文档库 最新最全的文档下载
当前位置:文档库 › 电导法测弱电解质的解离平衡常数

电导法测弱电解质的解离平衡常数

电导法测弱电解质的解离平衡常数
电导法测弱电解质的解离平衡常数

新乡医学院物理化学实验课教案首页

授课教师姓名职称:

新乡医学院化学教研室年月日

电导法测弱电解质的解离平衡常数

一、实验目的

1.溶液电导的基本概念,掌握电导测定的实验方法。

2.基本掌握DDS-307型电导率仪的使用。

3.测定醋酸溶液的解离平衡常数。

4.测定难溶盐的溶解度。 二、实验原理 电解质溶液的导电能力的大小,等于它的电阻的倒数R

1,电导以L 表示,则R L 1= 则 A l R ?=ρ,所以:l

A l A L ?=?=κρ1 式中κ称为比电导(或电导率),其单位为S·m -1,其值为电阻率的倒数。

则 A

l L ?=κ 式中的A

l 对于一定的电导电极而言是一个常数,A 为极板面积,l 为极间距J A l =,J 称为电导池常数,电导池常数可通过测定已知比电导的电解质溶液(如氯化钾标准溶液)来确定。电解质溶液的电导,可以通过平衡电桥法进行测定,但目前多采用电导仪。DOS-IIA(或D)型电导率仪可以直接测出溶液的比电导。

电解质溶液的电导是随着溶液浓度的改变而改变的,当溶液中含有1摩尔溶质时的电导称为摩尔电导率以Λm 表示 κ?=Λ-c

m 310式中c 为摩尔浓度,Λm 的单位为S·m -1·mol -1根据电离学说,弱电解质的解离α随着溶液的稀释而增大,当溶液无限稀释时,弱电解质全部电离α→1在一定温度下,溶液的摩尔电导与离子的真实浓度呈正比,因而也与α呈正比,所以0ΛΛ=

α(Λ0

为无限稀释的摩尔电导)。

如醋酸: HAc + H 2O H 3O + + Ac -

平衡浓度: c(1-α) cα cα

则 a

ca K a -=12 因此由实验测得醋酸溶液的摩尔电导,就可以求得它的解离常数。

一般难溶盐类在水中的溶解度很小,其饱和溶液浓度很难用普通滴定法测定,但可用

电导法测定,其基本原理是:难溶盐的饱和溶液是很稀的,可以近似视为无限稀释溶液,所以其摩尔电导可由离子摩尔电导求得。测定饱和溶液的电导率,即可求出难溶盐的溶解度。

根据 κ?=Λ-c

m 310 ∞-∞+∞

+=m m m λλλ 则 ∞

-

∞+-+?=m m c λλκ3

10,但因为溶液浓度很稀,不能忽略纯水中微量离子的影响,所以在应用上式时应以测得溶液的比电导中减去所用水的比电导,这样难溶盐的摩尔浓度为:

)1013--∞

-

∞+??+-=L m ol c m m (水溶液λλκκ 则难溶盐的溶解度 : )100(101ml g cM S ?=

三、仪器和药品

仪器:DDS —307型电导率仪1台 DLS-10型电导电极 DLS-1型电导电极

容量瓶(250ml ) 移液管(25ml )烧杯(50ml) 胶头滴管 洗瓶 吸洱球

滤纸

药品: 0.100mol.L -1 HCl 溶液 0.100mol.L -1 KCl 溶液 BaSO 4饱和溶液

蒸馏水

四、实验步骤

1.测定HAc 溶液的电导率

调节恒温水浴温度25℃,用蒸馏水将电导池洗干净后,再用HAc 溶液润洗2-3次,然后加入适量HAc 溶液,放入电导电极,待恒温后,测定电导率三次,求平均值。

2.同上法,测定BaSO 4饱和溶液的电导率。

3.同上法,测定重蒸馏水的电导率。

五、数据记录和处理

1.电导率数据

2.计算

(1)计算HAc 溶液的Λm ,α,K A .

(2)计算BaSO 4饱和溶液的C ,并求出BaSO 4的溶解度S 。

六、注意事项

1.注意电导仪的正确使用。

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

实验九电导法测定弱电解质的解离平衡常数

实验十一 电导率的测定及应用 一 实验目的 1. 测定KCl 水溶液的电导率,求算它的无限稀释摩尔电导率; 2. 用电导法测定醋酸在水溶液中的解离平衡常数; 3. 掌握DDS 一11A 型电导率仪的测量原理和使用方法; 二 实验原理 1. 电解质溶液的导电能力通常用电导G 来表示,它的单位是西门子(Siemens),用符号S (西)表示。若将某.电解质溶液放入两平行电极之间,设电极间距为l ,电极面积为A ,则电导可表示为: G =к l A (11一1) (11一1)式中,к为该电解质溶液的电导率,单位为S ·m -1,它的数值与温度、溶液组成及电解质种类有关;l/A 称为电导池常数;它的单位为m -1。 在讨论电解质溶液的导电能力时,常用摩尔电导率Λm 这个物理量,它与电导率к、溶液浓度c 之间的关系如下: Λm =к/c (11一2) 摩尔电导率的单位为S ·m 2·mol -1. 2. Λm 总是随溶液浓度的降低而增大。对强电解质稀溶液而言,其变化规律用科尔劳施(Kohlrausch)经验公式表示: c A m m -Λ=Λ∞ (11一3) (11一3)式中,Λ m ∞ 为无限稀释摩尔电导率。对特定的电解质和溶剂来说,在一定温度下, A 是一个常数。所以将Λ m 对c 作图得到的直线外推,可求得该强电解质溶液无限稀释摩 尔电导率 Λm ∞ 。 3. 对弱电解质,其Λm ∞ 无法利用(11一3)式通过实验直接测定,而是根据离子独立运动定律,应用强电解质无限稀释摩尔电导率计算出弱电解质无限稀释摩尔电导率,也可以从正、负两种离子的无限稀释摩尔电导率加和求得: ∞ --∞++∞Λ+Λ=Λ,,m m m νν (11一4) (11一4)式中,∞+Λ,m ,∞ -Λ,m 分别表示正、负离子的无限稀释摩尔电导率。不同温度下醋酸溶液Λ m ∞ 见表11一1。 表11一1不同温度下醋酸溶液的Λ m ∞

