文档库 最新最全的文档下载
当前位置:文档库 › 汽车车身自动化焊接生产线

汽车车身自动化焊接生产线

汽车车身自动化焊接生产线
汽车车身自动化焊接生产线

汽车车身自动化焊接生产线

1.前言

A3车型是奇瑞公司的战略转型车型,为打造五星安全品质,对该车型提出更加苛刻的质量要求。焊装车身的制造水平提高依赖于先进的焊接设备,公司引进柯马公司的自动化生产线,完成车身下部和车身总成的焊接任务,以符合更高的焊接质量要求。

第一部分 A3自动化生产线设计纲领

第二部分电气控制系统

第三部分点焊机器人系统

第四部分其他系统

4.1滚床系统

4.2OPENGATE

4.3机械化输送悬链和BUFFER

4.4车型识别和生产管理系统

4.5激光检测系统

4.6安全系统

第一部分A3自动化生产线设计纲领

主要负责A3三厢和A3两厢两种车型白车身总成的生产,下部线和主焊线是混线自动化生产线,年产能约为20万辆。

车身下部线完成发动机仓、前地板、后地板等总成零件的拼装焊接工作,适应车身下部高强度的焊接要求。主要由27台机器人完成焊接工作、零件抓取,整条线还包括自动化输送悬链,零件缓存器。

主焊线主要是完成车身下部、侧围、顶盖、包裹架等总成的拼装焊接工作。由滚床、OPENGATE、和31台机器人组成。

主焊线OP130工位为在线激光检测系统,由4台机器人带动激光检测系统,对车身尺寸关键点进行在线检测。

第二部分电气控制系统

A3自动化生产线共有两个部分组成,分为车身下部线和主焊线,有5条空中输送线,工艺流程为发动机仓、前地板、后地板分别由3条输送线输送至车身下部线,车身下部经空中输送至主焊线,然后通过空中输送线输送至调整线。

整条生产线有车型识别系统一套,辊床一套、涂胶设备8套、COMAU机器人62台,采用SICK的安全保护设备,采用带有安全集成功能的CPU 416F-2的西门子PLC。控制部分的采用工业以太网和PROFIBUS(现场总线)连接,见图控制部分示意图。

控制部分示意图

现场总线PROFIBUS,是用了7层模型的1、2层,精简的结构保证了数据的高速传输。主要应用于现场分散的I/O设备。PROFIBUS-DP网络由以下几部分组成(如图2):1主控器(PLC);2现场I/O模块(ET200S),用于连接各种I/O 设备;3其他智能装置,如变频器,触摸屏等;4.网络附件(交换机等)。它能够直接完成设备的顺序、连锁、闭环控制,完成过程参数的采集以及报警功能。

PLC下面的从站模块通过两条PROFIBUS支路进行硬件配置分别有1.MPI网络的网络模块配置2.DP网络的模块配置。PLC与PLC之间的通讯通过DP/DP COUPLER 完成。PLC与PLC之间的通讯通过DP/DP COUPLER完成

两条自动化生产线和5条空中输送线由CPU 416-2DP、CPU 315-2DP的13台西门子PLC控制。PLC可向系统提供分析设备运行状态和发生故障点的信息。每条生产采用1台西门子人机界面PC870进行控制,通过自身的MPI接口与PLC 连接,内部安装西门子组态监控软件WINCC。整条生产线采用两种总线模式,PLC 与机器人间及PLC与I/O设备之间采用PROFIBUS现场总线进行通讯。PLC与PLC 间的通讯全部采用西门子生产的CP443—1交换机进行通讯和数据交换。

机器人和人机界面采用PROFIBUS通讯协议,开关、电磁阀、按钮、指示灯、I/O从站等全部采用现场总线,区域内PLC间的通讯通过DP/DP Coupler进行信号交换,区域间的PLC通过工业以太网进行通讯。这种总线的组合方式,节约了大量的接线工作,同时实现对整个系统的控制,过程状态显示、故障报警信息的显示,使得整个系统操作简便、维护方便、可靠性高。

西门子的人机界面HMI为整条生产线的运行与维修提供了强大的保证。在机器人界面上通过组态软件进行动态调试、人机界面按操作菜单分为工位平面布置图见图2、各设备状态图见图3等。人机界面能够显示线内的设备分布状态、并用不同的颜色显示设备的不同状态、如运行、停止、故障等信息。子菜单内可显示PLC与I/O的状态图3,显示变频器()、机器人的故障信息见图4。当有故障时能自动弹出报警信息,并对报警信息进行记录进行归档统计,保留历史故障记录,为日后维修与点检设备时提供参考依据。

设备平面布置图设备状态

网络通讯监控设备故障信息所有的操作界面使用西门子公司的HMI,避免了传统的面板接线复杂、劳动强度大、观察、维修不方便的弊病。在该生产线中成功地应用了西门子公司的SIMATIC产品的技术,其中Profibus场总线和工业以太网技术在该系统中起到关键作用。

第三部分点焊机器人系统

在汽车焊接工艺中,点焊占整车焊焊接的很大一部分,奇瑞A3自动化生产线焊接系统主要由点焊机器人系统系统组成。点焊机器人系统包括机器人本体、机器人控制器、点焊控制器、自动电极修磨机、自动工具交换装置、气动点焊钳、水气供应的水气控制盘等。

A3点焊机器人系统全部采用COMAU工业机器人及相关设备。这些点焊机器人通过控制系统可以进行A3两厢车型和三箱车型的自动识别和切换。

焊接机器人系统

焊接机器人是典型的机电一体化高科技产品,功能强大、操作简便。点焊机器人系统的控制方式是:由机器人控制柜通过通信网络同生产线PLC西门子控制柜构成机器人焊接生产系统。机器人系统内的点焊控制器、自动电极修磨机、自动工具交换装置、水气控制盘等装置由机器人控制。机器人系统根据上位PLC 的车型信号输入来调用对应的机器人焊接程序进行车身装配焊接。

3.1中频焊接技术的应用

为了使A3获得更加优异的碰撞性能,在A3的车身结构中,大量的采用高强度钢板,同时纵梁等关键结构采用激光拼焊钢板,传统的工频焊接技术无法使得在焊接高强度钢板时获得最好的剪切强度和抗疲劳强度。为了克服工频焊接技术的弊病,在车身下部线采用中频焊接。在A3线中采用BOSCH中频焊接控制器和NIMAK的中频焊钳。

中频焊接技术使得机器人焊接的优异性能进一步提升,中频焊接得优点主要有,相对工频焊接为直流焊接,变压器小型化、提高电流控制的响应速度,实现工频控制无法实现的焊接工艺,能够对三相电网平衡,中频焊接的功率因数高,节能效果好。

3.2涂胶系统的应用

涂胶系统主要涂车身骨架的点焊密封胶和隔震胶。自动胶枪由机器人携带,具有涂胶轨迹一致性高、胶用量控制准确、涂抹后的胶条形状统一等优点。涂胶系统为A3车型获得更加优异的降噪性能提供了很大帮助。

供胶系统采用GRACO 公司高粘度供应系统。包括:55加仑压盘一个和5加仑压盘一个、气动柱塞泵、升降器。流体由泵输出,泵出口装有双过滤装置对胶进行过滤。再经过高压软管连接到GRACO P-FLO LT。

供料泵采用双泵自动切换方式,设备具有自动切换及空桶报警功能:一泵处于工作状态,一泵处于待命状态。当工作泵胶桶中的胶用完后,系统发出报警,自动切换装置自动将工作泵切换至另一待命的泵,此时待命的泵成为工作泵。供胶泵具有双泵切换功能,在换桶时不影响自动涂胶系统的正常工作,有效的提高

了生产线的工作效率。

流量控制采用美国GRACO P-FLO LT精密流量控制器,包括:控制箱,电缆,流体盘,气动隔膜调压,流量计等。

GRACO P-FLO LT流量控制的工作原理为机器人提供速度的模拟量信号,控制板控制气动隔膜调压即时调整胶的压力,并通过流量计和压力计提供实时精确流量和压力即时修正,形成一个闭环控制,从而实现精确定量控制要求。枪的出胶量随机器人速度的变化而变化。

