文档库 最新最全的文档下载
当前位置:文档库 › 离散型随机变量的期望(二)_8

离散型随机变量的期望(二)_8

离散型随机变量的期望(二)_8
离散型随机变量的期望(二)_8

离散型随机变量的期望(二)

授课教师:孙光军

授课时间:2009年5月14日

授课班级:高二八班

教学目标:

知识与技能:能熟练根据离散型随机变量的分布列求出期望,掌握求离散型随

机变量的期望的常用方法和解题技巧.

过程与方法:把知识和方法通过例题形式来呈现,通过题目演变使学生体验知

识产生的过程,从而掌握离散型随机变量的期望的常用求法,提高观察归纳、合情推理、分析和解决问题的能力,同时使学生的探究能力得到发展.

情感态度与价值观:通过离散型随机变量的期望的应用,使学生认识到数学的

应用价值,培养学生的理性思维和科学决策意识.

教学重点:离散型随机变量的期望求法及运用.

教学难点:离散型随机变量的期望求法的产生.

教学方法:引导探究,讲、议、练结合.

教学过程:

一、基础复习

1.离散型随机变量的期望的定义.

2.离散型随机变量的期望的常用结论.

3.求离散型随机变量的期望的基本步骤.

二、提出课题

离散型随机变量的期望是高考重点和热点之一,它还有哪些常用结论?还有哪些常用求法和解题技巧?将是本节课所讨论的内容.

三、课题探讨

例1 (2001年高考,理14改编) 已知5件产品中有3件次品,从中同时随机抽取2件产品,则其中含次品个数的数学期望是_______.

设计意图:了解超几何分布和二项分布的区别与联系,正确迅速解题,提高观察探究的能力.

分析: 关键是确定ξ的可能取值及相应的概率.

回顾1:本题是不放回抽取,如果是有放回抽取.如何求ξE ?

回顾2 不放回抽取与有放回抽取是两种不同的概率分布,但期望相同,这是巧合吗?

例 2 (2007年福建高考题) 两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望_______=ξE .

设计意图:通过比较分布列法和公式法的繁简,体会把所给问题转化为熟悉的数学模型的优越性,提高转化问题的能力.

分析1: ξ的可能取值是哪些数?如何求其概率分布?

分析2: 还有别的解法吗?

例3. 国家为了防止偷税漏税,通常对偷税者除补交税款外,还要处以偷税者n 倍的罚款,假设偷税者被查出的概率为10

1,这时罚款额度n 至少多大才能起到惩罚作用? 设计意图:体会期望应用价值,提高建立期望模型的能力和科学决策意识.

例4 甲盒里装有3张卡片,分别标有数0,1,2;乙盒里则装有分别标有1,2,3三个数字的3张卡片.

(1)从甲盒里任意取出一张卡片,求此卡片上的数1ξ的期望;

(2)从乙盒里任意取出一张卡片,求此卡片上的数2ξ的期望;

(3)从两个盒里各任取一张卡片,求所取的两张卡片的数之和η的期望.

设计意图:通过具体问题引出有关期望的两个结论,从而得到求离散型随机变量的方法之一(分解法),提高学生归纳推广的能力.

回顾1: 概率均匀分布或对称分布时, ξE 在ξ所有取值的正中.

回顾2: 观察1ξE 、2ξE 与ηE 有何关系?

1ξ、2ξ与η有何关系?

1(ξE +2ξ)与1ξE 、2ξE 有何关系呢?

回顾3: 把(3)中的“和”改为“积”,“η”改为“μ”,怎么求?

回顾4:μ与1ξ、2ξ有何关系?

μE 与1ξE 、2ξE 有何关系?

)(21ξξ?E 与1ξE 、2ξE 有何关系?

例 5 (2003年高考第20题改编) A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是321,,A A A ,B 队队员是321,,B B B ,按以往多次比赛的统计,对阵队员之间胜负概率如下:

现按表中对阵方式出场,每场胜队得1分,负队得0分.

(1) 设i ξ为A 队队员)3,2,1(,=i A i 每场的得分,求i E ξ.

(2) 设A 队、B 队最后所得总分分别为ξ、η,求ξE 、ηE .

设计意图:提高推广新方法解决问题的能力,培养学生转化化简的思想.

四.课堂小结

由以上例题的讨论,你能总结一下,求离散型随机变量的期望有哪些方法?

1. 公式法: 如果随机变量是二项分布、几何分布等,直接由它们的期望公式代

入计算即可.