弱电解质的电离平衡知识点

一、弱电解质的电离 1、定义:电解质:在水溶液中或熔化状态下自身能够电离出自由移动离子的 化合物,叫电解质。 非电解质:在水溶液中且熔化状态下自身都不能电离出自由移动离子的化合物。 概念理解: ①电解质、非电解质都是化合物,能导电的物质可能是溶液(混合物)、金属 (单质),但他们不属于电解质非电解质的研究对象,因此他们既不是电解质也不是非电解质; ②自身电离:SO2、NH3、CO2、等化合物能和水反应形成酸或碱,但发生电离 的并不是他们本身吗,因此属于非电解质; ③只能在水中发生电离的电解质有酸或者某些易溶于水高温下易分解的盐, 如液态氯化氢是化合物,只存在分子,没有发生电离,因此不能导电,又如NaHCO3在高温时即分解,不能通过熔融态证明其为电解质; 只能在熔融状态下电离的电解质是活泼金属氧化物,如Na2O、CaO,他们在溶液中便不存在,要立刻反应生成键,因此不能通过溶液中产生离子证明; 既能在水溶液中又能在溶液中发生电离的物质是某些高温难分解盐,绝大多数盐溶解在水中都能发生完全电离,某些盐熔融时也发生电离,如BaSO 4。 ④电离不需要通电等外界条件,在熔融或者水溶液中即能够产生离子; ⑤是电解质,但是要产生离子也要在溶液状态或者熔融状态,否则即便存在 离子也无法导电,比如NaCl,晶体状态不能导电。 ⑥电解质的强弱与导电性、溶解性无关。如如BaSO4不溶于水,但溶于水的 BaSO4全部电离,故BaSO4为强电解质。导电性与自由移动离子的浓度和带电荷数等有关。 强电解质:在水溶液里全部电离成离子的电解质。 弱电解质:在水溶液里只有一部分电离成离子的电解质。 2.常见的电解质为酸碱盐、活泼金属氧化物、水,其中强电解质与偌电解质常见分类:

-实验_电导法测定乙酸电离平衡常数

实验六 电导法测定乙酸电离平衡常数 报告人: 同组人: 实验时间2010年06月12日 一.实验目的: 1.掌握电导、电导率、摩尔电导率的概念以及它们之间的相互关系。 3.掌握电导法测定弱电解质电离平衡常数的原理。 二.实验原理: 1.电离平衡常数K c 的测定原理 在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。二者之间有如下近似关系: ∞∧ ∧= m m α (1) 式中为弱电解质的电离度。 对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下: CH 3COOH →CH 3COO - + H + 起始浓度 c 0 0 平衡浓度 c (1-α) c α c α 则 a ca K c -=12 (2) 以式(1)代入上式得:) (Λm m 2ΛΛΛc K m m c -=∞∞ (3) 因此,只要知道∧m ∞ 和∧m 就可以算得该浓度下醋酸的电离常数K c 。 将式(2)整理后还可得: (4) 由上式可知,m m 1/Λm 作图可得一条直线,由 直线斜率可测出在一定浓度范围内c K 的平均值。 2.摩尔电导率∧m 的测定原理 电导是电阻的倒数,用G 表示,单位S (西门子)。电导率则为电阻率的倒数,用k 表 示,单位为G·m -1 。 摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m 的两个电极之间,这时所具有的电导称为摩尔电导率。摩尔电导率与电导率之间有如下的关系。 ∧m = κ/c (5) 式中c 为溶液中物质的量浓度,单位为mol·m -3 。 在电导池中,电导的大小与两极之间的距离l 成反比,与电极的面积A 成正比。 G = κA/ l (6) 由(6)式可得 κ=K cell G (7)

实验六:电导法测弱电解质HAc的电离平衡常数

实验六:电导法测弱电解质得电离平衡常数 一、实验目得: 1、掌握惠斯登电桥法测定电导得原理。 2、学会实验测量得操作技术。 3、学会图解法求算解离度,了解电导测定得应用。 二、实验原理: 电解质溶液得导电能力由电导G来量度,它就是电阻得倒数,即: 电导得单位就是“西门子”,符号为“S”,。 将电解质溶液放入两平行电极之间,若两电极距离为l,电极面积为A,则溶液得电导为: 式中电导率,其物理意义就是l=1m,A=1m2时溶液得电导,其单位为S·m-1。定义电导池系数 则 通常将一个电导率已知得电解质溶液注入电导池中,测其电导,根据上式即可求出K cell。 在研究电解质溶液得导电能力时,经常使用摩尔电导率,其定义为: 式中c为电解质溶液得浓度,得单位就是:S·m2·mol-1。 对于弱电解质(例如醋酸)来说,由于其电导率很小,所以测得得溶液得电导率应包括水得电导率,即 电解质溶液就是由正、负离子得迁移来传递电流得,在弱电解质溶液中,只有解离部分得离子才对电导有贡献,而在无限稀释得溶液中,电解质全部解离,其摩尔电导率就是正、负离子得极限摩尔电导率之与。即 式中ν+,ν-分别为正、负离子得化学计量数,可查表得到。 与得差别来自两个因素,一就是电解质得不完全电离,二就是离子间得相互作用。若溶液中离子浓度很低,彼此相隔较远,相互作用力可以忽略,则与之间得关系可表示为: (推导) 式中α为弱电解质得解离度。 醋酸在水溶液中有下列平衡: 其解离平衡常数为

