树立生物体结构和功能相适应、局部与整体相协调的科学世界观。 【重点与难点】 1、重点 细胞吸水和失水的原理。 2、难点 细胞吸水和失水的原理、质壁分离实验的设计。 【学习过程】 导入:生活中常见一些现象:白菜剁馅常放一些盐稍等一会就可见到有水渗出;农作物施肥过多会造成“烧苗”现象。这是细胞失水的现象。 体验制备细胞膜的试验中,我们采用哺乳动物成熟的红细胞进行实验,发现红细胞放在清水中,细胞会破裂。这是细胞吸水的现象。那细胞吸水失水是什么原理呢?什么情况会失水,什么情况会吸水?红细胞会吸水但会失水吗?植物细胞会吸水吗? 渗透作用 一、概念:是指水分子(或其他溶剂分子)通过半透膜的扩散过程。 二、常见渗透装置: 渗透装置是演示渗透现象的一个实验装置,这个渗透装置是由球形漏斗、烧杯、半透膜和内外不同溶液组成的,如图所示。 三、发生渗透作用的条件: ⑴漏斗内外溶液要有浓度差,漏斗内的液体(图中2)浓度要高于漏斗外的液体(图中1)浓度; ⑵封闭漏斗口的膜要是半透膜(图中3)。 符合这两个条件的渗透装置中漏斗内的液面才会上升。当然,这个装置高度差如果要保持,还需要一个隐含条件,漏斗内溶液的溶质分子要较大,不能透过半透膜。 四、渗透原理的分析

变压吸附原理及应用

变压吸附气体分离技术 目录 第一节气体吸附分离的基础知识 (2) 一、吸附的定义 (2) 二、吸附剂 (3) 三、吸附平衡和等温吸附线—吸附的热力学基础 (6) 四、吸附过程中的物质传递 (10) 五、固定床吸附流出曲线 (12) 第二节变压吸附的工作原理 (14) 一、吸附剂的再生方法 (14) 二、变压吸附工作基本步骤 (16) 三、吸附剂的选择 (17) 第三节变压吸附技术的应用及实施方法 (20) 一、回收和精制氢 (20) 二、从空气中制取富氧 (24) 三、回收和制取纯二氧化碳 (25) 四、从空气中制氮 (26) 五、回收和提纯一氧化碳 (28) 六、从变换气中脱出二氧化碳 (31) 附Ⅰ变压吸附工艺步骤中常用字符代号说明 (32) 附Ⅱ回收率的计算方法 (32)

第一节气体吸附分离的基础知识 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面的原子的剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的压力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais) 吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本文以下叙述的除了注明之外均为气体的物理吸附。

变压吸附基础知识

一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084% (空气中各种气体的容积组分为:N2: 78.084%、02: 20.9476%、氩气:0.9364%、CO2: 0.0314%、其它还有 H2、 CH4、 N2O、 O3、 SO2、NO2 等,但含量极少),分子量为 28,沸点: -195.8C,冷凝点:-210C。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂一一碳分子筛最佳吸附压力为 0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现 O2 、N2 的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对 O2、 N2 的分离作用是基于这两种气体的动力学直径的微小差别,O2 分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率, N2 分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和 CO2 的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是 N2 和 Ar 的混合气。

专题13 渗透作用的原理及应用 考点知识点大全

专题13 渗透作用的原理及应用 高考频度:★★★☆☆难易程度:★★★☆☆ 1.渗透作用原理 (1)发生渗透作用的条件 ①具有半透膜。 ②膜两侧溶液具有浓度差。 (2)渗透作用的实质:单位时间内由清水进入蔗糖溶液中的水分子数多于由蔗糖溶液进入清水中的水分子数,导致蔗糖溶液液面上升。 2.动植物细胞的渗透吸水和失水 (1) (2)成熟植物细胞的吸水和失水 ①当外界溶液浓度>细胞液浓度时,细胞失水,发生质壁分离现象。 ②当外界溶液浓度<细胞液浓度时,细胞吸水,失水的细胞发生质壁分离复原现象。 3.观察植物细胞的质壁分离和复原 (1)实验原理 ①成熟的植物细胞的原生质层相当于一层半透膜。 ②细胞液具有一定的浓度,能渗透吸水和失水。 ③原生质层比细胞壁的伸缩性大得多。 (2)实验步骤