2.分布列法: 先确定ξ的取值,再写出分布列,然后由期望的定义求之.如果随

机变量η的取值数字比较大等,可由b a +=ξη,先求出ξ的期望ξE ,再由b aE E +=ξη求之.

3.分解法: 如果直接求随机变量的概率分布比较繁琐,可考虑用期望的如下结论

分解求之.

性质(5) 设),.2,1(n i i =ξ为n 个随机变量,则

n n E E E E ξξξξξξ+++=+++ 2121)(

性质(6) 设),.2,1(2n i =ξ为n 个相互独立的随机变量(即这n 个随机变量取值互不发生影响),则

n n E E E E ξξξξξξ???=??? 2121)(.

五.布置作业

《创新设计》11P -7,10,11.

六.教学说明

离散型随机变量的期望是高三选修教材中的内容之一,要求理科学生学习,它是高二必修内容中排列、组合及概率内容的深化和提高,具有综合性,是高考的重点和热点之一,因而,需要进行练习训练,强化提高,以达到高考的基本要求.

由于学生刚学习离散型随机变量的期望,对期望概念的理解、求分布列和期望的方法、解期望题的能力有待多次练习,需要一个过程才能内化、掌握和提高.因而我在确立教学目标时,侧重于求期望的基本方法,没有选用跨章节综合的题目,而是通过课本习题、高考题的引伸思路分析,旨在帮助学生掌握期望的基本求法和技能技巧.另外,结合教学内容,引导学生进行局部探究,以培养学生的探究能力;再者,通过实际问题,让学生体会到数学的广泛应用,培养学生理性思维习惯和科学决策意识,充分发挥教学内容的育人价值.本节课的教学重点是掌握离散型随机变量期望求法及运用,教学难点是写分布列及离散随机变量的期望求法的产生.为了突破重难点,试图引导学生分析和探究,体验方法产生的过程,从而牢固掌握解题方法,提高解题能力.

高二学生已经具有一定的分析问题、解决问题的能力,有独立探究的愿望,但完全放开让学生自己独立完成还是有一定的困难,且费时间,因而在本节课我采用引导探究、讲议练结合的教学方法.首先,引导学生归纳知识点,帮助学生形成比较系统和完整的知识结构,为顺利解决问题打下基础.其次,引导学生对典型例题进行分析,并进行变式与深化,使学生窥视到一类题的内在联系和区别,看到题目演变的过程,通过解题来总结方法,培养学生分析问题和解决问题的能力,并使学生的归纳总结和探究的能力得到发展.

例题教学是使学生掌握知识、形成技能、提高能力的重要手段,它是沟通新知识和新方法的桥梁.我力图从具体题目入手,通过变式,呈现出知识的规律性,从而引导学生发现和探究出解题方法,进而在新的情景中不断巩固和加深.

最后通过对离散型随机变量的期望的解法总结,进一步体会基本方法与数学思想的运用,从而形成数学能力.

七.教学后记

高中数学第二章概率1离散型随机变量及其分布列知识导航北师大版选修2-3

§1 离散型随机变量及其分布列 自主整理 1.随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个_____________. 2.随机变量的取值能够_____________的随机变量称为离散型随机变量. 3.设离散型随机变量X 的取值为a 1,a 2,…,随机变量X 取a i 的概率为p i (i=1,2,…),记作 p(X=a i )=P i (i=1,2,…) 称为__________________________________________________________________________。 并且有①p i _____________0,②p 1+p 2+…=_____________. 如果随机变量X 的分布列如上表,则称随机变量X 服从这一分布(列),并记为_____________. 高手笔记 1.随机变量是将随机试验的结果数量化. 2.随机变量的取值对应于随机试验的某一随机事件. 3.随机变量X 取每一个值a i 的概率P(X=a i )等于其相应的随机事件A i 发生的概率P(A i ). 4.若X 为一个随机变量,则Y=aX+b(a,b 为常数)也为随机变量. 5.离散型随机变量的分布列中 第一行表述了随机变量X 的所有可能的取值,在这里要注意按一定的次序来填写;第二行表述了随机变量X 取相应上行中数值a i 的概率的大小p i =P(X=a i ),i=1,2,… 6.一般地,离散型随机变量在某一范围内取值的概率等于其在这个范围内取每一个值的概率之和. 7.离散型随机变量的分布列不仅清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值的概率大小,从而反映了随机变量在随机试验中取值的分布状况,是进一步研究随机试验数量特征的基础. 名师解惑 1.随机变量与以前学过的变量有什么区别与联系? 剖析:随机变量作为一个变量,当然有它的取值范围,这和以前学过的变量一样.不仅如此,还有它取每个值的可能性的大小,如:从装有无差别的6只黑球、4只白球的袋中,随机抽取3只球,所得的白球个数是一随机变量X ,其取值为X=0,1,2,3;而取每个值的可能性的大小,可通过其相应的随机事件发生的大小——即其概率来反映.即“若X=2”,对应事件A 2:“取出的3只球中恰有两只白球”,其概率: P(A 2)=.1031238910123 46310 2416=??????? =C C C 若“X=3”对应事件A 3:“取出的3只球中恰有三只白球”的概率: P(A 3)=.10112389101232 34310 34=????????=C C