(推导) 将代入上式整理可得 此式称为奥斯特瓦尔德(Ostwald)稀释定律。改写成线性方程为: 以对作图得一直线,斜率为,截距为,由此可求得与(推导) : 整理可得: 电解质溶液得电导通常利用惠斯登(Wheatston)电桥测量, 但测量时不能用直流电源,因直流电流通过溶液时,导致电化 学反应发生,不但使电极附近溶液得浓度改变引起浓差极化, 还会改变两极得本质。因此必须采用较高频率得交流电,其 频率通常选为1000Hz。另外,构成电导池得两极采用惰性铂 电极,以免电极与溶液间发生化学反应。 惠斯登电桥得线路如图8-1所示,其中S为交流信号发生器, R1、R2与R3就是三个可变交流变阻箱得阻值,R x为待测溶液得阻值,H为耳机(或示波器),C1为在R3上并联得可变电容器,以实现容抗平衡。测定时,调节R1、R2、R3与C1,使H中无电流通过,此时电桥达到了平衡。则有: 即 R x得倒数即为溶液得电导,即 由于温度对溶液得电导有影响,因此实验应在恒温条件下进行。 本实验通过测定0、02mol KCl溶液得电阻,求得电导池系数通过测定水、醋酸溶液得电导G,分别求出其电导率 根据两式计算出各浓度醋酸溶液得,最后以 三、仪器与药品 交流信号发生器1台 恒温槽1台(图) 示波器1台(图) 可变电阻箱1个(图) 电导电极1个(图) 电导池1个(图) 10mL移液管2支 0、02 mol·dm-3氯化钾溶液、0、1 mol·dm-3乙酸溶液、电导水

弱电解质的电离平衡及移动

弱电解质的电离平衡及移动 1.下列事实能说明亚硝酸是弱电解质的是() ①亚硝酸溶液中存在HNO2分子,呈酸性②用HNO2溶液做导电性实验,灯泡很暗③HNO2溶液不与Na2SO4溶液反应④0.1 mol·L-1HNO2溶液中,c(H+)=0.015 mol·L-1⑤相同浓度时,HNO2的导电能力比HCl弱 A.①②③B.②③④C.①④⑤D.①②④⑤ 2.在相同温度时,100 mL 0.01 mol?L-1的醋酸溶液与10 mL 0.1 mol?L-1的醋酸溶液相比较,下列数值或性质中,前者大于或强于后者的是() A.溶液的导电性B.醋酸的电离常数C.完全中和时所需NaOH的量D. H+的物质的量 3.常温下向0.1 mol·L-1CH3COOH溶液中加入少量的CH3COONa晶体时,会引起() A.溶液中的c(H+)减小 B.电离平衡左移,电离常数减小 C.溶液的导电能力减弱 D.溶液中的c(OH-)减小 4.在20 mL 0.1 mol·L-1的醋酸溶液中,能使溶液的c(H+)增大,而且使醋酸的电离平衡向逆反应方向移动,可加入的试剂是() A. 20 mL水B.浓盐酸C.冰醋酸D. NaOH溶液 5.能证明氟化氢是弱电解质的事实是() A.氟化氢在所有卤化氢中热稳定性最强 B.浓H2SO4加入氟化钙固体中,加热,有氟化氢气体产生 C. 100 mL 0.1 mol·L-1氢氟酸中,c(H+)小于0.1 mol·L-1D.在氢氟酸中滴加含酚酞的NaOH溶液,红色褪去 6.用我们日常生活中的食用白醋(醋酸浓度约为1 mol·L-1)进行下列实验,能证明醋酸为弱电解质的是() A.白醋中滴入石蕊溶液呈红色 B.白醋溶液中存在分子 C.蛋壳浸泡在白醋中有气体放出 D.经检验白醋中c(H+)约为0.01 mol·L-1 7.甲酸的下列性质中,可以证明它是弱电解质的是() A. 1 mol·L-1的甲酸溶液的c(H+)约为0.01 mol·L-1 B.甲酸能与水以任意比例互溶 C.甲酸与盐酸都能与NaOH发生反应 D.甲酸溶液的导电能力比盐酸溶液的导电能力弱 8.下列叙述中,能证明某物质是弱电解质的是() A.熔融时不导电 B.水溶液的导电能力很差 C.不是离子化合物,而是共价化合物 D.溶液中已电离的离子和未电离的分子共存 9.甲酸(HCOOH)是一种一元弱酸,下列性质中可以证明它是弱电解质的是() A.常温下,1 mol·L-1甲酸溶液中的c(H+)约为1×10-2mol·L-1 B.甲酸能与碳酸钠反应放出二氧化碳 C. 10 mL 1 mol·L-1甲酸溶液恰好与10 mL 1 mol·L-1NaOH溶液完全反应 D.甲酸溶液与锌反应比强酸溶液缓慢 10.在25 ℃时,用蒸馏水稀释1 mol·L-1氨水至0.01 mol·L-1,随溶液的稀释,下列各项中始终保持增大趋势的是() A.c(OH ?) c(NH3·H2O)B.c(NH4+) c(OH?) C.c(NH3·H2O) c(NH4+) D.c(OH-) 11.0.1 mol·L-1氨水10 mL,加蒸馏水稀释到1 L后,下列变化正确的是() ①电离程度增大②c(NH3·H2O)增大③NH4+数目增多④c(OH-)增大⑤导电性增强

弱电解质的电离知识点总结

弱电解质的电离 一、电解质、非电解质、 1、电解质:在水溶液里或熔融状态下能导电的化合物。 2、非电解质:在水溶液里和熔融状态下都不能导电的化合物。 ①电解质和非电解质均指化合物,单质和混合物既不属于电解质也不属于非电解质。 ②电解质必须是自身能直接电离出自由移动的离子的化合物。SO2、CO2 ③条件:水溶液或融化状态 对于电解质来说,只须满足一个条件即可,而对非电解质则必须同时满足两个条件。 ④难溶性化合物不一定就是弱电解质。 例如:BaSO4、AgCl 难溶于水,导电性差,但由于它们的溶解度太小,测不出(或难测)其水溶液的导电性,但它们溶解的部分是完全电离的,所以他们是电解质。 ⑤酸、碱、盐、金属氧化物和水都是电解质(特殊:盐酸是电解质溶液); 蔗糖、酒精为非电解质。 二、强电解质与弱电解质 1、强电解质:溶于水或熔融状态下几乎完全电离的电解质。 2、弱电解质:溶于水或熔融状态下只有部分电离的电解质。 强弱电解质与结构的关系