考向一渗透作用的发生 1.某同学设计了如图所示的渗透作用实验装置,实验开始时长颈漏斗内外液面平齐,记为零液面。实验开始后,长颈漏斗内部液面的变化趋势为 【参考答案】B 易错警示

走出渗透作用发生的“4”个误区 (1)水分子的移动方向是双向移动,但最终结果是由低浓度溶液流向高浓度溶液的水分子数多。 (2)实验中观察指标为漏斗内液面变化,但不能用烧杯液面变化作描述指标,因为现象不明显。 (3)渗透系统的溶液浓度指物质的量浓度而非质量浓度,实质是指渗透压。 (4)如果溶质分子不能透过半透膜,在达到渗透平衡时,一般两侧溶液的浓度并不相等,因为液面高的一侧形成的静水压,会阻止溶剂由低浓度一侧向高浓度一侧扩散。 2.下图为研究渗透作用的实验装置,漏斗内溶液(S1)和漏斗外溶液(S2)为两种不同浓度的蔗糖溶液,水分子可以透过半透膜,而蔗糖分子则不能。当渗透达到平衡时,液面差为m。下列叙述正确的是 A.渗透平衡时,溶液S1的浓度等于溶液S2的浓度 B.若向漏斗中加入蔗糖分子,则平衡时m变小 C.达到渗透平衡时,仍有水分子通过半透膜进出 D.若吸出漏斗中高出烧杯液面的溶液,再次平衡时m将增大 【答案】C 项正确;吸出漏斗中高出烧杯液面的溶液,再次平衡时m将减小,D项错误。 考向二细胞吸水与失水的实验结果分析 3.如图曲线表示完全相同的两个植物细胞分别放置在A、B溶液中,细胞失水量的变化情况。相关叙述不

变压吸附(PSA)制氮原理及工艺基本知识

变压吸附(PSA)制氮技术原理及工艺基本知识 一、基础知识 1 氮气知识 1.1 氮气基本知识 氮气作为空气中含量最丰富的气休,取之不竭,用之不尽。氮气为双原子气体,组成氮分子的两个原子以共价三键相联系,结合得相当牢固,致使氮分子具有特殊的稳定性,在巳知的双原子气体中,氮气居榜首。氮的离解能(氮分子分解为原子时需要吸收的能量)为941.69kJ?moL-1。氮的化学性质不活泼,在一般状态下表现为很大的惰性。在高温下,氮能与某些金属或非金属化合生成氮化物,并能直接与氧和氢化合。在常温、常压下,氮是无色、无味、无毒、不燃、不爆的气体,使用上很安全。 在常压下,把氮气冷至-196℃将变成无色、透明、易于流动的液氮。液氮将凝结成雪花状的固体物质。 氮气是窒息性气体,能致生命体于死亡。 氮气(N 2)在空气中的含量为78.084%(空气中各种气休的容积组分为:N 2 :78.084%、 O 2:20.9476%、氪气:0.9364%、CO 2 :0.0314%、其它还有H 2 、CH 4 、N 2 0、0 3 、S0 2 、N0 2 等, 但含量极少),分子量为28,沸点:-195.8℃, 冷凝点:-210℃。 1.2 氮气的用途 氮气的惰性和液氮的低温被广之用作保护气体和冷源。以氮气为基本成份的氮基气氛热处理,是为了节能和充分利用自然资源的一种新工艺新技术,它可节省有机原料消耗。氮还有“灵丹妙药”之称而受人青睐,它和人的日常生活密切相关。例如,氮气用于粮食防蛀贮藏时,粮库内充入氮气,蛀虫在36h内可全部因缺氧窒息而死,杀灭1万斤粮食害虫,约只需几角钱。若用磷化锌等剧海药品黑杀,每万斤粮食需耗药费100多元,而且污染粮食,影响人民健康。又如充氮贮存的苹果,8个月后仍香脆爽口,每斤苹果的保鲜费仅需几分钱。茶叶充氮包裝,1年后茶质新鲜,茶汤清澈明亮,滋味淳香。 2 压力知识 变压吸附 (PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂碳分子筛最佳吸附压力为0.75~0.9MPa, 整个制氮系统中气体均是带压的,具有冲

