文档库 最新最全的文档下载
当前位置:文档库 › energy position Ec Ev of semiconductors

energy position Ec Ev of semiconductors

energy position Ec Ev of semiconductors
energy position Ec Ev of semiconductors

American Mineralogist, Volume 85, pages 543–556, 2000

0003-004X/00/0304–543$05.00

543

I NTRODUCTION

The importance of synthetic semiconductors to chemical and industrial processes has spurred a large research effort to understand the fundamentals of photochemical processes and to develop new photocatalysts. For example, synthetic photocatalysts can promote processes such as photodecompo-sition of organic and inorganic contaminants (Borgarello et al.1988; Brinkley and Engel 1998; Fox 1988; Pelizzetti et al. 1988;Serpone et al. 1988a, 1988b), photosynthesis of organic com-pounds from carbon dioxide and other inorganic substrates (Anpo et al. 1997; Inoue et al. 1979; Kanemoto et al. 1996),photodecomposition of water to hydrogen and oxygen (Lauermann et al. 1987; Reber and Meier 1984), and photore-duction of dinitrogen to ammonia (Augugliaro and Palmisano 1988; Bickley et al. 1988; Schrauzer and Guth 1977; Soria et al. 1991).

In contrast, there has been relatively little research on the photocatalytic properties of mineral semiconductors. There is,however, a growing recognition of the role semiconducting minerals may play as catalysts of redox reactions in natural environments and engineered systems designed to degrade haz-ardous chemicals (Schoonen et al. 1998; Selli et al. 1996;Stumm and Morgan 1995; Sulzberger 1990). Hence, the ques-

The absolute energy positions of conduction and valence bands of

selected semiconducting minerals

Y ONG X U AND M ARTIN A.A. S CHOONEN *

Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11794-2100, U.S.A.

A BSTRACT

The absolute energy positions of conduction and valence band edges were compiled for about 50each semiconducting metal oxide and metal sulfide minerals. The relationships between energy levels at mineral semiconductor-electrolyte interfaces and the activities of these minerals as a cata-lyst or photocatalyst in aqueous redox reactions are reviewed. The compilation of band edge ener-gies is based on experimental flatband potential data and complementary empirical calculations from electronegativities of constituent elements. Whereas most metal oxide semiconductors have valence band edges 1 to 3 eV below the H 2O oxidation potential (relative to absolute vacuum scale),energies for conduction band edges are close to, or lower than, the H 2O reduction potential. These oxide minerals are strong photo-oxidation catalysts in aqueous solutions, but are limited in their reducing power. Non-transition metal sulfides generally have higher conduction and valence band edge energies than metal oxides; therefore, valence band holes in non-transition metal sulfides are less oxidizing, but conduction band electrons are exceedingly reducing. Most transition-metal sul-fides, however, are characterized by small band gaps (<1 eV) and band edges situated within or close to the H 2O stability potentials. Hence, both the oxidizing power of the valence band holes and the reducing power of the conduction band electrons are lower than those of non-transition metal sulfides.

tion arises of whether semiconducting minerals could promote these same processes. If so, these minerals could play an im-portant role in the fate of contaminants and the chemical com-positions of atmosphere and hydrosphere of the early earth. Although all the processes mentioned above are photo-chemical processes, there is also evidence for non-photolytic catalysis of redox reactions by semiconductors (Xu 1997; Xu and Schoonen 1995; Xu et al. 1996, 1999). Semiconductors can act as a conduit for electrons between the aqueous reac-tants. Because no illumination is needed for non-photo cata-lytic processes, this mechanism may be important beneath the photic zone in aquatic systems.

In photochemical reactions, as well as the non-photochemi-cal mechanism outlined in our earlier work, the crucial step is the transfer of electrons between the semiconductor and sorbed reactants. As pointed out by Morrison (1990), electrons can only be transferred between those energetic states in the semi-conductor and the electrolyte that are at approximately the same energy level. The energy level of energetic states of sorbates undergoing an electron transfer can be approximated by the standard redox potential (E 0), whereas relevant energy levels for a semiconductor are the top of the valence band (E V ) and the bottom of the conduction band (E C ). The relative energet-ics of E V and E C vs. E 0 is the fundamental property of an elec-trolyte/semiconductor system that dictates whether an electron transfer between the semiconductor and sorbate is feasible.Although band gap (E g ) is well known for most semicon-ductors, unfortunately, E V and E C have not been determined ac-