3.3自动电极修磨机的应用

在主焊线上,为了实现生产装配的自动化,提高生产线节拍,分别为每一台点焊机器人配备了自动电极修磨机,实现电极头工作面氧化磨损后的修锉过程自动完成。同时也避免了人员频繁进入生产线带来的安全隐患。电极修磨机由机器人的内置PLC控制,示教专门的电极修锉程序来完成电极修锉。同时根据修锉量的多少来对焊钳的工作行程进行补偿。

使用焊接机器人的优点:不仅使生产效率提高了,而且使焊接生产过程变得规范化,使产品质量得到稳定和提高。

第四部分其他系统

4.1滚床系统

A3自动化生产线整条线使用滑撬输送,输送时间为18秒。其输送路线为:升降段输送空滑撬到UB10#——滚床输送——UB110#——升降段输送——MB10#——滚床输送——MB150#——升降段输送。下图为西部线滚床滑撬系统。

图1. 下部线滚床滑撬系统

滚床系统结构如图2所示,其工作原理为:控制信号发出,传输电机接收信号,开始工作,滑撬通过摩擦滚轮进入工位,感应器感应,输送电机停止,升降电机接收到控制信号,开始启动,升降摆臂单元驱动,滚床开始升降,下降定位后,焊接机器人进行焊接,焊接完成后,控制信号发出,升降电机运行,滚床上升输送电机运转,滚床上升到位,运输电机气动,滑撬运行并进入下一工位。

图2. 滚床结构

4.2 OPENGATE

M11/2主焊线设计生产节拍为100秒,可进行M11、M12两车型的任意混流,并考虑第三车型的预留。其中MB30# & MB40# & MB50# 主拼工位占用了三个工位,形式为COMAU公司标准的OPENGATE,具有柔性高,阶段投资,改造方便等诸多优点。其自身的结构特点较四面体翻转也有可采用侧围预装、两侧施焊空间大等优点。

图1. 主线OPENGATE

OPENGATE即主拼夹具,COMAU公司OPENGAT是以夹具体为基础,采用门形式,结合传感器,利用PLC进行控制。OPENGATE和焊接机器人系统通过总控制系统进行配合工作,最终实现车身的定位、夹紧和焊接。

OPENGATE由夹具本体,气路系统,感应控制系统组成。A3主线OPENGATE本体,采用门形式,底座采用直线导轨,通过推力电机进行定向(Y向)移动。X 向预装直线导轨,可以进行车型切换,这样有利于进行阶段性投资和改进。气路

系统采用集中供气,由执行元件(气缸)、控制元件(气阀)和辅助元件组成。感应控制系统由电磁传感器、PLC(可编程控制器)和计算机控制系统组成,可以实现夹具的信息采集和自动化控制。

OPENGATE工作过程。主线白车身预拼后进入OPENGATE,OPENGATE本体进行闭合,闭合过程中进行侧围和底盘的定位,使白车身预拼位置符合设计要求;定位后电磁感应系统进行工作,检查定位是否准确,如果无误,夹紧机构进行动作,将车身夹紧;如果有误,报警系统进行报警, OPENGATE进入暂停状态,同时控制系统显示出现问题的地方和原因,待问题解决后系统继续进行工作。夹紧后感应装置进行夹紧状态检查,如果出现问题,则系统暂停并报警,如果夹紧状态正常,焊接机器人开始工作,进行焊接,焊接完成后,OPENGATE夹紧机构打开,门式夹具体打开,白车身进入下一道工序,OPENGATE等待下一辆白车身进入。

OPENGATE的特点。COMAU公司OPENGATE侧围合拼采用预装形式进行预装配,侧围合拼焊接工位,采用侧滑形式进行侧围的夹具切换,M11和M12侧围部分的夹具采用共用设计。夹具中定位销、基座、非加工件采用标准化和系列化的部件,水平面上定位孔与定位孔之间的公差为±0.02mm,粗糙度为1.6um,所有的定位孔与基准面的公差为±0.05mm,粗糙度为1.6um。夹具定位销和定位块的安装需采用“调整垫片式”的结构,定位销调整垫片厚度为5mm。此外,设计中预留三坐标测量的位置和加工面,在复测时不需要拆卸夹具和滚床等其他设备。

目前A3车型已经基本实现公司的“2mm工程”,COMAU公司OPENGATE为“2mm”工程提供了很大的保障,它为奇瑞A3的五星品质奠定了坚实的基础。

4.3机械化输送悬链与BUFFER

机械化输送悬链的主要是用于大总成零件的自动输送,主要是发动机仓、前地板总成、后地板总成的输送。

其中后地板的吊具是两种车型共用。采用先进先出的方式进行零件的排序。如果零件与机器人抓取的过程不一样可以进行零件的放行,当零件被机器人抓取后,空吊具沿返回道返回。同时要求具有强制返回功能,当发现问题时,零件不被抓取强行返回。

机械化悬链零件的放置和取下都是由机器人完成。

BUFFER主要是用于小零件的缓存。人工将零件摆放到BUFFER上,零件在BUFFER上是被可靠定位的。机器人在抓取零件时对零件的装配的位置进行识别,如零件的装配位置不正确机器人不进行零件的抓取,并报警。人工装配完成后按确认进行放行。装配员工需要根据生产计划进行零件的排序。每个BUFFER上装有显示屏,对零件的数量进行倒计数。装配者根据生产计划进行零件的装配。对一些情况,如将镀锌件装配成非镀锌板机器人是无法识别的。

4.4车型识别和生产管理系统

自动化生产线将自动化控制系统,制造业执行系统(Manufacture Execute System,MES)集成在一起形成生产线的管理系统。在前期,生产计划输入工控机计算机中,通过工控软件推算出个人工上件点的上件点的生产计划。通过以太网传给PLC。后期对系统进行改造,自动化线能够及直接接受MES系统的生产计划。

M11和M12采用拉动式生产的方式进行,生产线接收MES系统的生产计划。每个工位都有基于MOBY-Ⅰ形式的车型识别系统,车型识别系统载体安装在每个滑橇上。每个工位将根据车型识别系统识别的信息自动进行焊接程序和焊接参数的切换。

在发动机舱总成工位是计划安排的起点。在总成工位粘贴条形码,确定车型

信息。发仓被放置在转运平台上时,扫描设备扫描VIN码信息传送给PLC控制柜。控制柜根据接收的生产计划确定机器人是否进行零件抓取,信息无误时给机器人传送信号,机器人执行零件抓取。同时,将VIN码信息传递给下一个工位。

主焊线第一个机器人设置VIN码扫描点,并将信息写到雪橇载体上,并将生产信息传送给下个工位,第二个工位根据信息提前判断功能,提前做好夹具、焊接参数、焊接程序的切换准备工作。当雪橇到达第二个工位时,设备读取雪橇上的车型信息,并将从雪橇上读取的信息同第一个工位传递的信息进行核对,核对正确的情况下,执行程序。以此类推。

整条生产线有9台抓件机器人,上件机器人具有两种车型的识别能力,能根据生产计划选择相应车型的零件,一旦零件错误或缺少零件,该机器人停止工作并且报警,同时每个BUFFER上具备车型识别系统。

4.5在线激光检测系统

主线130为机器人激光检测工位,由四台机器人携带激光检测传感器组成,用来保证汽车精度而设立的,对M11.M12车身的252测量特性进行检测。

Perceptron测量系统通过机器人上的激光传感器采集车身实际尺寸,系统通过中转器把数据传输到数据控制站进行分析和标准数据进行对照比较,尺寸出现超出工艺范围,数据站立即发给PLC控制的生产线故障和报警信号,停止生产线,防止不合格车身流到下道工序。