离散型随机变量的期望

离散型随机变量的 苴日也 教学要求: 使学生了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.

对于离散型随机变量,确定了它的分布列,就掌握了随机变量取值的统计规律。 在实际问题中,我们还常常希望通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差。 引例: 某射手射击所得环数E的分布列如下: 根据这个射手射击所得环数E的分布列,在n次射击中,预计有大约 0.02n次的4环.. 类似地,对任一射手,若已知其射击所得环数E的分布列,即已知各个P (^i)(i=O,1,2,3,...10),则可预计他任意n次射击的平均环数是

Eg二XP ( §二0) + 1 XP ( 5=1)+.. + XP ( ^=10) 称Eg为此射手射击所得环数g的期望,它刻划了随机变量g所取的平均值,从一个方面反映了射手的射击水平。 1、期望 若离散型随机变量E的概率分布为 则称Eg二XP+X2P尹…+XnPn+…为§的数学期望或平均数、均值,又称期望。 问:若E为上述离散型随机变量,贝怕二ag+b的分布列怎样?Er]呢? 因为P ( r]=a Xj+b) =P ( g二片),i=1, 2, 3... 所以,n的分布图为

于是E r|= (ax〔+b)Pi+ (a x2+b)p2+...+ (a x n+b)p n+ ... =a ( x1 p1+ x2p2+ ---+ x n p n+ ...) +b(P1+P2+…+p门+…) =a E g+b 2、例题 例1篮球运动员在比赛中每次罚球命中得1分,罚不中得0

分。已知某运动员罚球命中的概率为0.7,求他罚球1次的得分g的期望。 例2随机抛掷一个骰子,求所得骰子的点数§的期望。

第2章 2.1 2.1.1 离散型随机变量

2.1离散型随机变量及其分布列 2.1.1离散型随机变量 学 习目标核心素养 1.理解随机变量及离散型随机变量的含义.(重 点) 2.了解随机变量与函数的区别与联系.(易混点) 3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)通过学习随机变量及离散型随机变量,培养数学抽象的素养. 1.随机变量 (1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化的变量称为随机变量. (2)表示:随机变量常用字母X,Y,ξ,η,…表示. 2.离散型随机变量 (1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量. (2)特征: ①可用数值表示. ②试验之前可以判断其出现的所有值. ③在试验之前不能确定取何值. ④试验结果能一一列出. 思考:离散型随机变量的取值必须是有限个吗? [提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也

可以是无限个,如取值为1,2,…,n,…. 1.下列变量中,是离散型随机变量的是() A.到2019年10月1日止,我国发射的人造地球卫星数 B.一只刚出生的大熊猫,一年以后的身高 C.某人在车站等出租车的时间 D.某人投篮10次,可能投中的次数 D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A,B,C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.] 2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6B.1,2,3,…,7 C.0,1,2,…,5 D.1,2,…,5 B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.] 3.下列随机变量不是离散型随机变量的是________. ①某景点一天的游客数X; ②某手机一天内收到呼叫次数X; ③水文站观测到江水的水位数X; ④某收费站一天内通过的汽车车辆数X. ③[①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.] 随机变量的概念 【例1】件,则下列可作为随机变量的是()

高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ??≥?0,寿命<1000小时;Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上, ξ=1,