*E-mail: mschoonen@https://www.wendangku.net/doc/4e5211179.html,

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES

544curately for most semiconducting minerals. Furthermore, E V and E C values are often presented in ways that prevent a straight-forward comparison to the redox potentials of aqueous elec-trolytes. For example, in both the materials science and applied physics literature, it is customary to express the energy posi-tion of band edges with respect to the energy level midway in the band gap of the material (i.e., the Fermi level of the mate-rial), rather than on the absolute vacuum scale (AVS). In con-trast, geochemical and electrochemical literature typically reports standard redox potentials for aqueous redox couples with respect to the normal hydrogen electrode (NHE). To com-pare the energy levels of sorbates to the band edges of a semi-conductor, however, it is necessary to have all energy levels of interest (i.e., E 0, E C , E V ) expressed on a common energy scale,such as the absolute vacuum scale or the normal hydrogen elec-trode scale.

The objective here is to (1) provide a compilation of the absolute energy positions of valence and conduction band edges of semiconducting metal oxide and metal sulfide minerals and (2) address the relationship between these energy positions and the catalytic activities of these minerals in various heteroge-neous electron transfer processes. For those minerals for which band edge energies have not been determined experimentally,the band edge energies were calculated using an empirical re-lationship based on the electronegativity of the elements (But-ler and Ginley 1978). More extensive reviews on the interactions between semiconductor and electrolyte and photochemistry involving semiconductors can be found elsewhere (Balzani and Scandola 1989; Bockris and Khan 1993; Gr?tzel 1988; Kish 1989; Lewis and Rosenbluth 1989; Mills and Le Hunte 1997;Nozik and Memming 1996; Morrison 1990; Nozik 1978; Smith

and Nozik 1997; Stumm and Morgan 1995; Stumm and Sulzberger 1992; Waite 1990).

T HEORETICAL BACKGROUND

Energetics of semiconductor/electrolyte interfaces For the purpose of this study we briefly review the elec-tronic band structure of semiconductors and the energetics of the semiconductor/electrolyte interface. Comprehensive treat-ments of this topic are by Bockris and Khan (1993), Gr?tzel (1989), Morrison (1990), and Nozik (1978).

The electronic structure of semiconductors is characterized by the presence of a bandgap (E g ), which is essentially an en-ergy interval with very few electronic states (i.e., low density of states) between the valence band and the conduction band,which each have a high density of states (Borg and Dienes 1992). In the context of electron transfer between semiconduc-tors and aqueous redox species, it is crucial to identify the high-est occupied and the lowest unoccupied electronic levels in the semiconductor because those are the energy levels involved in the transfer. In most semiconductors, all electronic levels in the valence band are occupied whereas the levels in the con-duction band are empty. Hence, the highest occupied electronic level coincides with the top of the valence band. The energy of valence band edge, E V , is a measure of the ionization potential,I , of the bulk material. The lowest unoccupied electronic level in most semiconductors coincides with the bottom of the con-duction band. Where the band edge energy, E C , is a measure of the electron affinity, A , of the compound. The Fermi level or energy, E F , represents the chemical potential of electrons in a semiconductor. In essence, the Fermi level is the absolute elec-tronegativity, –χ, of a pristine semiconductor, a value which

F IGURE 1. (a ) Position of the conduction band edge (E C ), the valence band edge (E V ) and the intrinsic Fermi level (E F ) of a semiconductor with respect to vacuum as the zero energy reference. A is electron affinity; χ is electronegativity; I is ionization energy; E g is band gap. (b )Position of energy levels at the interface of an n-type semiconductor and an aqueous electrolyte on the absolute vacuum energy scale (AVS) and with respect to normal hydrogen electrode (NHE). The E CS and E VS represent the conduction band edge and valence band edge at the interface;U ft is the flatband potential; V H is the potential drop of the Helmholtz layer; V B is the band bending; E F is the Fermi level of the system at equilibrium; ΔE F is the difference between the Fermi level and the conduction band edge; E 0F,redox , is the standard Fermi level of the redox couple; E unoc and E oc , are energies of unoccupied states and occupied states of the redox couple; and λ

is the reorganization energy.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 545

corresponds to the energy halfway between the conduction and valence band edges (Fig. 1a). The relationship between band edge energies and electronegativity can be expressed as:E C = –A = –χ + 0.5 E g (1a)

and

E V = –I = –χ –0.5 E g

(1b)Incorporation of impurities in the structure of a semiconductor leads to the presence of electron acceptor state levels and/or donor state levels within the bandgap. The presence of donor or acceptor state levels changes the position of E F so that E F lies just above E V for p -type semiconductors (presence of ac-ceptor states) and E F lies just below E C for n -type semiconduc-tors (presence of donor states) (Morrison 1990).