2019届一轮复习人教版 专题13 渗透作用的原理及应用 教案

考点13 渗透作用的原理及应用 高考频度:★★★☆☆难易程度:★★★☆☆ 1.渗透作用原理 (1)发生渗透作用的条件 ①具有半透膜。 ②膜两侧溶液具有浓度差。 (2)渗透作用的实质:单位时间内由清水进入蔗糖溶液中的水分子数多于由蔗糖溶液进入清水中的水分子数,导致蔗糖溶液液面上升。 2.动植物细胞的渗透吸水和失水 (1) (2)成熟植物细胞的吸水和失水 ①当外界溶液浓度>细胞液浓度时,细胞失水,发生质壁分离现象。 ②当外界溶液浓度<细胞液浓度时,细胞吸水,失水的细胞发生质壁分离复原现象。 3.观察植物细胞的质壁分离和复原 (1)实验原理 ①成熟的植物细胞的原生质层相当于一层半透膜。 ②细胞液具有一定的浓度,能渗透吸水和失水。 ③原生质层比细胞壁的伸缩性大得多。 (2)实验步骤

考向一渗透作用的发生 1.某同学设计了如图所示的渗透作用实验装置,实验开始时长颈漏斗内外液面平齐,记为零液面。实验开始后,长颈漏斗内部液面的变化趋势为 【参考答案】B 【试题解析】仔细观察图示,长颈漏斗内为蔗糖溶液,实验开始后长颈漏斗内部液面将上升,由于实验初始阶段半透膜内外溶液浓度差较大,所以液面上升速率较大。随着液面高度的增大,液柱抑制水分渗入的作用力逐渐增大,当与浓度差促进水分渗入的作用力达到平衡时,液面不再上升。此时,水分子通过半透膜的渗入与渗出达到平衡。

2.把体积与质量百分比浓度相同的葡萄糖和蔗糖溶液用半透膜(允许溶剂和葡萄糖通过,不允许蔗糖通过)隔开(如图),一段时间后液面的情况是 A .甲高于乙 B .乙高于甲 C .先甲高于乙,后乙高于甲 D .先甲低于乙,后乙低于甲 【答案】C 【解析】在体积与质量百分比浓度相同的情况下,因为葡萄糖分子是单糖,蔗糖分子是二糖,所以同样的体积内葡萄糖分子数目多于蔗糖分子,即单位体积内半透膜甲侧的水分子数少于乙侧,水分整体表现为由乙侧向甲侧流动,导致甲侧液面越来越高,后来甲侧的葡萄糖通过半透膜进入乙侧,导致乙侧溶液浓度越来越高,水分子又从甲侧流向乙侧,最终表现为乙液面高于甲液面。 易错警示 走出渗透作用发生的“4”个误区 (1)水分子的移动方向是双向移动,但最终结果是由低浓度溶液流向高浓度溶液的水分子数多。 (2)实验中观察指标为漏斗内液面变化,但不能用烧杯液面变化作描述指标,因为现象不明显。 (3)渗透系统的溶液浓度指物质的量浓度而非质量浓度,实质是指渗透压。 (4)如果溶质分子不能透过半透膜,在达到渗透平衡时,一般两侧溶液的浓度并不相等,因为液面高的一侧形成的静水压,会阻止溶剂由低浓度一侧向高浓度一侧扩散。

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

PSA变压吸附制氮原理

制氮机 制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。 根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。 制氮机是按变压吸附技术设计、制造的氮气设备。制氮机以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。 中文名制氮机 含义制取氮气的机械组合 工作原理利用碳分子筛的吸附特性 主要分类深冷空分,膜空分,碳分子筛空分、 1工作原理 1.?PSA变压吸附制氮原理 2.?深冷空分制氮原理 3.?膜空分制氮原理 2主要分类 1.?深冷空分制氮 2.?分子筛空分制氮 3.?膜空分制氮 3设备特点 4系统用途 5技术参数 工作原理 PSA变压吸附制氮原理 碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

2019年高考生物训练专题:渗透作用的原理及应用(含答案和解析)

专题渗透作用的原理及应用 1.渗透作用原理 (1)发生渗透作用的条件 ①具有半透膜。 ②膜两侧溶液具有浓度差。 (2)渗透作用的实质:单位时间内由清水进入蔗糖溶液中的水分子数多于由蔗糖溶液进入清水中的水分子数,导致蔗糖溶液液面上升。 2.动植物细胞的渗透吸水和失水 (1) (2)成熟植物细胞的吸水和失水 ①当外界溶液浓度>细胞液浓度时,细胞失水,发生质壁分离现象。 ②当外界溶液浓度<细胞液浓度时,细胞吸水,失水的细胞发生质壁分离复原现象。 3.观察植物细胞的质壁分离和复原 (1)实验原理 ①成熟的植物细胞的原生质层相当于一层半透膜。 ②细胞液具有一定的浓度,能渗透吸水和失水。 ③原生质层比细胞壁的伸缩性大得多。 (2)实验步骤