激光检测系统激光检测系统原理

4.6安全系统

硬件配置:CPU 416F-2的西门子PLC, 光栅、急停按钮、安全门、区域扫描仪等。

安全集成的输入输出信号作为过程的接口,可以直接连接单通道和双通道的输入输出信号,例如急停按钮和光栅。安全集成信号作为冗余信号内部连接在一

起。采用故障安全的分布式输入输出系统使系统的安全工程配置被PROFIBUS-DP 部件替代,包括急停开关设备的替换,保护门监视装置,双手操作等等。

在程序块中对工位的各种安全设备如急停、安全门、光栅进行逻辑控制,替代了传统的安全继电器控制方式;在程序中对各安全设备的逻辑处理主要通过三个程序模块实现:光栅屏蔽数据功能模块,急停屏蔽数据功能块、安全门屏蔽数据功能块。

集成在标准自动化系统的安全集成工程的优点主要有:

1.具有安全集成功能的自动化系统比机械电器解决方案更灵活

2.基于可编程控制器的安全系统相对与传统的硬接线系统大大降低了接线成本

3.集成功能由于采用标准工程工具进行系统的编程配置因而可以减少工程用时

4.成故障安全功能的CPU不仅可以处理与安全相关的控制,同时可以参与到标准的自动化任务当中

5.故障安全程序和标准程序可以在统一的平台上共享数据和通讯

小结

A3自动化线是COMAU为奇瑞公司打造的一条现代化生产线。为实现自动化生产,提供各种自动化设备,并进行有机集成,使用现场总线于PLC进行连接,PLC 与PLC之间通过工业以太网进行连接,为生产线的使用、维护提供诸多方便。同时人机界面大大的提高了生产线的可控性,为维修提供了便利条件。

COMAU公司的OPENGATE技术为实现车身的“2mm工程”奠定了基础,恰到好处的使用中频焊接技术为提升车身性能起到关键点作用,各种辅助自动化设备极大地提高整条线的自动化率。

作为奇瑞“十年磨一砺”的主打、战略车型A3,经历过开创性的“十万公里连续不间断公开测试”、“突破性的通过C-NCAP五星安全测试”,连续被评为“自主品牌汽车”。这些良好的综合性能,尤其是安全性,与奇瑞打造精品车身是分不开的。A3的优秀品质,是对设计、规划、工艺、制造等投入大量人力、物力和先进技术换来的。COMAU公司设计制造的自动化线为A3车身卓越的品质的提升起到关键的作用。A3自动化线是自主品牌汽车向国际标准看齐的产物,A3车型品质的飞跃得益于自动化线的应用,使得车身焊接装备的探索又迈向更高一层。

【CN109909632A】白车身自动化焊接生产线【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910272901.9 (22)申请日 2019.04.04 (71)申请人 重庆元创自动化设备有限公司 地址 401120 重庆市渝北区回兴街道银锦 路66号 (72)发明人 陈俊彰  (74)专利代理机构 重庆强大凯创专利代理事务 所(普通合伙) 50217 代理人 隋金艳 (51)Int.Cl. B23K 31/02(2006.01) B23K 37/00(2006.01) B25J 15/02(2006.01) B25J 15/08(2006.01) (54)发明名称白车身自动化焊接生产线(57)摘要本发明涉及汽车生产技术领域,具体为一种白车身自动化焊接生产线,包括运输线和若干工位,所述工位设有工位机器人,所述工位机器人设有机器人抓手,所述工位还设有抓手架、焊枪架和固定架,所述抓手架上设有辅助抓手,所述焊枪架上设有焊枪,所述机器人抓手用于与辅助抓手连接并控制辅助抓手抓取工件并移动至拼装位置,所述机器人抓手还用于与焊枪连接并通过焊枪进行焊接作业,所述固定架用于固定辅助抓手。本发明提供的白车身自动化焊接生产线,可以有效的提高机器人的利用率,减少拼装固定工件所需的机器人数量,进而降低生产线的成 本。权利要求书1页 说明书4页 附图2页CN 109909632 A 2019.06.21 C N 109909632 A

权 利 要 求 书1/1页CN 109909632 A 1.白车身自动化焊接生产线,包括运输线,运输线上设有拼装位,拼装位两侧设有若干工位,其特征在于:所述工位设有工位机器人,所述工位机器人设有机器人抓手,所述工位还设有抓手放置架和焊枪架,拼装位上设有固定架,所述抓手放置架上设有辅助抓手,所述焊枪架上设有焊枪,所述机器人抓手用于与辅助抓手连接并控制辅助抓手抓取工件并移动至拼装位,所述机器人抓手还用于与焊枪连接并通过焊枪进行焊接作业,所述固定架用于固定辅助抓手。 2.根据权利要求1所述的白车身自动化焊接生产线,其特征在于:所述工位还包括补焊工位,所述补焊工位用于供工作人员对工件进行人工补焊。 3.根据权利要求1所述的白车身自动化焊接生产线,其特征在于:还包括牵引装置,所述牵引装置用于抓取和安装工件。 4.根据权利要求3所述的白车身自动化焊接生产线,其特征在于:所述牵引装置,包括驱动装置、轨道以及滑动设置在轨道上的托架,所述驱动装置用于驱动所述托架沿着轨道滑动,所述托架上设有升降机构,升降机构上设有安装架,安装架上设有顶部辅助抓手。 5.根据权利要求4所述的白车身自动化焊接生产线,其特征在于:所述升降机构包括设置在托架上的皮带轮、皮带以及驱动皮带轮转动的升降电机,所述皮带的一端与安装架连接。 6.根据权利要求5所述的白车身自动化焊接生产线,其特征在于:还包括侧围供货抓手,所述安装架上设有顶部抓手,所述顶部抓手用于抓取和连接顶部辅助抓手或侧围供货抓手。 7.根据权利要求6所述的白车身自动化焊接生产线,其特征在于:所述辅助抓手、侧围供货抓手、顶部辅助抓手均包括抓手架,抓手架上均设有控制接口和多个固定抓手,所述控制接口用于与机器人抓手或顶部抓手连接,所述工位机器人或顶部抓手通过控制接口传输控制信号,控制固定抓手动作。 8.根据权利要求7所述的白车身自动化焊接生产线,其特征在于:所述辅助抓手、侧围供货抓手、顶部辅助抓手还均包括控制器,所述控制器与所述控制接口信号连接,所述固定抓手包括抓手本体、活动指和驱动电机,所述活动指铰接在抓手本体上,所述活动指与驱动电机的输出轴传动连接,所述驱动电机与控制器信号连接。 9.根据权利要求1所述的白车身自动化焊接生产线,其特征在于:还包括后台服务系统和监控终端,所述后台服务系统与工位机器人以及顶部抓手均信号连接,所述后台服务系统用于采集工位机器人以及顶部抓手的工作状态并发送给向监控终端,所述监控终端用于显示各个工位机器人以及顶部抓手的工作状态。 10.根据权利要求1所述的白车身自动化焊接生产线,其特征在于:所述工位还包括地板焊接工位、侧围焊接工位、纵梁焊接工位以及车门焊接工位。 2

机器人焊接成套装备及其自动化生产线项目工程技术方案

机器人焊接成套装备及其自动化生产线项目工程技术方案 一、工艺技术方案的选用原则 1、对于机器人焊接成套装备及其自动化生产线生产技术方案的选用,遵循“技术上先进可行,经济上合理有利,综合利用资源”的进步原则,采用先进的集散型控制系统,由计算机统一控制整个生产线的各工艺参数,使产品质量稳定在高水平上,同时可降低物料的消耗。严格按行业规范要求组织生产经营活动,有效控制产品质量,为广大顾客提供优质的产品和良好的服务。 2、在工艺设备的配置上,依据节能的原则,选用新型节能型设备,根据有利于环境保护的原则,优先选用环境保护型设备,满足该机器人焊接成套装备及其自动化生产线项目所制订的产品方案的要求。 3、根据该机器人焊接成套装备及其自动化生产线项目的产品方案,所选用的工艺流程能够满足该机器人焊接成套装备及其自动化生产线项目产品的要求,同时,加强员工技术培