①电解质的强弱与化学键有关,但不由化学键类型决定。强电解质含有离子键或强极性键,但含有强极性键的不一定都是强电解质,如H 2O 、HF 等都是弱电解质。 ②电解质的强弱与溶解度无关。如BaSO 4、CaCO 3等 ③电解质的强弱与溶液的导电能力没有必然联系。 说明 离子化合物在熔融或溶于水时离子键被破坏,电离产生了自由移动的离子而导电;共价化合物只有在溶于水时才能导电.因此,可通过使一个化合物处于熔融状态时能否导电的实验来判定该化合物是共价化合物还是离子化合物。 3、电解质溶液的导电性和导电能力 ① 电解质不一定导电(如NaCl 晶体、无水醋酸),导电物质不一定是电解质(如石墨),非电解质不导电,但不导电的物质不一定是非电解质; ② 电解质溶液的导电性强弱决定于溶液离子浓度大小,浓度越大,导电性越强。离子电荷数越高,导电能力越强。 ③ 强电解质溶液导电性不一定比弱电解质强(浓度可不同);饱和强电解质溶液导电性不一定比弱电解质强 ④ 电解质的导电条件是水溶液或高温熔融液(熔液)。共价化合物只能在溶液中导电,离子化合物在熔液和溶液均可导电。(区别离子与共价化合物) 三、弱电解质的电离平衡 1、电离平衡概念 一定条件(温度、浓度)下,分子电离成离子的速率和离子结合成分子的速率相等,溶液中各分子和离子的浓度都保持不变的状态叫电离平衡状态(属于化学平衡)。 导电性 离子浓 离子所带 溶液浓电离程

电导测定的基本原理

电导测定的应用 基本原理: 1.弱电解质电离常数的测定 本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数 对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系: HAc H+ + Ac- t=0 C 0 0 C(1-α) Cα Cα t=t 平衡 K= (Cα)2 =Cα 2 (1) C(1-α) 1-α 当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K。电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即 α=Λm/Λ∞m (2) 将(2)代入(1) K= CΛ2m/ [Λ∞m(Λ∞m-Λm)] (3) 整理得 CΛm = K(Λ∞m)2 (4) Λm- KΛ∞m 以CΛm对1/Λm作图,其直线的斜率为K(Λ∞m)2 ,如知道Λ∞m值(可有文献查得),就可算出K。 文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) 电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为: G = к(A / l) (5) 即к= G * 1 / A = G K cell 来表示,它的式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell 单位为m-1。 由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。 在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。摩尔电导率与电导率的关系:

水电解质与酸碱平衡紊乱

水、电解质紊乱和酸碱平衡 水、电解质紊乱和酸碱平衡是一种发病于全身的疾病,病因源于脱水征(高渗综合征)、水中毒(低渗综合征)、高钾血症、钙离子代谢异常等疾病影响,人体电解质数量出现改变、电解质紊乱,导致不同的机体损害,从而引起酸碱负荷过度或调节机制障碍,致使人体体液酸碱度稳定性被破坏。水电解质紊乱和酸碱平衡临床表现主要为精神障碍,常为急性起病,轻者出现精神活动减退软弱无力、疲倦等抑制状态,情感淡漠、寡言少动、动作迟缓、木僵状态。 症状体征:水中毒(低渗综合征) 一、临床表现 精神障碍,常为急性起病,轻者出现精神活动减退软弱无力、 疲倦等抑制状态,情感淡漠寡言少动,动作迟缓,木僵状态。 二、主要病因 1.脱水症(高渗综合征):是由于体内水分缺乏而出现的躯 体及精神障碍,其原因大致有:①水分摄取量不足,如意识 障碍、吞咽障碍时。②水分排出过多,如高热、胃肠疾病时 的呕吐、腹泻肾脏、肝脏、肺部等疾病时及利尿剂的长期大

量应用等③在摄取高浓度的糖、盐蛋白质等情况下,引起水分缺乏。 2.水中毒(低渗综合征):指作为溶质的血清钠在体液中较水的缺乏更严重,故又称低血钠症(血钠低于120mmoL/L)。引起低渗综合征的原因颇多:①抗利尿激素分泌过多,可见于手术后、脑垂体前叶功能减退、肾上腺功能减退精神病患者的过度饮水等。②钠离子减少临床常见于慢性肾炎或肾盂肾炎的病人长期使用利尿剂,糖尿病时的慢性酸中毒,肾上腺皮质功能减退、严重或持续的呕吐、腹泻、出汗过多等使钠过多丢失,偶也可由于钾缺乏使钠离子从细胞外移向细胞内等。 3.高钾血症:钾离子和钠离子儤一样,儤是机体内环境重要的电解质之一,它对于维持细胞内酶的活动、心肌功能、神经肌肉的应激功能健康搜索以及维持体液的张力和酸碱 平衡等都起着重要的作用。正常血清钾浓度为3.5~ 5.0nmol/L,血钾浓度超过5.5nmoL/L时称高血钾症,当肾功能衰竭,发生少尿或无尿时血清钾可显著升高,输入过多或过速的含钾溶液,外伤、运动过度、消耗性疾病、肾上腺皮质功能减退以及溶血反应时,心力衰竭、心肌病以及糖尿病性酸中毒等均可使钾的耐受力减低,而引起钾中毒。