The next step is to define the energy levels of sorbates. Aque-ous redox species exchanging electrons with a semiconductor mineral can either accept (A + e – → A –) or donate (D → D + + e –)electrons. Upon electron transfer from or to an aqueous species,the electronic structure of the species changes. Upon the accep-tance of an electron, a previously unoccupied electronic level becomes occupied, whereas upon electron donation an elec-tron is removed from an occupied level. For an electron accep-tor (A/A –), it is the energy level of the lowest unoccupied level,E unoc , that is of importance, whereas for an electron donor (D/D +)the highest occupied energy level, E oc , is of importance. Because of the polar nature of water molecules, H 2O dipoles in the solva-tion shell of a redox species will re-orientate when there is a change in the charge of the redox species. The re-orientation of the solvation shell will result in an addition energy gain or loss when an electron is transferred from or to an aqueous redox spe-cies. The free energy change associated with this re-orientation process is known as reorganization energy (λ). V alues for λ range from a few tenths of an eV up to 2 eV . Furthermore, thermal fluctuation of the solvation structure cause a corresponding ther-mal distribution of the energy levels of both E oc and E unoc , see Figure 1b (Bockris and Khan 1993; Gr?tzel 1989; Morrison 1990). Whereas these energy distributions are difficult to quan-tify, it is helpful to make use of the notion that the redox poten-tial, E redox , of a redox couple undergoing a one-electron transition (e.g., A/A – or D/D +) lies midway between the maxima in E oc and E unoc for these species. The Fermi level of electrons of a redox couple (E F,redox ) is equivalent to the redox potential of aqueous redox couples (E redox ) on the absolute energy scale; hence, this can be expressed as:

E E E T a a F,A/A A/A A/A o

A A

R ????==+ln(

)

(2a)E E E T a a F D/D D/D D/D o D D

R +,ln(

)

+++==+(2b)

where E 0 is the standard redox potential of the aqueous redox couple with respect to the Normal Hydrogen Electrode (NHE).The Fermi level of NHE at 25 °C is –4.5 eV with respect to the vacuum level (Bockris and Khan 1993).

The distribution of energy states in a redox couple (Fig. 1b)becomes more complicated if the redox couple undergoes a multi-electron tranfer, because each one-electron step has a

population of two energy states (E oc and E unoc ) associated with

it. Instead of standard redox potential of the overall reaction,the standard potential of each one-electron steps should be con-sidered for a multi-electron transfer reaction. So for a two-elec-tron transition, such as CO 2 + 2e – + 2H + = HCOOH, the standard potentials of the CO 2/CO 2·– and CO 2·–/HCOOH redox couples should be used (CO 2·– represents a CO 2 radical group with a charge of –1). The standard redox potentials for the one-elec-tron steps are mostly unavailable because the intermediate prod-ucts are often unstable. Using E 0 for the overall reaction invariably leads to a misleading comparison of energy levels between semiconductor and aqueous species. This arises from the fact that E 0 for the overall reaction does not lie midway between the maximum of E oc and E unoc populations associated with each of the one-electron transitions. For example, E 0 for

CO 2/CO 2

·–

is estimated to lie at –2 V (NHE), whereas E 0 for CO 2/HCOOH equals –0.61 V(NHE) (Tributsch 1989).