训,严格质量管理,严格按照工艺流程技术要求进行操作,提高产品合格率。 4、遵循“高起点、优质量、专业化、经济规模”的建设原则。积极采用新技术、新工艺和高效率专用设备,使用高质量的原辅材料,稳定和提高产品质量,制造高附加值的产品,不断提高企业的市场竞争力。 5、项目建设贯彻“三同时”的原则,注重环境保护、职业安全卫生、消防及节能等各项措施的落实。 二、工艺技术方案 (一)工艺技术来源及特点 该机器人焊接成套装备及其自动化生产线项目生产工艺技术拟采用国内成熟的生产工艺,生产技术通过生产技术人员和研发技术人员制定。拟采用的技术具有能耗低、高质量、高环保性的特点,项目所生产的产品已经得到国内外市场很好认可。 (二)技术保障措施 该机器人焊接成套装备及其自动化生产线项目从设计、施

《汽车车身焊接技术》考试题目

课程考核方案 二0一三——二0 一四学年第Ⅰ学期 课程名称汽车车身焊接技术 授课班级 12装配1 授课教师张国良 院部现代汽车学院

目录 关于考试的说明 考核题目1 低碳钢板对接平焊 (1) 考核题目2 低碳钢板平角焊 (3) 考核题目3 低碳钢板I型坡口对接立焊 (5) 考核题目4 低碳钢板I型坡口对接二保焊 (7) 考核题目5 低碳钢板平角焊二保焊 (9) 考核题目6 2mm钢板搭接二保焊平焊 (11) 考核题目7 2mm钢板对接焊二保焊立焊 (13) 考核题目8 4mm不锈钢板对接TIG焊 (15) 考核题目9 6mm低碳钢板平角焊TIG焊 (17) 考核题目10 8mm低碳钢板直线气割 (19)

关于考试的说明 《车身焊接技术》采用实操考核方式,分数为100分。共分为10个考核题目。每个题目总分为100分,其中细分为3个考核项目:焊机及辅助工具的正确使用,焊件的焊接,焊后清理等习惯的考查。每个考核项目为100分,最后取平均值为该项目的最后考核分数。 焊机及辅助工具的使用主要考查学生对于焊机的使用,辅助工量具的使用,以及工作习惯的考查。 焊件的焊接主要考查学生焊前装配情况,焊接时焊接参数的选择,运条方法及焊接速度的控制以及关于熔池参数的观察。 焊后清理主要考查学生能否自觉的关闭焊机并能正确的清理维护焊机,场地的打扫等工作习惯的考查。 学生采用抽签的形式决定自身的考核题目。每个学生只能考核1项。

考核题目1:板I 型坡口对接手工电弧焊水平焊 考核要求 1、填空下列焊接工艺参数卡(见表1) 2、焊缝长300mm 、宽10mm 、余高0.5-2mm 、平直光滑无任何焊缝缺陷。 3、工时定额 工时定额为20min 。 4、安全文明生产 ①、能正确执行安全技术操作规程; ②、能按文明生产的规定,做到工作地整洁、工件、工具摆放整齐。 技术要求 1、要求自己选择焊接电流,按要求确定焊条角度和电弧长度。 2、焊后必须清理焊件表面飞溅,并且不得修饰、焊补。 3、必须严格遵守电弧焊安全操作规程。 4、材料:Q235 平敷焊

焊接自动化设备方案

焊接自动化设备方案编号:20090625-002 项目名称:货架托盘自动化组装焊接生产线 甲方名称:南京众飞金属轧制有限公司 乙方名称:广州励进新技术有限公司 联系地址:广州市花都区新华工业区大布路40号励进公司工厂广州励进新技术有限公司 2009年6月26日

一、设备能力 该设备能够满足托盘某种货盘托架的自动组装和焊接,该货盘托架尺寸见图纸,1200*1000,1000*1200。 设备生产能力为1000件/班(8小时)。 二、设备组成 设备由波板输送线、包边板输送线、自动组装工位、自动焊接工位、自动下料工位。 1.波板输送线: 该输送线简单采用可回转式皮带传动,设备光电元件自动检测,将工件进行自动排列(根据自动程序进行5列、6列)。该线具有自动纠错、尺寸超出偏差自动报警功能。 2.包边板输送线: 该输送线简单采用可回转式皮带传动,设备光电元件自动检测,将工件进行正确抓取,放入夹具中。该线具有自动纠错、尺寸超出偏差自动报警功能。 3.自动组装线: 将各组装件进行正确组装,在压入口进行导向,装入后导向退出,然后进行压入,保证装夹后的尺寸正确。 4.自动焊接工位: 焊接工位分为并行点焊工位和自行点焊工位两个工位,波板拼焊采用平行的五支焊枪进行点焊,包边板采用上下两对焊枪分别进行焊接,整台设备含9台焊接电源和9支焊枪。具有自动起弧、自动关弧、焊丝用完、焊丝断丝等自动诊断、自动报警功能。

5.自动下料工位: 下料位为双工位,采用龙门式平行运动机械手进行工件的抓取和堆放,具有计数、放满自动转换放料架,提示等功能。 三、设备运行 1.按启动按钮,把波板排好在波板输送线,把包边板排好在包边板输送线夹具 上。 2.波板输送线上的光电元件检测到5件(6件)波板,输送带转动把5件(6件) 送到第二工位。 3.第二工位的检测元件检测到5件(6件)波板,压入导向组件在压入口进行 (包边板装配)导向,装配气缸将包边板压入装配好,压入导向组件退出。 4.上下横缝焊枪起弧点焊,把两侧包边板与波板上下分别点焊好,同时5把(或 4把)纵缝焊枪把波板与波板点焊好。全部点焊好后焊枪复位。 5.输送带将全部点焊好的货架移至第三工位,检测元件检测到货架后,机械手 把货架提起,放至放料架,放满后自动转换放料架。 四.设备元件 1.机械部份: a.导向采用台湾品牌HINWIN的导轨。 b.驱动采用日本的信浓的伺服电机。 c.气动元件采用SMC的气缸,电磁阀等。 2. 电器部份: a. 采用我厂自主研发的控制系统,具有性能稳定,操作简单等特点。

工业机器人自动焊接生产线的设计与调试

2016年12月第44卷第23期 机床与液压 MACHINETOOL&HYDRAULICS Dec畅2016Vol畅44No畅23 DOI:10.3969/j畅issn畅1001-3881畅2016畅23畅010 收稿日期:2015-09-17 作者简介:陈志平(1964—),男,工程师,讲师,主要研究方向为机械制造自动化和数控设备维修。E-mail:chzhp6412@ 163畅com。 工业机器人自动焊接生产线的设计与调试 陈志平 (四川信息职业技术学院,四川广元628040) 摘要:工业机器人自动焊接生产线的设计合理与否关系到焊接工艺的满足程度。从机器人自动焊接生产线的设计要求出发,详细分析了生产线的控制流程、配置及布局、编程与调试等。并以FOXBOT、A1200机器人组成的自动焊接生产线 为例,进行刹车控制、原点校正等现场调试。自动焊接生产线的实践应用,提高了焊接作业效率和质量,具有推广价值。所述设计思路、方法及详细步骤为工业机器人自动焊接生产线的设计调试工作提供了参考依据。 关键词:工业机器人;自动焊接生产线;PLC编程;电磁刹车;原点校正中图分类号:TG409 文献标志码:A 文章编号:1001-3881(2016)23-042-4 DesignandDebuggingofIndustrialRobotAutomaticWeldingProductionLine CHENZhiping (SichuanVocationalCollegeofInformationTechnology,GuangyuanSichuan628040,China) Abstract:Thedesignofautomaticweldingproductionlineofindustrialrobotisreasonableornotrelatedtothesatisfactorydegreeofweldingtechnology.Thedesignrequirementsoftherobotautomaticweldingproductionlinewerestartedfrom.Detailedanalysisoftheproductionlinewascarriedoutofcontrolprocess,configurationandlayout,programminganddebugging,andetc.Andtheauto-maticweldingproductionlinecomposedofFOXBOTandA1200robotwasasanexample,brakecontrolandoriginalpointrevisionwereadjustedonsite.Theapplicationofautomaticweldingproductionlinewasdonetoimprovetheefficiencyandqualityofweldingopera-tionwithvalueofgeneralization.Thedescribeddesignideas,methodsanddetailedstepsprovideareferenceforthedesignanddebug-gingofautomaticweldingproductionlineofindustrialrobot. Keywords:Industrialrobots;Automaticweldingproductionline;PLCprogramming;Electromagneticbrake;Originofcorrec-tion 0 前言 机器人是一种能够进行编程并在自动控制下执行某些操作和移动作业任务的机械装置。自动焊接生产线需要机器人的重复定位精度达到±0畅03mm、负载最大为10kg、行程为1200mm、6轴控制的工业机器人完成复杂的焊接作业如装配、搬运、焊接、打标、切割等,生产线要求功率高、速度快及轻化设计,机器人手腕各轴动作范围大;在小距离、高速动作中可迅速精准定位高精度、高刚性;应用于镭射电焊及弧焊制程;要求机器人本体质量易搬运、安装快速,良好的密封性及防尘效果,适合在粉尘多恶劣的环境中等。 采用PLC的控制系统可以通过改编程序,在不改变硬件的条件下,便能改变生产工艺。特别是在汽车外壳的焊接作业决定汽车外观质量。 激光焊接是一种速度高、非接触、变形小的焊接方式,适合量大、连续在线加工。激光应用以穿透焊为主。大板拼接,满足汽车厂大型三维功能冲压件的 要求。1000mm宽的冷轧钢板通过激光焊接,拼成2000mm宽的钢板。由于人工成本不断升高,国内制造企业效仿国外发达国家,必然更多依赖工业机器人,机器人自动焊接生产线取代人工焊接必将成为主流。 1 生产线的设计要求 (1)输入信号:用按钮和旋钮来仿真输入。(2)输出信号:用指示灯来模拟输出。(3)取方料点:按点位列表调好点位。(4)焊接点位:调5个点位(P31-P35),每个点位调用不同的焊接参数。(P31调用1号参数,P32调用3号参数,P33调用8号参数,P34调用11号参数,P35调用15号参数)。 (5)PAC程序:考虑互锁信号的安全设计、放料时预防迭料安全设计。 (6)焊接模拟:机器人运动到一个焊接位置后,发Laser_start信号给焊接机,焊接完后,焊接机会发一个Laser_end信号给机器人,机器人收到该信号后 万方数据