考向一渗透作用的发生 1.某同学设计了如图所示的渗透作用实验装置,实验开始时长颈漏斗内外液面平齐,记为零液面。实验开始后,长颈漏斗内部液面的变化趋势为 【参考答案】B 易错警示

走出渗透作用发生的“4”个误区 (1)水分子的移动方向是双向移动,但最终结果是由低浓度溶液流向高浓度溶液的水分子数多。 (2)实验中观察指标为漏斗内液面变化,但不能用烧杯液面变化作描述指标,因为现象不明显。 (3)渗透系统的溶液浓度指物质的量浓度而非质量浓度,实质是指渗透压。 (4)如果溶质分子不能透过半透膜,在达到渗透平衡时,一般两侧溶液的浓度并不相等,因为液面高的一侧形成的静水压,会阻止溶剂由低浓度一侧向高浓度一侧扩散。 2.下图为研究渗透作用的实验装置,漏斗内溶液(S1)和漏斗外溶液(S2)为两种不同浓度的蔗糖溶液,水分子可以透过半透膜,而蔗糖分子则不能。当渗透达到平衡时,液面差为m。下列叙述正确的是 A.渗透平衡时,溶液S1的浓度等于溶液S2的浓度 B.若向漏斗中加入蔗糖分子,则平衡时m变小 C.达到渗透平衡时,仍有水分子通过半透膜进出 D.若吸出漏斗中高出烧杯液面的溶液,再次平衡时m将增大 【答案】C 项正确;吸出漏斗中高出烧杯液面的溶液,再次平衡时m将减小,D项错误。 考向二细胞吸水与失水的实验结果分析 3.如图曲线表示完全相同的两个植物细胞分别放置在A、B溶液中,细胞失水量的变化情况。相关叙述不

变压吸附

变压吸附 1.原理 在加压的情况下吸附,用减压(抽真空)或常压解吸的方法,称为变压吸附。可见,变压吸附是通过改变压力来吸附和解吸的。 2.流程 空气经空压机压缩,通过净化系统清除有害杂质后,进入双系列吸附塔;在吸附塔内,填装的不同种类的吸附剂有针对性地吸附氧(氮)分子,从而使未被吸附的氮(氧)气富集,分离出的氮(氧)产品经过滤器除去固体杂质颗粒,进入产品气体缓冲罐外供。双系列吸附塔,当一组进行吸附工作时,另一组进行降压解吸,释放出吸附剂中吸附的气体以备用。双系列吸附塔交替工作,可实现连续供气。 通过改变吸附剂和吸附压力,可获得不同质量等级的氧氮产品。 3.设备组成 变压吸附制氮设备由空气净化组件、空气缓冲组件、PSA氧氮分离组件、氮气缓冲组件、电气控制系统五大部分组成。 (1)压缩空气净化组件

空气压缩机提供的压缩空气首先通入压缩空气净化组件中,压缩空气先由管道过滤器除去大部分的油、水、尘,再经冷冻干燥机进一步除水、精过滤器除油、除尘,并由在紧随其后的超精过滤器进行深度净化。 (2)空气储罐 空气储罐的作用是:降低气流脉动,起缓冲作用;从而减小系统压力波动,使压缩空气平稳地通过压缩空气净化组件,以便充分除去油水杂质,减轻后续PSA氧氮分离装置的负荷。同时,在吸附塔进行工作切换时,它也为PSA氧氮分离装置提供短时间内迅速升压所需的大量压缩空气,使吸附塔内压力很快上升到工作压力,保证了设备可靠稳定的运行。 (3)氧氮分离装置 装有专用碳分子筛的吸附塔共有A、B两只。当洁净的压缩空气进入A塔入口端经碳分子筛向出口端流动时,O2、CO2和H2O被其吸附,产品氮气由吸附塔出口端流出。经一段时间后,A塔内的碳分子筛吸附饱和。这时,A塔自动停止吸附,压缩空气流入B塔进行吸氧产氮,对并A塔分子筛进行再生。分子筛的再生是通过将吸附塔迅速下降至常压脱除已吸附的O2、CO2和H2O来实现的。两塔交替进行吸附和再生,完成氧氮分离,连续输出氮气。 (4) 氮气缓冲罐 氮气缓冲罐用于均衡从氮氧分离系统分离出来的氮气的压力和纯度,保证连续供给氮气稳定。同时,在吸附塔进行工作切换后,它将本身的部分气体回充吸附塔,一方面帮助吸附塔升压,另外也起到保护床层的作用,在设备工作过程中起到极重要的工艺辅助作用。