When a semiconductor is placed in a solution containing redox species, electrons will be transferred across the semi-conductor/electrolyte interface until the chemical potentials,i.e., Fermi levels, of electrons in the solid and the solution are equalized. The interfacial electron transfer generates a space charge layer in the semiconductor, and conduction and valence band edges are bent such that a potential barrier is established against further electron transfer across the interface. As a re-sult, the energies of conduction and valence band edges at the semiconductor/electrolyte interface, (E CS and E VS , respectively),deviate from their bulk values (E C and E V ). The difference be-tween E CS and E C or E V and E VS is known as band bending, V B (Fig. 1b). The thickness of the space charge layer typically ranges from 100 ? to several microns depending on the con-ductivity of the semiconductor and the amount of band bend-ing. On the solution side of the interface, the Helmholtz double layer will develop due to the sorption of counter-ions onto the charged surface of the semiconductor. The thickness of the Helmholtz layer is typically on the order of 1 ? (Morrison 1990). The Helmholtz layer results in an additional potential drop inside the semiconductor space charge layer so that the band bending adjusts to make the net rate of electron transfer across the interface equal to zero at equilibrium. Hence, the band edge positions of the semiconductor at the interface can-not be determined unless the additional potential drop associ-ated with the Helmholtz layer is quantified (Morrison 1990).To link the energy levels of the semiconductor and the elec-trolyte, an experimentally measurable quantity, flatband po-tential (U ft ), is essential. U ft is the electrode potential measured with respect to a reference electrode (e.g., normal hydrogen electrode, NHE) in an electrolyte/semiconductor system when the potential drop across the space charge layer becomes zero.U ft can be expressed as (Nozik 1978):U ft (NHE) = A + ΔE F + V H + E 0

( 3)

where ΔE F is the difference between the Fermi level and ma-jority carrier band edge (E C for a n-type semiconductor, and E V for a p-type semiconductor), V H is the potential drop across the Helmholtz layer, and E 0 is the scale factor relating the refer-ence electrode redox level to the A VS (E 0 = –4.5 V for NHE,Bockris and Khan 1993). Because U ft is determined not only

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 546

by intrinsic properties of the semiconductor (A andΔE F), but also by the electrolyte (V H), U ft is a property of the interface.

Note that V H is fixed and independent of both the externally applied voltage across the semiconductor-electrolyte interface and the changes in redox condition of the system, provided the composition changes associated with electron transfer do not affect the equilibrium distribution of ions adsorbed onto the semiconductor. The independence of V H on the interfacial charge transfer is caused by the high charge density and small width of the Helmholtz layer relative to the semiconductor space charge layer (Morrison 1990). As a result, the potential drop across the interface caused by the electron transfer occurs pre-dominantly within the semiconductor space charge layer, whereas the V H remains essentially constant. Consequently, at a given electrolyte composition and semiconductor, U ft is a characteristic parameter independent of the electron transfer process. On the other hand, the potential drop within the Helmholtz layer depends on the adsorption/desorption equi-librium of electrolyte ions at the semiconductor surface. When the net adsorbed charge within the Helmholtz layer is zero, i.e., at the zero point of charge, (pH ZPC), V H is also zero. The flatband potential at the pH ZPC (U ft0) equals the intrinsic Fermi level of the semiconductor, and is the only meaningful flatband potential. Under conditions other than pH ZPC, flatbands are not really flat but contain the band bending induced by the Helmholtz layer. Hence, band edge energies can be calculated from U ft0measurements combined with E g data and an inde-pendent estimate of ΔE F (Nozik 1978).

pH Dependence of band edges at semiconductor/electro-lyte interfaces

For semiconducting metal oxides, U ft varies with pH fol-lowing a linear relation known as the Nernstian relation (But-ler and Ginley 1978; Halouani and Deschavres 1982; Matsumoto et al. 1989; Morrison 1990):

U fb = U fb0 + 2.303R T/(pH ZPC – pH)F(4) where R is the gas constant, T is temperature, and F is the Fara-day constant. At 25 °C and 1 atm, the Nernstian relation leads to a variation of 0.059 V/pH (Fig. 2a). It is generally accepted that the Nernstian dependence indicates that H+ and OH– are potential determining ions (PDI) adsorbed on the solid surface within the Helmholtz layer (Butler and Ginley 1978).