第二章 离散型随机变量

第二章离散型随机变量 教学目的与要求 1.熟练掌握一维离散型随机变量及其分布的概念,会求一维随机变量的分布列. 2.熟练掌握二维离散型随机变量的概念及其分布,了解常见的二维随机变量的分布. 3.掌握二维离散型随机变量的边际分布及其计算公式. 4.了解多维随机变量的概念及其分布. 5.理解随机变量相互独立的关系及其判别方法. 6.掌握一维、二维离散型随机变量函数的分布列的求法. 7.准确理解数学期望、方差的概念及其相关的性质,熟练掌握常见的几种分布的数学期 望和方差. 8.了解条件分布与条件期望及其性质. 教学重点一、二维随机变量及其分布 教学难点随机变量的分布 教学方法讲解法 教学时间安排 1~2 第一节一维随机变量及分布列 3~4 第二节多维随机变量、联合分布列和边际分布列 5~6 习题辅导 7~8 随机变量函数的分布列 9~10 数学期望的定义及性质 11~12方差的定义及性质 13~14条件分布与条件数学期望 15~16 习题辅导 教学内容

1~2. 第一节一维随机变量及分布列 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(), b a b ξξξ≤<≤等都表 示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、一维离散型随机变量的概念 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称 ()i i P a p ξ==, 1,2,i = 为随机变量()ξω的概率分布列,也称为分布律,有时就简称为分布. 离散型随机变量()ξω的分布列常常习惯地把它们写成表格的形式或矩阵形式: 121 2 a a p p ?? ??? 例2.1 在5n =的贝努里试验中,设事件A 在一次试验中出现的概率为p ,令 ξ=5次试验中事件A 出现的次数 则 55(),05k k k P k C p q k ξ-==≤≤ 于是,ξ的分布列为:

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

2020版高中数学 第二章 2.1.1 离散型随机变量学案 新人教A版选修2-3

2.1.1 离散型随机变量 学习目标 1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系. 知识点一随机变量 思考1 抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果,这种试验结果能用数字表示吗? 答案可以,可用数字1和0分别表示正面向上和反面向上. 思考2 在一块地里种10棵树苗,成活的棵数为x,则x可取哪些数字? 答案x=0,1,2,3, (10) 梳理(1)定义 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随着试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量. (2)随机变量常用字母X,Y,ξ,η,…表示. 知识点二随机变量与函数的关系 相同点随机变量和函数都是一种一一对应关系 区别随机变量是随机试验的结果到实数的一一对应,函数是实数到实数的一一对应 联系随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域

知识点三离散型随机变量 1.定义:所有取值可以一一列出的随机变量称为离散型随机变量. 2.特征: (1)可用数字表示. (2)试验之前可以判断其出现的所有值. (3)在试验之前不能确定取何值. (4)试验结果能一一列出. 1.离散型随机变量的取值是任意的实数.( ×) 2.随机变量的取值可以是有限个,也可以是无限个.( √) 3.离散型随机变量是指某一区间内的任意值.( ×) 类型一随机变量的概念 例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)某机场一年中每天运送乘客的数量; (2)某单位办公室一天中接到电话的次数; (3)明年5月1日到10月1日期间所查酒驾的人数; (4)明年某天济南—青岛的某次列车到达青岛站的时间. 考点随机变量及离散型随机变量的概念 题点随机变量的概念 解(1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量. (2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量. (4)济南—青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,也可能晚点,故是随机变量. 反思与感悟随机变量的辨析方法 (1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同. (2)随机试验的结果的不确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量. 跟踪训练1 掷均匀硬币一次,随机变量为( ) A.掷硬币的次数 B.出现正面向上的次数

离散型随机变量的期望

2.3.1离散型随机变量的期望 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟 练地应用它们求相应的离散型随机变量的均值或期望。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量并且不改变其属性(离 散型、连续型) 5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值x i(i=1,2,…)的概率为,则称表 ξx1x2…x i… P P1P2…P i… 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质:⑴P i≥0,i=1,2,...;⑵P1+P2+ (1) 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 ,(k=0,1,2,…,n,). 于是得到随机变量ξ的概率分布如下: ξ0 1 …k …n