汽车车身自动化焊接生产线

汽车车身自动化焊接生产线 1.前言 A3车型是奇瑞公司的战略转型车型,为打造五星安全品质,对该车型提出更加苛刻的质量要求。焊装车身的制造水平提高依赖于先进的焊接设备,公司引进柯马公司的自动化生产线,完成车身下部和车身总成的焊接任务,以符合更高的焊接质量要求。 第一部分 A3自动化生产线设计纲领 第二部分电气控制系统 第三部分点焊机器人系统 第四部分其他系统 4.1滚床系统 4.2OPENGATE 4.3机械化输送悬链和BUFFER 4.4车型识别和生产管理系统 4.5激光检测系统 4.6安全系统 第一部分A3自动化生产线设计纲领 主要负责A3三厢和A3两厢两种车型白车身总成的生产,下部线和主焊线是混线自动化生产线,年产能约为20万辆。 车身下部线完成发动机仓、前地板、后地板等总成零件的拼装焊接工作,适应车身下部高强度的焊接要求。主要由27台机器人完成焊接工作、零件抓取,整条线还包括自动化输送悬链,零件缓存器。 主焊线主要是完成车身下部、侧围、顶盖、包裹架等总成的拼装焊接工作。由滚床、OPENGATE、和31台机器人组成。 主焊线OP130工位为在线激光检测系统,由4台机器人带动激光检测系统,对车身尺寸关键点进行在线检测。 第二部分电气控制系统 A3自动化生产线共有两个部分组成,分为车身下部线和主焊线,有5条空中输送线,工艺流程为发动机仓、前地板、后地板分别由3条输送线输送至车身下部线,车身下部经空中输送至主焊线,然后通过空中输送线输送至调整线。 整条生产线有车型识别系统一套,辊床一套、涂胶设备8套、COMAU机器人62台,采用SICK的安全保护设备,采用带有安全集成功能的CPU 416F-2的西门子PLC。控制部分的采用工业以太网和PROFIBUS(现场总线)连接,见图控制部分示意图。

汽车车身焊装工艺技术(DOCX 51页)

汽车车身焊装工艺技术(DOCX 51页)

汽车车身焊装工艺 汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。 第一节焊装工艺分析 工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。 一.生产批量 车身的焊装工艺主要由生产批量的大小确定的。一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。 1.生产节拍的计算 生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。 假设某车年生产纲领是30000辆份 / 年 工作制:双班,250个工作日,每个工作日时间为8小时

设备开工率:85% 则生产节拍的计算为: 2.时序图设计 时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。 如图4-1所示为一张时序图,它的内容包括: (1)设备名称,它是以完成动作的单元来划分。例如移动装置,夹具单元1,焊接,车身零部件名称等。其中车身零件名称表示上料动作,组件名称表示取料动作。 2)相应设备的动作名称,它是以动力源的动作来划分的。例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。 (3)各动作顺序及时间分配,动作时间表分配是以坐标网格的形式标记,每格单位为5秒,一个循环总时间为生产节拍,各动作之间的前后顺序关系图用箭头线标识。一般气缸

汽车制造中的焊接工艺..

汽车制造中的焊接工艺 汽车制造四大工艺中,焊装尤其重要,而在焊装的前期规划中,车身焊接夹具的设计又是关键环节。工装夹具的设计是一门经验性很强的综合性技术,在设计时首先应考虑的是生产纲领,同时还必须熟悉产品结构,了解钣金件变形特点,把握零部件装配精度及容差分配,通晓工艺要求。只有做到这些,才能对焊接夹具进行全方位的设计,满足生产制造要求。汽车焊接生产线也是是汽车制造中的关键,焊接生产线中的各种工装夹具又是焊装线的重中之重,焊接夹具的设计则是前提和基础。设计工装夹具时,不仅要考虑生产纲领,还必须要熟悉产品结构,了解钣金件变形特点,通晓工艺要求等诸多内容。 生产纲领即合格产品的年产量,它决定了焊接夹具的自动化水平及焊接工位的配置,是通过生产节拍体现的,是焊接夹具设计首先应考虑的问题。生产节拍由夹具动作时间、装配时间、焊接时间、搬运时间等组成。夹具动作时间主要取决于夹具的自动化程度;装配时间主要取决于冲压件精度、工序件精度、操作者的熟练程度;焊接时间主要取决于焊接工艺水平、焊接设备的自动化程度、焊钳选型的合理化程度等;搬运时间主要取决于搬运的自动化程度、物流的合理化程度及生产现场管理水平等。只要把握以上几点,就能合理地解决焊接夹具的自动化水平与制造成本的矛盾。 汽车车身的结构特点与焊接的关系 汽车车身一般由外覆盖件、内覆盖件和骨架件组成,覆盖件的钢板厚度一般为0.8~1.2mm,有的车型外覆盖件钣金厚度仅有0.6mm、0.7mm,骨架件的钢板厚度多为1.2~2.5mm,也就是说它们大都为薄板件。对焊接夹具设计来说,应考虑如下特点: 1. 刚性差、易变形 经过成型的薄板冲压件有一定的刚性,但与机械加工件相比,刚性要差得多,而且单个大型冲压件容易变形,只有焊接成车身壳体后,才具有较强的刚性。以轿车车身大侧围外板为例,一