For metal-sulfide semiconductors, the pH dependence of U fb appears more complicated than that for metal-oxides, and has not been as thoroughly studied. One unresolved issue is which ions are PDIs. If ions other than H+ and OH– are PDIs, the specific sorption of these ions can affect V H. For example, Ginley and Butler (1978) showed that dissolved sulfide (H2S and HS–) is a PDI for CdS, whereas our research has shown that dissolved sulfide and dissolved ferrous iron are PDIs for iron sulfides (Bebié et al. 1998; Dekkers and Schoonen 1994). For CdS, the flat band shows a variation in pH dependence from 0 to 59 mV/pH (Ginley and Butler 1978), with the slope depending on the concentrations of metal ions and dissolved sulfide ions. Minoura et al. (1977) reported that U ft varies with crystal face. For FeS2 and ZnS, however, the pH dependence is reported to be consistent with the Nernstian relation (Chen et al. 1991; Fan et al. 1983). We speculate that U ft for metal sul-fide semiconductors may follow the Nernstian pH dependence in aqueous solutions with low concentrations of metal ions and/ or dissolved sulfide, but that the pH dependence will switch to non-Nernstian behavior when specific sorption of metal ions and sulfide becomes important. More research in the surface chemistry of metal sulfides is needed to resolve the apparent inconsistencies highlighted above.

The pH-E H relationship defined by the Nernstian slope is characterized by a constant fugacity of hydrogen, as illustrated in Figure 2b:

log

.

f

E F

T

H

H

2

pH

R

=??

2

2

2303

(5a) or

log f pe

H

2

22

=??

pH

(5b) The constant hydrogen fugacity defined by the Equations 5a or 5b indicates a constant redox state for a linear combination of pH and E H in the Nernstian slope. On a pH-E H diagram, it is the linear combination of E H(or pe) and pH that describes the re-dox state of an aqueous redox system and not E H (or pe) alone; see also Anderson and Crerar (1993). Hence, we believe that the pH dependence of semiconductor flatband potential given by the Nernstian slope is consistent with a constant reducing

F IGURE 2. pH dependence of the conduction band edge and valence band edge of pyrite in an aqueous electrolyte solution described by (a), a pH-Eh diagram, and (b) a pH-log f H

2

diagram. The E C and E V follow the Nernstian relation, which has a variation of 0.059V/pH at 25 °C at 1atm, and lies parallel to the water stability limits.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES547 (oxidizing) power of the (photo)electrons (holes) in a semi-

conductor. It is noteworthy that the flat-band potentials for

semiconductors are parallel to the stability limits of water in

an E H-pH diagram if they follow the Nernstian behavior. If

log f H

2 is used as the parameter defining the redox condition

of a semiconductor/electrolyte system, as shown in Figure 2b, both the band edges and water stability limits are inde-pendent of pH. Hence, a pH-E H pair can be replaced with a single variable, the fugacity of hydrogen, to define the redox condition of the system.

Temperature and pressure dependence of band edge energies

Because semiconductors can catalyze non-photoreactions as well as photoreactions, their catalytic activity may extend to subsurface geochemical processes, such as in hydrothermal systems. To evaluate the potential of semiconductors as cata-lysts in subsurface environments, it is important to understand the effects of temperature and pressure on the band energies.

In contrast to aqueous redox couples, which often show a considerable temperature dependence for E redox, the electronic structure of a semiconductor undergoes little change with tem-perature and pressure provided that no phase transition occurs. For example, the measured bandgap changes over temperature (d E g/d T) for PbS and ZnO range from +4 × 10–4 eV/K to –9.5 ×10–4 eV/K, respectively (Gonzalez et al. 1995). For most semi-conductors, the variation of the bandgap with pressure is also very small in the pressure ranges of interest. The experimental determined variation rates (d E g/d P) are in the order of 0.01–0.1 eV/GPa (Gonzalez et al. 1995). Therefore, the reducing power of a (photo)electron and the oxidation power of a hole are essentially constant with temperature and pressure, unless the solid itself undergoes a phase transition and changes the electronic structure altogether.

Although temperature and pressure have negligible effect on the bulk band structure of semiconductors in the T-P ranges of interest, they may have a more pronounced effect on inter-facial energetics. As shown in Equation 4 the Nernstian slope is temperature dependent. Perhaps more importantly, the pH ZPC of semiconductors is also temperature dependent. Schoonen (1994) estimated pH ZPC values for several metal oxides up to 350 °C based on extrapolation of low-temperature (<95 °C) experimental data. These calculations indicate that pH ZPC values shift down by 1 to 2 pH units as temperature rises from 25 °C to 200 to 300 °C, but beyond 200 to 300 °C the pH ZPC shifts back to higher values. This general trend was confirmed experimentally for rutile up to 250 °C by Machesky et al. (1994). A 2-pH-unit decrease in pH ZPC between 25 and 250 °C would result in a shift of interfacial band edge energies to a higher energy level (with respect to vacuum) by about 0.25 eV. However, the exact tem-perature dependence of pH ZPC of semiconductors is largely un-known and more experimental investigations are needed.