电导法测定酶活力

电导法测定酶活力 摘要 我们已经测定了脲酶,脂肪酶,葡萄糖苷酶水解过程中的电导率的变化,这些变化严格地与前两个体系中碳酸铵的释放和第三个体系中氨基的数目成正比。电导率的方法运用在酶和各种生理液浓度的测定中。 引言 Sjoquist,Oker-Blom,Henri,des Bancels 和Bayliss 证实了用电导法测定酶活性的可能性。最近,Northrop在他的课程中也用了这种方法研究胃蛋白酶,测定了卵蛋白盐酸盐的的水解,解释了水解底物的依赖性电离,并研究有关机制的胰蛋白酶消化的动力学。Euler 欧拉一直采用这种方法研究甘肽的水解。Bayliss通过研究脲酶,脂肪酶,葡萄糖苷酶的行为证实了电导率的可能性,但没有报道过任何与这些系统相关的研究。 以电导判断为目的,酶反应可以归类为:(1)那些释放强烈电子的,(2)释放那些弱离的电解质,(3)那些传统被认为非电解质的。脲脲酶,sinigrin- myrosin,和丙酮醛-乙二醛是属于第一类,而蛋白质水解系统,会有氨基酸的产生,属于第二类。第三组的代表是碳水化合物和大多数的葡萄糖苷酶,作用于他们各自的底物,释放糖类。该反应属于第一组,显然最适合电导研究。第二组反应有一定的局限性和一定的困难,但是随后能使用一个敏感的设备。第三组反应,就目前来说,超过了其研究的范围,在他们的使用范围内,有一定的优势,在硼酸盐,硫酸盐,和钼酸存在条件下,多元醇像糖一样表现出导电性增强。 最强烈的反对意见,提出了该方法不能研究缓冲系统。反应过程中不仅有因为反应的变化,而且有水解产物的累积,为了确定酶的活性,我们必须关注最初阶段的反应过程,使干扰因素控制在最小值。在这段阶段,电导率的方法也许是唯一一个有任何的优势且可以应用方法。因为它能够给人们提供早期反应阶段的大量数值。由于在这些反应中介质的pH值很少有变化,Northrop在pH值6.2至6.4胰蛋白酶明胶的水解不伴pH值的改变而改变。在低浓度电解质中杂质的存在不影响测量,因为可以选择适当的电导率细胞给出须需要的精度。 与其他物理方法相比,电导率测量有着在反应过程中不受干扰和能适用于极小批量底物中的优势。 实验部分 用目前的方法对脲-脲酶,精氨酸-精氨酸酶-脲酶,蛋白胨-胰蛋白酶-激酶和杨素- 苦杏仁酶进行了研究。 通常采用Kohlrausch电桥法测量电导率。一个校准Kohlrausch滑线,4号电阻箱和一个Arrhenius-Ostwald细胞组成了电路的元件。一个5毫升整数倍的底物溶液对工作是必要的。采用铂电极,提供的细胞是在水中浸泡,恒温维持在30.0 ℃±0.1 ℃。当高频电流源和一个电话的听筒用于零点检测时,提供1000 Hz的音频振荡器被使用。该导电细胞的电容通过一个与电阻箱并联的的空气冷凝器平衡。在反应开始,在很短的时间间隔内读数,后来时间间隔较长。利用相对应的酶底物浓度,大量的实验同时在单一的反应容器进行时。对在一定的时间间隔内从反应容器中倒出的等份反应混合物进行分析。因此该反应过程可由一个完全独立的化学方法而知。 脲-脲酶。利用丙酮使一个百分之一的尿素溶液(Kahlbaum)和大豆脲酶的水溶液沉淀。由Sastri 1935年提出的方法有碳酸铵的释放,包括在丙酮中用标准酒精盐酸溶液(0.1 N)滴定等份反应混合物。 精氨酸-精氨酸酶-脲酶。精氨酸碳酸盐是在5%的d-精氨酸中通入二氧化碳至饱和制备而成的。过量的二氧化碳是通过电解溶液中的氢冒泡而赶出的。因此获得的精氨酸碳酸盐溶液呈稳定电导率值。水溶性萃取液丙酮使公羊肝中的提取物沉淀,因此可作为精氨酸酶的来源。因为脲酶几乎瞬间水解、随着精氨酸分解逐步释放,我们需要使用过多的脲酶以确保反

实验2 电导法测定弱电解质的电离常数

实验二 电导法测定弱电解质的电离常数 一、实验目的 1. 掌握电导测量的原理和方法。 2. 学会使用 DDS-11A 型电导率仪,测定弱电解质电离平衡常数的方法。 二、实验原理 AB 型(如HAc )弱电解质在溶液中的电离达到平衡时, HAc = H + + Ac - c(1-αc ) cαc cαc 其电离平衡常数(K c )与浓度(c )、电离度(αc )之间有如下的关系: c c c c K αα-=12 (1) 在一定温度下K c 是常数,因此可以通过测定AB 型弱电解质在不同浓度时的αc ,代入上式就可以求出K c 。 醋酸溶液的电离度可用电导法测定,溶液的电导用电导率仪测定。测定溶液的电导,要将被测溶液注入电导池中,如图1所示。 图1 浸入式电导池 若两电极间距离为l ,电极的面积为A ,则溶液电导G 为: G=К A/1

式中:К为电导率。电解质溶液的电导率不仅与温度有关,还与溶液的浓度有关。因此常用摩尔电导m λ来衡量电解质溶液的导电能力。m λ与К之间的关系为: m λ=10-3К/c 式中m λ的单位是S·m 2·mol -1,К的单位为S·m -1,c 的单位为mol·dm -3。 对于弱电解质,电离度αc 等于浓度为c 时的摩尔电导(m λ)和溶液在无限稀释时的摩尔电导(∞ m λ )之比,即: ∞ =m m c λλα (2) 将式(2)代入式(1): ) (2 m m m m c c c K λλλλ-=∞∞ c m κλ= ∞∞-?=m c m c K c K λκ λκ2 )( 以κ对 κ c 作图应为一直线,其斜率为2 )(∞m c K λ ,截距为)(∞ m c K λ ,根 据斜率和截距可算出 K c 和 ∞m λ 。 三、仪器及试剂 仪器:恒温装置 1套,DDS-11A 型电导率仪,电导电极,移液管(25 ml 、5 ml 和 1 ml 各 1支),容量瓶(50 ml 5只),250 ml 烧杯1只,洗耳球1只。 药品:0.0100 mol?dm -3 KCl 溶液(KCl 于110℃烘4h ),0.1000 mol?dm -3 HAc 溶液,电导水。