人教版 选修2-3 第二章 离散型随机变量及其分布列 同步教案

离散型随机变量及其分布列辅导教案 学生姓名性别年级学科数学 授课教师上课时间年月日第()次课 共()次课 课时:2课时 教学课题人教版选修2-3 第二章离散型随机变量及其分布列同步教案 教学目标知识目标:理解离散型随机变量的概念,并会求出某些简单的离散型随机变量的概率分布。能力目标:通过对离散型随机变量的学习认识概率分布对于刻画随机现象的重要性。 情感态度价值观:通过合作与交流,让学生体会数学与生活的紧密联系,感受学习的乐趣。 教学重点 与难点 离散型随机变量的分布列的概念及求法。 教学过程 (一)离散型随机变量 知识梳理 1.离散型随机变量的定义 如果对于试验的样本空间中的每一个样本点,变量都有一个确定的实数值与之对应,则变量是样本点的实函数,记作.我们称这样的变量为随机变量.若随机变量只能取有限个数值或可列无穷多个数值则称为离散随机变量。 2.离散型随机变量的表示方法 离散型随机变量常用字母 X , Y,ξ , η,…表示. 例题精讲 【题型一、随机变量的表示方法】 【例1】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ; (2)某单位的某部电话在单位时间内收到的呼叫次数η

【方法技巧】随机变量随机变量常用希腊字母ξ、η等表示,对于离散型随机变量的结果可以按一定次序一一列出。 【题型二、随机变量的表示意义】 【例2】抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么? 【方法技巧】在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 【题型三、随机变量应用题】 【例3】某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量 (1)求租车费η关于行车路程ξ的关系式; (Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟? 【方法技巧】若ξ是随机变量,b a b a, , + =ξ η 是常数,则 η也是随机变量 巩固训练 1.随机变量为抛掷两枚硬币时徽花向上的硬币数,求的可能取值

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

离散型随机变量的数学期望教案

离散型随机变量的数学期望教案 教学目标:1使学生理解和掌握离散型随机变量的数学期望的定义, 2会掌握和应用数学期望的性质。 教学工具:多媒体。 一.复习 1.一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, X 取每一个值xi(i =1,2,…)的概率P(X =xi)=pi ,则称下表 一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, 为随机变量X 的概率分布, 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)pi ≥0,i =1,2,...; (2)p1+p2+ (1) 2、什么叫n 次独立重复试验? 一般地,由n 次试验构成,且每次试验互相独立完成,每次试验的结果仅有两种对立的状态,即A 与 ,每次试验中P(A )=p >0。称这样的试验为n 次独立重复试验,也称伯努利试验。 3、什么叫二项分布? 若X ~B (n ,p) Cnk p k q n-k 二.引例,新课 1.全年级同学的平均身高是产u= n 1(11n x +22n x +….+ m m n x ) P=p(X=i x )= n n i ,i=1,2….n

把全年级的平均身高u 定义成X 的均值,记作E(X) E(X)= (11n x +22n x +….+ m m n x )/n EX=x1p1+x2p2+…+xipi+…+xnpn 2.数学期望的定义 则称: E(X)=x1p1+x2p2+…+xipi+…+xnpn 为随机变量X 的均值或数学期望。 它反映了离散型随机变量取值的平均水平。 3,举例 解:该随机变量X 服从两点分布: P(X=1)=0.7、P(X=0)=0.3 所以:EX=1×P(X=1)+0×P(X=0)=0.7 三、数学期望的性质 得到结论(1) ? 在篮球比赛中,如果某运动员罚球命中的概率为0.7,那么他罚球一次得分设为X ,X 的均值是多少?

数学人教版3第二章离散型随机变量教案(24正态分布)

2.4正态分布 教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 教具准备:多媒体、实物投影仪。 教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布 量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质 授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质 教学过程: 学生探究过程: 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

1离散型随机变量的均值(数学期望)

离散型随机变量的均值 一、概念: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 ξ x 1 x 2 … x i … P P 1 P 2 … P i … 为随机变量的概率分布,简称的分布列 4. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记 k n k k n q p C -=b (k ;n ,p ). 二、数学期望: 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下 ξ4 5 6 7 8 9 10 P 在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列, 我们可以估计,在n 次射击中,预计大约有 n n P 02.0)4(=?=ξ 次得4环; n n P 04.0)5(=?=ξ 次得5环; ………… n n P 22.0)10(=?=ξ 次得10环. 故在n 次射击的总环数大约为 +??n 02.04++?? n 04.05n ??22.010

第二章 2.1.1 离散型随机变量.