变压吸附工作基本原理

变压吸附(PSA)法基本工作原理

吸附的基本概念和吸附剂 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本工艺为物理吸附。 二、吸附剂 1.吸附剂的种类 工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。 硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。它是用硫酸处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及石油组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。 活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初氢氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。在一定操作条件下,它的干燥深

(完整word版)变压吸附技术的基本原理

变压吸附技术的基本原理 变压吸附技术是以吸附剂(多孔固体物质)内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下易吸附高沸点组分、不易吸附低沸点组分和高压下吸附量增加(吸附组分)、减压下吸附量减少(解吸组分)的特性,将原料气在高压力下通过吸附剂床层,相对于氢的高沸点杂质组分被选择性吸附,低沸点组分的氢不(组份在吸附剂上的吸附等温线)易吸附而通过吸附剂床层,达到氢和杂质组分的分离,然后在减压下解吸被吸附的杂质组分使吸附剂获得再生,以于下一次再次进行吸附分离杂质. 这种高压力下吸附杂质提纯氢气、减压下解吸杂质使吸附剂再生的循环便是变压吸附过程. 在变压吸附过程中吸附床内吸附剂解吸是依靠降低杂质分压实现的,常用方法是: 1.降低吸附床压力(泄压), 2. 用产品组分冲洗, 3.由真空泵抽吸 图1-1 示意说明吸附床的吸附、解吸过程. 常压解吸(见图1-1,a) 升压过程(A-B): 经解吸再生后的吸附床处于过程的最低压P1、床内杂质吸留量为Q1(A点).在此条件下用产品组分升压到吸附压力P3,床内杂质吸留量Q 1不变(B点). 吸附过程(B-C): 在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分. 吸附床内杂质组分的吸留量逐步增加,当到达规定的吸留量Q3时(C 点)停止进入原料气,吸附终止. 此时吸附床内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部被吸附杂质,吸留量可为Q4,C’点) 顺放过程(C-D): 沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,用于别的吸附床升压或冲洗.在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变. 当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2 逆放过程(D-E): 开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内吸流量为Q2.

渗透作用原理的浅析

渗透作用原理的浅析 合阳中学王星 人教版高中生物第一册P58给我们介绍了植物体对水分的吸收、运输和利用。本节内容的难点就是引导学生对渗透作用的理解。然后再联系植物细胞的结构,进行知识迁移,总结出植物细胞以及植物体对水分的吸收和散失情况。而后者又是本节内容的重点,对于后者的把握是建立在对渗透作用的正确理解的基础之上的。因此,渗透作用这个演示实验及其分析讲解就显的尤为重要。因此,在实际教学中,笔者做了如下安排: 一、介绍实验装置 以课本图示为例,请三位同学上台分别安装三套实验装置。A按照课本要求安装,漏斗外是清水,漏斗内是30%的蔗糖溶液,内外之间是完整的半透膜。B与A基本相同,唯一差别就是半透膜用针扎了20个小孔, 破坏了半透膜的半透性。C与A的差别是漏斗内外都是30%的蔗糖溶液。安装要求三套装置内外液面相平。通过学生的实际操作,培养了学生的动手能力,参与意识和竞争意识,有利于激发学生的学习兴趣. 二、观察现象,发现问题 实验装置安装好之后,学生观察A、B、C装置内外液面相平。让学生提出预测结果。然后带着预测结果,迅速阅读课本内容,看预测是否正确. 大约经过5min,再让学生预测结果,然后观察实验装置。发现A装置漏斗内液面上升。B、C漏斗内外液面没有明显变化,内外相平。引导分析A装置. 设问:A装置中漏斗内液面上升, 说明漏斗内的液体量是_____(增多、减少);增多的液体应该是来自____ ,即烧杯中的水分子通过半透膜,进入了漏斗。 思考:1.烧杯中的水分子为什么会进入漏斗中? 2若漏斗的颈无限长,那么漏斗内的液面会不会无限上升?为什么? 3.内外液面差,高出的水柱对半透膜会产生压力吗?谁来平衡这个压力,从而维持水柱的高度?