弱电解质的电离知识点

第三章第一节弱电解质的电离 一、电解质、非电解质、 1、电解质:在水溶液里或熔融状态下能导电的化合物。 实例:酸、碱、盐、活泼金属氧化物、水。 2、非电解质:在水溶液里和熔融状态下都不能导电的化合物。 实例:大多数有机物、酸性氧化物、氨气等。 ①电解质和非电解质均指化合物,单质和混合物既不属于电解质也不属于非电解质。 ②电解质必须是自身能直接电离出自由移动的离子的化合物。如:SO2、CO2则不是。 ③条件:水溶液或融化状态:对于电解质来说,只须满足一个条件即可,而对非电解质则 必须同时满足两个条件。 ④难溶性化合物不一定就是弱电解质。例如:BaSO4、AgCl 难溶于水,导电性差,但由 于它们的溶解度太小,测不出(或难测)其水溶液的导电性,但它们溶解的部分是完全电离的,所以他们是电解质。 ⑤酸、碱、盐、金属氧化物和水都是电解质(特殊:盐酸是电解质溶液)。 蔗糖、酒精为非电解质。 练习1:下列物质中属于电解质的是( ) ①NaCl溶液②NaOH ③H2SO4 ④Cu ⑤CH3COOH ⑥NH3·H2O ⑦CO2 ⑧乙醇⑨水 二、强电解质与弱电解质 1、强电解质:溶于水或熔融状态下几乎完全电离的电解质。 2、弱电解质:溶于水或熔融状态下只有部分电离的电解质。 ①电解质的强弱与化学键有关,但不由化学键类型决定。强电解质含有离子键或强极性键, 但含有强极性键的不一定都是强电解质,如H2O、HF等都是弱电解质。 ②电解质的强弱与溶解度无关。如BaSO4、CaCO3等

③ 电解质的强弱与溶液的导电能力没有必然联系。 说明 离子化合物在熔融或溶于水时离子键被破坏,电离产生了自由移动的离子而导电;共价化合物只有在溶于水时才能导电.因此,可通过使一个化合物处于熔融状态时能否导电的实验来判定该化合物是共价化合物还是离子化合物。 电解质的强弱与其水溶液的导电能力有何关系? 3、电解质溶液的导电性和导电能力 ① 电解质不一定导电(如NaCl 晶体、无水醋酸),导电物质不一定是电解质(如石墨),非 电解质不导电,但不导电的物质不一定是非电解质; ② 电解质溶液的导电性强弱决定于溶液离子浓度大小,浓度越大,导电性越强。离子电 荷数越高,导电能力越强。 ③ 强电解质溶液导电性不一定比弱电解质强(浓度可不同);饱和强电解质溶液导电性不 一定比弱电解质强 ④ 电解质的导电条件是水溶液或高温熔融液(熔液)。共价化合物只能在溶液中导电,离 子化合物在熔液和溶液均可导电。(区别离子与共价化合物) 注意: 强弱电解质≠溶液的导电能力强弱 强弱电解质≠物质的溶解性大小 三、电离方程式的书写 (1)强电解质用=,弱电解质用 (2)多元弱酸分步电离,多元弱碱一步到位。 H 2CO 3 H ++HCO 3-,HCO 3- H ++CO 32-,以第一步电离为主。 NH 3·H 2O NH 4+ + OH - Fe (OH )3 Fe 3+ + 3OH - (3)弱酸的酸式盐完全电离成阳离子和酸根阴离子,但酸根是部分电离。 NaHCO 3=Na ++HCO 3-,HCO 3- H ++CO 32- (4)强酸的酸式盐如NaHSO 4完全电离,但在熔融状态和水溶液里的电离是不相同的。 熔融状态时:-4 4HSO Na NaHSO +=+ 溶于水时:NaHSO 4=Na ++H ++SO 42- 1.先判断强、弱电解质,决定符号 2.多元弱酸分步电离,电离能力逐渐降低 3.多元弱碱也是分步电离,但书写电离方程式时写总式 4.Al(OH)3有酸式和碱式电离 5.多元弱酸的酸式盐的电离方程式 练习1:写出下列物质的电离方程式:⑴NH 3·H 2O ; ⑵HClO ;⑶H 2SO 3; ⑷Fe(OH)3; (5)Al(OH)3; (6)NaHCO 3 ;(7) NaHSO 4 (8)Ba(OH)2 练习2:有物质的量浓度相同、体积相等的三种酸:a 、盐酸 b 、硫酸 c 、醋酸,同时加入足量的锌,则开始反应时速率________。(用<、=、> 表示) 三、弱电解质的电离平衡 1、电离平衡概念:一定条件(温度、浓度)下,分子电离成离子的速率和离子结合成分子的速率相等,溶液中各分子和离子的浓度都保持不变的状态叫电离平衡状态(属于化学平衡) 导电性强弱 离子浓度 离子所带电荷 溶液浓度 电离程度

弱电解质的电离知识点总结

弱电解质的电离知识点总结

二、强电解质与弱电解质 1、强电解质:溶于水或熔融状态下几乎完全电离的电解质。 2、弱电解质:溶于水或熔融状态下只有部分电离的电解质。 强弱电解质与结构的关系 ①电解质的强弱与化学键有关,但不由化学键类 型决定。强电解质含有离子键或强极性键,但含有强极性键的不一定都是强电解质,如H2O、HF等都是弱电解质。 ②电解质的强弱与溶解度无关。如BaSO4、CaCO3等