2.1.1离散型随机变量 明目标、知重点

1.理解随机变量及离散型随机变量的含义. 2.了解随机变量与函数的区别与联系. 1.随机试验 一般地,一个试验如果满足下列条件: (1)试验可以在相同的情形下重复进行; (2)试验所有可能的结果是明确的,并且不只一个; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个. 这种试验就是一个随机试验. 2.随机变量 在随机试验中,可以确定一个对应关系,使得每一个试验结果都用一个确定的数字表示,数字随试验结果的变化而变化,像这种随着试验结果变化而变化的变量称为随机变量.3.离散型随机变量

所有取值可以一一列出的随机变量,称为离散型随机变量. [情境导学] 在射击运动中,射击选手的每次射击成绩是一个非常典型的随机事件. (1)如何刻画每个选手射击的技术水平与特点? (2)如何比较两个选手的射击情况? (3)如何选择优秀运动员代表国家参加奥运会才能使得获胜的概率大?这些问题的解决需要离散型随机变量的知识. 探究点一随机变量的概念 思考1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢? 答掷一枚硬币,可能出现正面向上、正面向下两种结果,我们可以分别用1和0表示,这样就可以用数字来表示试验结果,数字随试验结果的变化而变化,这就是随机变量. 思考2随机变量和函数有类似的地方吗? 答随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数,两种映射间试验结果相当于函数的自变量,随机变量相当于函数的函数值,随机变量可以看作函数概念的推广. 例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由. (1)上海国际机场候机室中2013年10月1日的旅客数量; (2)2013年某天济南至北京的D36次列车到北京站的时间; (3)2013年某天收看齐鲁电视台《拉呱》节目的人数; (4)体积为1 000 cm3的球的半径长. 解(1)候机室中的旅客数量可能是:0,1,2,…,出现哪一个结果都是随机的,因此是随机变量.

苏教版数学高二-高中数学选修2-3 第二章《离散型随机变量》教案

第二章随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,…表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X是离散型随机变量吗? 电灯泡的寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随

离散型随机变量的期望和方差(参考答案)

离散型随机变量的期望和方差(参考答案) 想一想①: 1.解:ξ的所有可能取值为1,2,3,4,5,6.对应的概率均为6 1.易得Eξ=3.5. 2.解:E(2ξ+3)=2Eξ+3=3 7. 想一想②:证: D(X +Y)=E[(X +Y)2]?[E(X +Y)]2 =E[X 2+Y 2+2XY]?[E(x)+E(Y)]2 =E(X 2)+E(Y 2)+2E(X)E(Y)?[E(X)]2 ?[E(Y)]2?2E(X)E(Y) ={E(X 2)?[E (X )]2}+{E(Y 2)?[E (Y )]2}=D(X)+D(Y). 想一想③: 1.解:Eξ=np=7,Dξ=np(1-p)=6,所以p=17 . 2.解:Dξ=npq≤n(p+q 2)2=n 4,等号在 p=q=1 2时成立,此时,Dξ=25,σξ=5. 答案:1 2 ; 5. 想一想④: 解:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求Eξ. 设ξ为盈利数,其概率分布为 且Eξ=a(1-p 121212要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 想一想⑤: 1.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况: 4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分, 故P(ξ=5)=C 41C 33C 7 4=4 35 ,P(ξ=6)= C 42C 32C 7 4=1835 ,P(ξ=70)= C 43C 31C 7 4, P(ξ=8)= C 44C 30C 7 4,Eξ=54 35. 2.解:分析,可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行. 设来领奖的人数ξ=k,(k =0,1,2,?,3000),所以 P(ξ=k)=C 3000k (0.04)k ?(1?0.04)30000?k ,可见ξ~B (30000,0.04),所以, Eξ=3000×0.04=120(人)100>(人). 答:不能,寻呼台至少应准备120份礼品. 想一想⑥: 解:设X~B(n,p), 则X 表示n 重贝努里试验中的“成功” 次数. 若设X i ={ 1 如第i 次试验成功 0 如第i 次试验失败 i =1,2,…,n

60.离散型随机变量的期望和方差(答案)

数学导学案 【2014年高考会这样考】 1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】 均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 基础梳理 1.离散型随机变量的期望与方差 若离散型随机变量X (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 两个防范 在记忆D (aX +b )=a 2D (X )时要注意:D (aX +b )≠aD (X )+b ,D (aX +b )≠aD (X ). 三种分布 (1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); (2)X ~B (n ,p ),则 E (X )=np ,D (X )=np (1-p ); (3)若X 服从超几何分布, 则E (X )=n M N . 六条性质 (1)E (C )=C (C 为常数) (2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2 (4)如果X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)E (X 2) (5)D (X )=E (X )-(E (X ))(6)D (aX +b )=a 2·D (X ) 考点自测 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). 班 级: 姓 名:

相关文档
相关文档 最新文档