生产线自动切割焊接设备

LINE DESCRIPTION 生产线设备描述 Position 1 设备一 PLASMA CUTTING TABLE 12,000 x 2,500 x 40 mm(等离子切割台) To cut with plasma technology the steel blank producing trapezium sheet, triangle reinforcement, base plate, etc... It has the following specifications: (采用等离子技术切割钢坯,制作梯形板、三角加强筋板、底板等…它具有以下规格:) - Material thickness: Up to 40 mm(材料厚度:最大40毫米) - Maximum blank width: 2,530 mm(最大钢板宽度:2530毫米) - Maximum blank length: 12,050 mm(最大钢板长度:12050毫米) - Total slide length: 13,000 mm(全台长度:13000毫米) - Filter number: 2(过滤器数量:2个) - Cutting technology: Plasma(切割技术:等离子) It includes the following equipment:(包含下列设备:) - No.1 (one) Independent portal bridge(一个独立龙门桥架) - No.1 (one) Bevel plasma equipment(一个斜面等离子设备) - No.1 (one) Master bevel cut mechanical equipment plasma torch group (HYPERTHERM HPR-260)(一个主斜面切割机械等离子火炬组:海宝HPR-260)- No.12 (twelve) Suction filters(12个抽风过滤器) - No. 2 (two) Exhaust filter auto cleaning(2个排气过滤器自动清洗装置) - No.1 (one) Air dryer in alumina(1个氧化铝空气干燥器) - No.1 (one) CNC control (ESA-GV mod. KVARA 500)(1个计算机数字控制器(ESA-GV MOD. KVARA 500)) - CAD /CAM ALMA (CAD/CAM ) - Electrical panels & control panels(电气面板和控制面板) Picture no. 1图片一 Position 2 设备二 FLATTENING AND CUT TO LENGTH LINE 1500 x 8 L=14 (The machine starts from coil and inline, completely in automatic without any manipulation, produce trapezium sheet well flattened without mechanical internal stress).(扁平化及切成一定长度的线1500×8为L =14 (本机开始从线圈和内联,在自动完全没有任何操作,产生梯形表扁平化,内部无机械应力)。) To prepare the flat sheet rectangular shape and trapezium shape for making poles, on the same line. It has the following specifications:(在同一生产线上准备长方形和梯形平板作为极点。具备以下规格:)

汽车车身焊接技术现状及发展趋势

汽车车身焊接技术现状及发展趋势 胡冠军 保定长城华北汽车有限责任公司河北074000 摘要:当今的汽车工业正在朝着节省能源、低碳环保、安全舒适和车身轻量化方向发展,因而轻合金、高强度钢和碳素纤维等材料在汽车车身的制造中被越来越多的采用,所以对于车身焊接技术的要求越来越高,摩擦搅拌点焊、胶接点焊、激光焊接、等离子焊接和中频点焊等焊接技术已较广泛地应用,本文就对汽车车身焊接技术现状及发展趋势做了简要分析。 关键词:汽车;车身焊接;现状;发展趋势 中图分类号:F407.471文献标识码:A 1、引言 针对现代汽车车身轻量化,以及对车身品质、可靠性、安全性要求高的特点,加上高节拍生产,对车身结构和焊装工艺的要求也进一步提高,新材料应用和新焊接技术迅速发展,焊装几何尺寸精度提高,此外,世界上已普遍采用信息化工程技术开发车身焊装生产线装备,焊装生产线装备已实现了高度自动化,2012年我国汽车产销突破1900万辆,创历史新高,而且汽车行业形成了多品种、全系列的各类整车和零部件生产及其配套体系,为保持我国汽车工业的稳步、快速发展,我国于2009年提出了“汽车产业振兴计划”。提出加强关键技术研发,加快技术改造,提升企业素质;以新能源汽车为突破口,加强自主创新,培育自主品牌,形成新的竞争优势,促进汽车产业持续、健康、稳定发展的思路。由于车身焊接技术水平和质量直接影响车身结构强度、安全性和生产率,由此带来车身焊装生产的新特点,对车身焊装提出了新要求。 2、车身新材料和焊接新技术 2.1、车身新材料 随着汽车工业的发展,为了节约能源和安全性考虑,车身采用大量新型材料。车身结构材料从单一钢结构,逐步向高强度优质钢结构,进而向轻质合金和复合材料结构发展。 (1)轻合金材料 为了使车身重量变得更轻,国外汽车厂商在车身结构设计中开始采用轻合

工业机器人自动焊接生产线及调试分析

工业机器人自动焊接生产线及调试分析 发表时间:2019-06-05T08:58:11.513Z 来源:《电力设备》2019年第3期作者:翟科[导读] 摘要:工业机器人自动焊接生产线及调试是现代化工业发展的关键,分别从以下几个方面对此详细分析,目的在于更好的提高工业机器人自动焊接生产线运行效率,实现工业现代化发展。(北京交通大学海滨学院河北沧州 061100)摘要:工业机器人自动焊接生产线及调试是现代化工业发展的关键,分别从以下几个方面对此详细分析,目的在于更好的提高工业机器人自动焊接生产线运行效率,实现工业现代化发展。关键词:自动焊接 PLC编程仿真输入激光焊接工业机器人自动焊接生产线的形成,为工业生产提供更多便利,减少生产压力。那么工业机器人自动焊接生产线的贯彻落实,必须确保焊接工艺符合生产标准。安川MOTOMAN系列机器人涉及到弧焊、切割、喷漆、教学等,在汽车、烟草、陶瓷、矿山机械等行业广泛应用。工业机器人自动焊接生产线主要应用PLC可编程控制器进行控制,该编程控制器具有抗干扰、编程简单、运行可靠等优势。结合机器人自动焊接生产线,全面、详细分析生产线,控制好流程与布局,确保编程、调试科学。 1.工业机器人自动焊接生产线及调试发展现状科学技术发展迅速,工业机器人的产生,为焊接生产线提供了很多便利。机器人本身需要以编程形式实现自动控制,并且执行工业生产中移动作业以及机械操作等任务,总体来讲机器人属于高科技机械装置。以工业机器人打造自动焊接生产线,对机器人要求十分严格,尤其是重复定位精度必须在±0.03mm范围之内,要求机器人行程1200mm,能够完成复杂的焊接工作。工业机器人自动焊接生产线对功率、速度等也具有严格要求。自动焊接生产线实现了小距离、高度动作,具备高精度、高刚性等优势【1】。当前工业现代化改革正在进行,其中工业机器人自动焊接生产线操作成为主要发展趋势。PLC可编程控制器,利用程序改编的方式,调整工业机器人生产工艺,自动焊接中更加注重质量与形态。工业机器人自动焊接生产线中包括激光焊接技术,这种技术能够保持生产零件规范,并且操作速度极快,可以实现连续在线加工。工业机器人自动焊接生产线已经成为当前工业生产发展主流。 2.工业机器人自动焊接生产线设计工业机器人自动焊接生产线设计,主要包括以下几个步骤:首先输入信号,找到输入按钮以及旋钮,操作仿真输入。及时输出信号,运用指示灯进行生产线信号模拟并且输出。其次根据生产线点位列表及时调整位置,已达到焊接点位确定的目的。具体操作,第一是调整5个点位,保证点位调整焊接参数不能相同。1号参数为P31调用,3号参数为P32调用,8号参数为P33调用,11号参数为P34调用,15号参数为P35调用。最后需要从安全角度出发,设计互锁信号方案,自动焊接生产线放料阶段的防跌料设计【2】。确定焊接模型,当工业机器人到达明确的焊接位置,会给现场焊接机发出Laser_start信号。焊接机接收到信号进行焊接工作,焊接结束给机器人发送Laser_end信号。工业机器人接收到信号之后,转移到其他焊接位置准备焊接。 3.自动焊接生产线设计 自动焊接生产线设计,首先设计控制流程,其次设置生产线相关配置以及布局,最后是准确定义PLC控制信号。 3.1控制流程设计分析 控制流程设计分析是自动焊接生产线关键步骤,要求操作人员准备好设备,将焊接需要使用的材料放置到上料台上,当然还包括焊接治具。工业机器人会根据上料台上的材料感应信号,及时到位置取材料。机器人取完焊接材料之后,需要发出连接信号,与另外的机器人进行信号互锁,确定信号之后及时移动到焊接位置,调节焊接参数,确定焊接参数及时传输给焊接机,帮助焊接机完成产品焊接准备。进入到焊接工作,注意焊接质量控制。焊接工作结束,机器人之间进行互锁信号,及时将焊接治具移动到下料台,放置在安全点位置【3】。循环操作控制流程,实现工业自动化焊接。具体机器人自动焊接生产线控制流程如下:开始操作→确保机器人位于P(O)点,初始化(I/O)→等待上料台上料→确认上料台有料→取料并按轨迹运行到P(150)点,并等待互锁信号→开始焊接→焊接完成→下料台有料→机器人等待放料→放料→返回点R→重新执行程序。 3.2生产线布局 生产线科学配置与系统布局,首先是激光焊接机的配置。以高能量激光脉冲为中心,提供科学光纤模式,传输焊接介质,实现微小区域局部加热,改变材料状态,将焊接材料在特定熔池中熔化。激光焊接机本身具备快速、精密、定位准确等特点,缩小焊点宽度,同时实现点焊与缝焊,保证焊接外观平整的同时,缩小热量影响区,为自动焊接生产线提供更多发展优势。其次是机器人选择,安川MOTOMAN 机器人针对焊接治具放置以及搬运等进行精准定位,以信号互锁定位焊接位置,完成焊接工作。了解工业机器人是生产线布局的重要条件。最后是电磁铁的配置与布局。电磁铁如果通电,其中的磁铁磁性会消失,这属于消磁。当然如果电磁铁不通电,磁铁始终保持磁性,处于带磁状态。一般自动焊接生产线运行中,电磁铁不能始终处于通电状态,对电磁铁的磁性会产生很大影响,磁性逐渐下降,甚至还会直接烧坏电磁铁。图1为自动焊接生产线布局图。 图1-自动焊接生产线布局图