③电解质的强弱与溶液的导电能力没有必然联系。 说明 离子化合物在熔融或溶于水时离子键被破坏,电离产生了自由移动的离子而导电;共价化合物只有在溶于水时才能导电.因此,可通过使一个化合物处于熔融状态时能否导电的实验来判定该化合物是共价化合物还是离子化合物。 3、电解质溶液的导电性和导电能力 ① 电解质不一定导电(如NaCl 晶体、无水醋 酸),导电物质不一定是电解质(如石墨),非电解质不导电,但不导电的物质不一定是非电解质; ② 电解质溶液的导电性强弱决定于溶液离子浓 度大小,浓度越大,导电性越强。离子电荷数越高,导电能力越强。 导电 离子离子所 溶液电离

③强电解质溶液导电性不一定比弱电解质强 (浓度可不同);饱和强电解质溶液导电性不一定比弱电解质强 ④电解质的导电条件是水溶液或高温熔融液 (熔液)。共价化合物只能在溶液中导电,离子化合物在熔液和溶液均可导电。(区别离子与共价化合物) 三、弱电解质的电离平衡 1、电离平衡概念 一定条件(温度、浓度)下,分子电离成离子的速率和离子结合成分子的速率相等,溶液中各分子和离子的浓度都保持不变的状态叫电离平衡状态(属于化学平衡)。 任何弱电解质在水溶液中都存在电离平衡,达到平衡时,弱电解质具有该条件下的最大电离程度。 2、电离平衡的特征

水电解质与酸碱平衡紊乱

第五章水、电解质与酸碱平衡紊乱 【体液容量及分布】 体液:水+溶质约占体重60%;分为:细胞内液(ICF)40%,细胞外液(ECF)20%,包括组织间液15%、血浆5%。 体液的电解质成分 电解质在细胞内外分布和含量有明显差别,细胞外液中阳离子以Na+为主,其次为Ca2+;阴离子以Cl-最多,HCO3-次之。细胞内液阳离子主要是K+,阴离子主要是HPO42-和蛋白质离子。 【体液的渗透压】 1、决定水通过生物膜(半透膜-细胞膜、血管内皮)扩散(渗透)程度。 2、取决于体液中溶质的分子或离子数目。 正常血浆渗透压: (mOsm/L)=2×[Na+(mmol/L)+K+(mmol/L)]+BUN(mg/dl)

/2.8+Glu(mg/dl)/18 第一节水平衡紊乱 一、容量不足 【病因及发病机制】 水的摄入与排出 水平衡调节方式 1、渗透压调节:下丘脑—垂体后叶—抗利尿激。 血容量调节:肾脏—血管紧张素—醛固酮。 分类 1、真性容量不足(脱水): “脱水”定义:脱水在身体丢失水分大于摄入水分时产生,当体液容量减少,超过体重2%以上时称为脱水。脱水往往伴有失钠,因水钠丢失比例不同,按照脱水时细胞外液渗透压不同分为高渗性、低渗性、等渗性脱水。分肾性、非肾性。 2、不伴体液丢失容量不足

⑴心排量下降;如心衰;⑵血容量增加:如败血症,肝硬化腹水;⑶严重低蛋白血症:急性胰腺炎等。 【临床表现及诊断要点】 1、病史失水的原因。 2、临床表现口干乏力,坐卧位△舒张压≥10mmHg。 3、实验室结果:尿比重、血红蛋白量、血细胞比容升高等。【治疗】 1、处理原则:去除诱因,防止体液继续丧失。 2、补液种类和效果: 5%GS1L=血容量75ml;0.9%NS1L=血容量200ml;胶体更多。 3、补液量: 失水量(ml)=△比容/原来比容×体重(kg)×0.2×1000。正常比容:男0.48,女0.42。 应加上每日生理需要量1500ml;第一天可补充1/2~2/3,老年或有心血管病者应避免快速大量补液引起肺水肿。 、 二、容量过多 定义:指体内总水量过多,常伴高钠,但循环血容量可能正常或降低。 【病因及发病机制】

实验6__表面活性剂CMC值的测定——电导法

实验6 表面活性剂CMC值的测定——电导法 一、实验目的: 1、学习并掌握表面活性剂CMC值的电导测定方法; 2、了解表面活性剂的性质与应用; 3、学习电导法测定十二烷基硫酸钠的cmc,了解表面活性剂的特性及胶束形成原理; 4、掌握DDS-11A型电导率仪和恒温槽的使用方法。 二、实验原理: 具有明显“两亲”性质的分子,既含有亲油的足够长的烃基,又含有亲水的极性基团。由这一类分子组成的物质称为表面活性剂,见图1(a)。 表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,形成定向排列的单分子膜,从而使表面自由能明显降低,见图1(c);二是在表面活性剂溶液中,当溶液浓度增大到一定值时,表面活性剂离子或分子不但在表面聚集而形成单分子层,而且在溶液本体内部也三三两两的以憎水基相互靠拢,聚在一起形成胶束。胶束可以成球状、棒状或层状。形成胶束的最低浓度称为临界胶束浓度(Critical Micelle Concentration, CMC),如图1(b)。 (a) (b) (c) 图1 CMC是表面活性剂的一种重要量度,CMC越小,则表示这种表面活性剂形成胶束所需浓度越低,达到表面(界面)饱和吸附的浓度越低,只有溶液浓度稍高于CMC时,才能充分发挥表面活性剂的作用。比如图2的洗涤去污过程。目前表面活性剂广泛用于石油、纺织、农药、采矿、食品、民用洗涤等各个领域,具有润湿、乳化、洗涤、发泡等重要作用。