变压吸附制氢工艺

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活工业PSA-H 2 性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附

-渗透作用原理说课稿

物质的跨膜运输——渗透作用》说课稿 一、教材分析 1、教材地位和作用 《物质的跨膜运输--- 渗透作用》是苏教版《生物》第一册第三章第三节的内容,植物对水 分的吸收和利用是植物一个重要的新陈代谢活动,一方面它既与植物的光合作用、呼吸作用、 矿质代谢紧密相联,另一方面又是以细胞结构与功能的知识为基础,并且在农业生产生活实际 中应用广泛。学习这部分内容,能使学生建立以“植物与水”为中心,联系细胞的结构和功能、光合作用、呼吸作用等知识体系,并使他们对正确认识水、科学利用水有更深的认识。 2、教学目标: 根据上述教材分析及《教学大纲》的要求和学生已有的知识基础和认知能力,制定如下教学 目标: (1 )知识目标: 1)使学生了解植物细胞的两种吸水方式。 2)使学生理解渗透作用的装置及其原理。 3)使学生了解渗透与扩散的区别。 (2 )能力目标: 1)通过植物细胞吸水和失水的原理,培养学生理论分析实际生产生活相结合的能力以及 自主学习能力。 2)通过演示实验展示培养学生观察能力,通过分析渗透装置得出渗透吸水原理,培养学 生研究问题的能力,训练其科学思维的能力。 (3)情感目标: 1)通过联系生产和生活实际,应用植物吸水原理解决生活和生产中现象;培养学生 理论联系实际的理念。 2)在渗透吸水教学中,向学生渗透细胞结构和功能相统一的观点。 3 、教学重点: 1 )渗透作用的原理

2)不同的植物细胞吸水方式不同。 3)理解成熟植物细胞是一个渗透装置。 4、教学难点:1)渗透作用的原理。2 )理解成熟植物细胞是一个渗透装置。 二、教学方法 渗透作用的原理一直是教学上的难点,因为渗透作用是发生在植物体内部,学生无法直接感知,为了突破此难点,我将采用渗透作用的装置进行演示实验,通过直接观察,使学生的形象思维和抽象思维相结合,形成深刻的表象。另外,注重学生独立观察发现、探索交流,多鼓励学生相互讨论,取长补短,并进行归纳总结,充分发挥学生的智慧。最后,引导组织学生动手做《观察植物细胞的质壁分离与复原》的实验,提高学生实际动手能力,增强记忆。 三、学法指导 在学法上,我从学生的特点,知识障碍,动机和兴趣上进行分析 (1)首先是学生特点分析:中学生心理学研究指出,高中阶段要抓住学生特点,积极采用形象生动,形式多样的教学方法以及学生广泛的积极主动参与的学习方式,这样能够激发学生兴趣,有效地培养学生能力,促进学生个性发展。 (2)然后在知识障碍上:对于渗透作用的原理学生不易理解,所以教学中应采用简单明白,由浅入深来进行分析。 (3)其次在动机和兴趣上:应明确本课的学习目的,充分利用教学幻灯片、模型、实验课以及学生之间,师生之间的交流讨论,在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 四、教学过程 (一)导入新课有句话是这样说的“生命离不开水”那么请同学们观察并比较我手中的种子的大小。出示西 双版纳望天树图片“我想问一下同学们,这么高的树又是怎样吸水的呢?” 然后提出问题:植物吸水的主要器官是什么? 植物吸水主要是靠什么方式来进行的?使学生先建立 起一个全面、粗略的认识。 (二)讲授新课1、进行演示实验《扩散现象》让学生什么是扩散?扩散的原理

变压吸附制氮机的工作原理及流程

变压吸附制氮机的工作 原理及流程 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

PSA制氮机工作原理及工艺流程 一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为%(空气中各种气体的容积组分为:N2:%、O2:%、氩气:%、CO2:%、其它还有H2、CH4、N2O、 O3、SO2、NO2等,但含量极少),分子量为28,沸点:℃,冷凝点:-210℃。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛最佳吸附压力为~,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: JY/CMS变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2和Ar的混合气。 碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出来: 由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 二、PSA制氮基本工艺流程:

相关文档
相关文档 最新文档