试论汽车车身的焊接新技术及应用

试论汽车车身的焊接新技术及应用 作者:胥磊 来源:《科技创新导报》2012年第17期 摘要:在汽车制造工业中,按照汽车的车身不同,需要的零部件不同以及安装技术的要求不同等,就需要采用多样化的新型焊接技术。基于此,本文主要对汽车车身的焊接新技术及应用进行了探讨。 关键词:汽车车身焊接新技术应用 中图分类号:U284 文献标识码:A 文章编号:1674-098X(2012)06(b)-0064-01 1 新型的电阻焊技术 1.1 中频电阻焊 在中频电阻焊中,它的控制电源是三相交流电经过整流电路后变成脉动直流电的过程,然后通过由功率开关器件组合而成的逆变电路转变为中频方,再与变压器进行连接,经过变压器的降压后通过整流电路变成脉动电流,将电流以直流电的形式供给电极,最后进行焊接工作。 在进行生产车身的零部件时,主要用到的设备是能够提供固定式的大功率中频电阻焊,可以对车身的零部件进行凸焊或者多头点凸焊等。例如成焊宝玛曾给神龙提供了次级整流方式和以中频电源为主的专用凸焊专机,这种专机的容量从以前的200kVA降低为40kVA,大大提高了焊接的质量。 在进行装焊车身的生产过程中,在悬挂式电焊钳以及机器人电焊钳上会用到中频电阻焊。近几年来,中频电焊已经被广泛应用到镀锌钢板和高强度钢板的焊接上面。例如在大众、宝来等生产线上会做出如下规定:凡是进行焊接高强度钢板或者镀锌钢板时都必须应用中频电焊技术。上海和烟台则通用景程生产线进行侧围焊接,由于长期以来焊接的质量不过关,因此采用中频电焊技术在A柱部位进行焊接。而其他的一些汽车公司相继采用中频点焊技术也取得了比较不错的成效。 为了能够在车身焊接这一生产线上提高机器人的点焊质量、降低机器人抓举过程中的承载的负荷,因此广泛的使用了机器人中频点焊工艺。 1.2 伺服点焊钳 目前伺服点焊钳已经成为点焊技术里的一个新技术。经由伺服电机或者是伺服气缸来规划焊接的具体行程和焊接压力。伺服控制器既可以充当焊接机器人里的一部分控制系统,也可以当作单独的伺服控制器,通过它来让焊接压力经由反馈传感器生成可编程的伺服加压系统,这个

车身焊接汽车焊接车间工艺流程

车身焊接汽车焊接车间工艺流程 (接上期) 十一、二氧化碳保护焊常见焊接缺陷及原因分析1 咬边咬边是指焊接部位两侧的母材由于过热而形成轻微的沟槽(图38),使钢板的横截面减小。咬边部位通常会产生应力集中,加之母材由于过热变薄将严重降低焊接区域的强度。 产生咬边的原因有:焊枪倾角不合适;电弧过长;焊枪保持不稳定;焊接速度太快或电流设置太大等。 2 焊瘤 焊接过程中金属流溢到加热不足的母材或焊缝上,这种未能和母材熔合在一起而堆积的金属叫焊瘤(图39),也称飞边。角焊接比对接焊更容易产生焊瘤,通常会由于应力集中而出现过早腐蚀。 产生焊瘤的原因有:焊接速度太慢;电弧太短;焊枪进给太慢;电流太小等。 3 金属扭曲 由于热量输入太高,导致平直的钢板金属表面起伏不平,产生金属扭曲现象。在车身上,由于受两侧钢板挤压,这种情况会转变为

变形,通常情况下这种变形为凹陷变形(图40)。可以采取以下方法避免金属扭曲:焊接时将焊接参数设置调小一些:焊接期间让焊接部位充分冷却;采用跳焊法或增加焊枪移动的速度。 4 飞溅过多 飞溅过多表现为在焊接区域两侧的金属表面上堆积有很多熔化的焊丝斑点(图41)。飞溅物的破坏性很强,落在车内座椅、内饰板、仪表台等部位会造成烫伤,落在玻璃上会造成玻璃烧蚀后出现凹坑,所以,焊接前一定要使用防火毯将相应部位进行防护(图42)。 导致飞溅过多的原因有:使用了错误的焊接气体;电弧太长;焊枪倾角不正确;母材表面生锈等。 5 气孔 气孔是指在焊接过程中,焊缝区域内存在很多小孔(图43)。 产生气孔的主要原因有:焊丝上粘有油污、脏物或焊丝生锈;焊缝冷却太快;电弧太长;保护气体密封不良;使用了错误的焊接气体;气体喷嘴破损;焊接气流产生扰动;使用了不正确型号的焊丝;金属表面受到锈迹、水分、油漆等污染。