图2 表面活性剂的洗涤原理图 由于溶液的结构发生改变,表面活性剂溶液的许多物理化学性质(如表面张力,电导.渗透压,浊度,光学性质等)都会随着胶团的出现而发生突变,原则上,这些物理化学性质随浓度的变化都可以用于测定CMC,常用的方法有表面张力法、电导法、染料法等。本实验采用电导法来测定表面活性剂的CMC值。在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。从离子贡献大小来考虑,反离子大于表面活性剂离子。对于浓度低于cmc的表面活性剂稀溶液,电导率的变化规律与强电解质一样,摩尔电导率λm与c、电导率κ与c均成线性关系。当溶液浓度达CMC时,随着溶液中表面活性剂浓度的增加,单体的浓度不再变化,增加的是胶束的个数,由于对电导贡献大的反离子固定于胶束的表面,它们对电导的贡献明显下降,电导率随溶液浓度增加的趋势将会变缓,这就是确定CMC的依据。 因此利用离子型表面活性剂水溶液的电导率随浓度的变化关系,作κ- c曲线,由曲线的转折点求出CMC值。 三、仪器与试剂: L十二烷基硫酸钠溶液; LKCl标准溶液;50ml容量瓶11;50mL烧杯一个;移液管一支);电导率仪一台,恒温槽一台。 四、实验步骤: 1、打开电导率仪开关,预热15min,用KCl标准溶液校正电极常数。 2、调节恒温槽温度为25度。 3、分别移取、、、、、、、、、、的L的十二烷基硫酸钠溶液,定容到50mL 。配制成浓度为×10-3、×10-3、×10-3、×10-3、×10-3、×10-2、×10-2、×10-2、×10-2、×10-2、×10-2mol/L的待测溶液。

电导法测定弱电解质的电离平衡常数及数据处理完整版

电导法测定弱电解质的电离平衡常数及数据处 理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电导法测定醋酸电离常数 一、实验目的 1.了解溶液电导、电导率和摩尔电导率的概念; 2.测量电解质溶液的摩尔电导率,并计算弱电解质溶液的电离常数。 二、实验原理 电解质溶液是靠正、负离子的迁移来传递电流。而弱电解质溶液中,只有已电离部分才能承担传递电量的任务。在无限稀释的溶液中可以认为电解质已全部电离,此时溶液的摩尔电导率为Λ∞m,而且可用离子极限摩尔电导率相加而得。 一定浓度下的摩尔电导率Λm与无限稀释的溶液中摩尔电导率Λ∞m是有差别的。这由两个因素造成,一是电解质溶液的不完全离解,二是离子间存在着相互作用力。所以,Λm通常称为表观摩尔电导率。 Λ m /Λ∞m=α(U++ U-)/(U+∞+ U-∞) 若U+= U-,,U+∞=U-∞则 Λ m /Λ∞m=α 式中α为电离度。 AB型弱电解质在溶液中电离达到平衡时,电离平衡常数K a,起始浓度C0,电离度α有以下关系:+ + B- 起始浓度mol/L:C0 0 0 平衡浓度mol/L:C0·(1-α) αC0 αC0 K c =[c(A+)/c][c(B-)/c]/[c(AB)/c]=C0α2/(1-α)=C0Λm2/[cΛ∞m(Λ∞m- Λ m )] 根据离子独立定律,Λ∞m可以从离子的无限稀释的摩尔电导率计算出来。 Λ m 可以从电导率的测定求得,然后求出K a。 Λ m C /c =Λ∞m2K c/Λm-Λ∞m K c 通过Λm C0/c ~1/Λm作图,由直线斜率=Λ∞m2K c,可求出K c。 三、仪器与试剂 DDS-11A(T)型电导率仪1台;恒温槽1套;L醋酸溶液。 四、实验步骤

尿毒症与水、电解质及酸碱平衡失调

尿毒症与水、电解质及酸碱平衡失调 慢性肾衰的早期,肾小管的浓缩稀释功能及肾小球滤过率均有降低,但并不严重。随着病程进展,肾单位日趋减少,肾小球滤过率进一步下降时即可直接影响水、电解质以及酸碱平衡。出现一系列代谢失调。 1、水代谢紊乱:由于肾小管浓缩功能丧失结果使人体出现了多尿,多尿使血容量下降,肾血流亦下降,肾组织因缺血而损害加重。与上述情况相反,由于滤过率的降低,总的排水能力下降,当摄入量超过其排泄负荷时,水又排泄不掉,引起水肿,后者又可反过来影响肾血流而加重肾损害。 2、钠代谢失调:由于有效肾单位的丧失,肾脏贮钠的能力受损。如果钠的摄入不足就会导致体内钠的缺乏。临床上严常见的低钠原因有:①肾小管重吸收钠减少;②渗透性利尿,使钠丢失增加;③长期恶心、呕吐、腹泻等的丢失;④限制钠盐摄入;⑤使用强利尿剂等均可造成低钠血症。慢性肾衰时高钠血症亦较常见,常因肾脏失去调节能力,使尿钠排出减少,此时如摄入过多的钠,极易导致钠水潴留,严重时可因水肿和高血压而诱发心力衰竭。 3、钾代谢失调:尿毒症时,肾脏调节钾代谢的能力明显降低。在内源性和外源性因素使钾负荷过重时,难以保持钾代谢的平衡。诸如酸中毒、外伤、感染、手术、使用肾上腺皮质激素、食入含钾多的食物、应用含钾药物、保钾利尿剂的使用、转换酶抑制剂的使用、洋地黄制剂的应用等均可导致血钾升高。高血钾最危险的是心脏骤停。低血钾在慢性肾衰病人中亦不少见,其危险也不亚于高血钾。主要原因是肾小管调节功能下降,但长期的摄入量不足,呕吐、腹泻的丢失,长期应用利尿剂,尤其是排钾利尿剂均是引起低钾血症的原因。此外,由于病人可因醛固酮分泌增加,促使钾在肾脏和结肠中的排泄增加,以及水肿时体内钾的重新分布均有助于低血钾的发生。 4、代谢性酸中毒:代谢性酸中毒在慢性肾衰病人当中极为常见。但酸中毒是缓慢而潜在地发展,因此病人常能耐受。引起酸中毒的基础是酸性代谢产物的排除障碍,肾小管排出氢离子和氨离子的减少,使氢钠交换减少,钠和碳酸氢根离子不能充分地回吸收而被大量排出体外导致酸中毒。 5、镁潴留:尿毒症病人的肾小球滤过率明显下降,尿中镁离子排出减少,使血镁升高。此时如果食物中镁的含量多,或药物及透析液中镁含量高均可致高镁血症。

相关文档
相关文档 最新文档