焊接机器人与焊接生产线

焊接机器人与焊接生产线 一、激光焊接技术在汽车装配中的应用 激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线和柔性制造。其中,激光焊接在汽车制造领域中的许多成功应用已经凸现出激光焊接的特点和优势。 用于大熔深激光焊接的CO?激光器一般以连续方式工作,主要包括快轴流和Slab型两种类型。同快轴流激光器相比,Slab型激光器具有结构紧凑、气体消耗量少、维护成本低的特点。目前世界上CO?激光器最大输出功率为45kW,工业生产中应用的激光器输出功率范围约在700W~12kW之间。 Nd:YAG激光可以通过光纤传输,在柔性制造系统或远程加工场合更具有适应性。目前国外Nd:YAG激光器的最大输出功率达10kW,而包括汽车在内的工业生产中应用较多的则是3 kW和4 kW的Nd:YAG激光器。 1、新型激光焊新年好工艺与方法 (1)双/多光束焊接双/多光束焊接的提出最初是为了获得更大的熔深、更稳定的焊接过程和更好的焊缝成形质量,其基本方法是同时将两台或两台以上的激光器输出的光束聚焦在同一位置,以提高总的激光能量。后来,随着激光焊接技术应用范围的扩大,为减小在厚板焊接,特别是铝合金焊接时容易出现气孔倾向,采用以前后排列或平行排列的两束激光实施焊接,这样可以适当提高焊接小孔的稳定性,减少焊接缺陷的产生几率。 (2)激光—电弧复合焊激光—电弧复合焊是近年激光焊接领域的研究热点之一。该方法的提出是由于随着工业生产对激光焊接的要求,激光焊接本身存在的间隙适应性差,即极小的激光聚焦光斑对焊前工件的加工装配要求过高。此外,激光焊接作为一种以自熔性焊接为主的焊接方法,一般不采用填充金属,因此在焊接一些高性能材料时对焊缝的成分和组织控制困难。而激光一电弧复合焊集合了激光焊接大熔深、高速度、小变形的优点,又具体有间隙敏感性低、焊接适应性好的性点,是一种优质高效焊接方法。其特点在于: 1)可降低工件定位要求,间隙适应性好。 2)有利于减少气孔倾向。 3)可以实现在较低激光功率下获得更大的熔深和焊接速度,有利于降低成本。 4)电弧对等离子体有稀释作用,可减小对激光的屏蔽效应,同时激光对电弧有引导和聚焦作用,使焊接过程稳定性提高。5)利用电弧焊的填丝可改善焊缝成分和性能,对焊接特种材料或异种材料有重要意义。 激光与电弧复合焊的方法包括两种,即旁轴符合焊和同轴复合焊。旁轴激光—电弧复合焊方法灾现较为简单,但最大的缺点是热源为非对称性,焊接质量受焊接方向影响很大,难以用于曲线或三维焊接。而激光和电弧同轴的焊接方法则可以形成一种同轴对称的复合热源,大大提高焊新年好过程稳定性,并可方便地实现二维和三维焊接。目前,对旁轴复合焊的研究较多,而同轴复合焊的还处于研究阶段。在复合焊的应用方面,许多汽车制造商正将其用于新型汽车的制造。例如,在进行汽车车身拼焊时,利用3kW的Nd:YAG激光焊接1.2mm和0.7mm厚的拼板时焊接速度最高为4.0mm/min,采用复合焊后最大速度可达7.4m/min,而允许的对接坡口间隙从原来的0.05 mm提高到0.15 mm.国内近年来也开始了激光—电弧复合焊的初步研究。 2.焦点位置控制 图1是某CO?激光焊接焦点位置的双闭环控制系统示意图。整个系统包括数控激光焊接机床(CNC)、特殊设计的激光焊炬以及检测控制系统。焊接喷嘴一工件距离可以通过上下调节焊炬位置实现,而聚焦透镜位置则由电动机驱动在焊炬内独立上下运动,实现焦点位置的调节。检测系统由电荷传感器(PCS喷嘴)和装在喷嘴侧面的江学传感器(PS传感器)组成。焊接过程中,根椐检测到的PCS信号变化,系统可以自动调节喷嘴至工件表面距离,保证在焊接过程中保持喷嘴—工件距离恒定;同时根据PS信号调整聚焦透镜的位置,用于补偿因热透镜效应引起的焦 点位置波动,使焦点位置始终处在最佳焦点位置范围。

EVG全自动钢筋桁架焊接生产线作业指导书

全自动钢筋桁架焊接成型设备 TSD 7-30B型桁架焊接生产线此套设备是EVG公司(Entwicklungs-und Verwertungs-Gesellschaft m.b.H)结合国实际生产需要而进行研制、生产的全自动钢筋桁架焊接成型设备。 随着技术的不断发展和钢筋桁架全球化发展趋势。钢筋桁架焊接主机设有Windows XP操作屏,通过屏幕可以观看设备工作状态,并可方便得调节设备运作参数和焊接参数。 全线主要工作部分采用液压传动方式,动作可靠,精度高。 焊接时不易产生火花且噪声小。 操作方便,维修简单。

该设备布置合理,外形美观。 全自动钢筋桁架焊接成型设备主要组成部分如下: 1、放线机(WIRE PAY-OFF SGV 3000-5) 放线机:主要由放线站,钢筋监测系统,偏转辊及钢筋引导架所组成。 该套放线机由我司自行加工,制作,组装。现已投入生产,正常使用。每台放线机分别设有制动抱闸装置,抱闸信号分别于钢筋拉出机送丝装置一一对应,实现自动放线。当生产线自动运行时,抱闸一直起作用,而当生产线停止时抱闸关闭防止放料盘自动滑行。 放线机出口并设有无料报警装置,每卷钢筋放完后无料报警装置检测到钢筋端头,焊接主机操作屏报警(放线盘无钢筋)自动停机。 2、钢筋拉出机 (WIRE PULL-OFF MACHINE TL 5/RV) 钢筋拉出机:主要由3相齿轮电机(拉动上、下弦钢筋前进),3相齿轮电机(拉动腹杆钢筋前进),停止钢筋切割装置,地线接触器,蓄线环的引导杆,引导口,钢筋前进装置,第二钢筋前进装置(较大

直径钢筋配用),压辊,压辊气缸所组成。 钢筋拉出机的唯一目的就是把钢筋从放线机中拉出来,同事形成圆环形蓄能器,送给焊接机的矫直机。上弦钢筋和下弦钢筋分别配备两台拉线单元,两台脚踏开关。腹杆钢筋配备一台拉线单元。焊接机开动时,钢筋环就会自动形成,顶端安装控制钢筋环尺寸的接触器,当此接触器触及钢筋时,送丝装置自动停止。 3、钢筋桁架焊接主机(TRUSS GIRDER WELDER TSD 7-30) 钢筋桁架焊接机:主要由校直器和扭曲装置,桁架钢筋弯曲单元,桁架推进装置,焊接总成,剪切装置几部分所组成。

焊装生产线简介

焊装生产线 焊装生产线 一、车身装焊生产线的形式 1、装焊生产线的组成 一条装焊生产线是汽车白车身全部成型的总称。它由总成线和许多分总成组成。每一条总成线或分总成线是由若干个工位组成,线间、工位间是通过搬运机、机器人等搬送设备实现上下料和零部的输送,以保证线内工位工作的连贯性。分总成线包括许多独立的组件焊装工位,每个工位由定位夹紧夹具、自动焊接设备及检测装置等设备组成,另外还有一些供气供水供电装置。 2、装焊生产装线的形式及发展 现有的装焊生产线可归纳为下列几种基本形式。 椭圆形 贯通式地面环形 装焊生产线环形地下环形矩形 转台式“门框”式 随着汽车工业的发展,装焊线的形式也发生了变化。在初期阶段,主要用直通式生产线(相当于简化的贯通式生产线),在60年代~70年代曾较多的采用环形生产线。但是由于随行夹具体积大、运动惯性大、结构复杂,难以实现多品种生产及机器人配套。到了80年代,各汽车生产公司重新发展了贯通式生产线。特别是随着市场对汽车产品多样化的要求及机器人大量应用于汽车车身焊接,更为贯通式生产线提供了新的应用范围及发展领域。现在贯通式为应用得最广泛的生产方式。 二、各种装焊生产线的特点 1、贯通式生产线 贯通式生产线是指制件的定位夹紧系统与工位间输送系统成分离状态。生产线包括:制件的定位夹紧系统(焊接夹具)、工位间输送系统、输送杆、驱动系统、自动上下料的机械化系统等。工作时,制件被输送系统中贯通式往复

杆的移动输送至下一工位的夹具中,而所有的装夹定位的工装都分别固定在工位上。 其特点为: a、它适应于多点焊机配置,能满足悬挂点焊机的手工焊接、半自动焊接、全自动焊接等多种操作方式。 b、当车身横向流水时,更有利于分总成的机械化自动上下料。便于提高自动化程度。 c、输送系统中驱动和输送部分结构较简单,便于调试。 d、焊接夹具固定在工位上,利于保证车身焊接质量。 e、占地面积较小,有利于合理布局和物流。 图1为吉利厂总装线的一部分: 图1 鉴于贯通式生产线这么多优点,它不但是现在,也是今后一段时间里国内外各汽车公司采用的主要方式之一。 2、转台式 转台式生产线类似回转木马结构。制件上线后转台做单向间歇式运转,经过一系列装焊工位,最后下线。该线的驱动机构比较简单。但是占地面积比较大,中间部分的面积不好利用,而且电流、气、水的接点要由回转中心的可回转接头接出来。仅适应于重量轻、工位间距不太大的中、小型分总成制件的生产。我国尚没有厂家使用。 3、地下环形生产线 地下环行生产线采用的是随行夹具,每套夹具均是通过环线两端的升降装置从地坑返回原始位置,再进行下一个零合件的装配。特点是:占地面积小。是随行夹具的循环方式之一。但是对于夹具和输送系统的结构设计比较复杂,不利于制造、调整、维修。而且地坑的土建工程工作量很大。我国东风汽车公司车身厂的CA—140生产线为应用实例。 4、椭圆形地面环形生产线

相关文档
相关文档 最新文档