B AND EDGES OF SEMICONDUCTING OXIDE AND

SULFIDE MINERALS

The conduction band edges and bandgaps for common ox-ide and sulfide semiconducting minerals are given in Tables 1 and 2. This compilation includes data obtained from two dif-ferent methods: photo-electrochemical measurements, and empirical calculation based on electronegativity of constituent atoms. A comparison of experimental and empirically calcu-lated conduction band edges is shown in Figure 3. The trends in the energy positions of band edges for metal oxides and metal sulfides will be discussed below separately. Determination methods

Band edges can be derived experimentally from the flatband potential measurement using various (photo)electrochemical techniques. The classic method for flatband potential determi-nation, which is still considered as the most reliable technique, is the Schottky-Mott method (Nozik 1978). Another common method is the determination of anodic photocurrent onset po-tential by evaluating the photocurrent-potential plot (Arico et al. 1990; Butler 1977). More recently, the photocurrent-volt-age measurements have been extensively used in semiconduc-tor particle systems with electrochemical charge-collection techniques. The advantage of this technique is that the varia-tion of the steady-state photocurrent can be measured as a func-tion of pH. This allows for the estimation of interfacial energetics of the particulate system (Chen et al. 1991; Leland and Bard 1987). It is noteworthy that colloidal particles have a larger bandgap than large crystals due to the quantum size ef-fect, which results in a higher energy position of the conduc-tion band edge (Ward and Bard 1982).

In the last two decades, quantitative quantum mechanical calculations have been carried out for a large number of

semiconductor minerals (Folkerts et al. 1987; Huang and Ching

F IGURE 3. Correlation between the empirically calculated conduction band edge energy and the measured flatband potential at pH ZPC for semiconducting metal oxide and sulfide minerals in absolute vacuum scale. The sources of the experimental data are given in the Tables 1 and 2.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES

5481993; Lauer et al. 1984; Santoni et al. 1992; Schroer et al. 1993;Temmerman et al. 1993). In principle, band energies can be derived from these calculations. In many studies, however, band edges are presented with the Fermi level as an arbitrary refer-ence point. Hence, although detailed electronic structures of valence and conduction band have been derived, absolute en-ergies of band edges with respect to vacuum cannot be obtained from these calculations. In the few reports in which the abso-T ABLE 1. Absolute electronegativity (x ), band gap (E g ), energy levels of caluculated conduction band edge (E CB ) and flatband potential

at pH ZPC (U ft 0) with respect to Absolute Vacuum Scale (AVS), and measured or estimated pH ZPC for semiconducting metal oxide minerals

Mineral

x E g E CB U ft

0PH ZPC Ref. for Ref. for

eV eV eV eV E g ,U ft 0

pH ZPC

Ag 2O 5.29 1.20–4.6911.20a a

AlTiO 3

5.44 3.60–3.648.23b BaTiO 3 5.12 3.30–4.58–4.219.00c a

Bi 2O 3

6.23 2.80–4.83–4.82 6.20d CdO 5.71 2.20–4.61–4.6211.60c a

CdFe 2O 4

5.83 2.30–4.68–4.897.22c Ce 2O 3

5.20 2.40–4.008.85i CoO 5.69 2.60–4.397.59b

CoTiO 3

5.76 2.25–4.647.41k Cr 2O 3

5.68 3.50–3.938.10b a CuO 5.81 1.70–4.96–4.899.50c a

Cu 2O

5.32 2.20–4.228.53e CuTiO 3

5.81 2.99–4.327.29k FeO 5.53 2.40–4.338.00b

Fe 2O 3

5.88 2.20–4.78–4.698.60c a Fe 3O 4

5.780.10–5.73

6.50f a FeOOH 6.38 2.60–5.089.70g l

FeTiO 3

5.69 2.80–4.29–4.56

6.30a a Ga 2O 3

5.35 4.80–2.958.47b HgO

6.08 1.90–5.13

7.30b a Hg 2Nb 2O 7 6.21 1.80–5.31–5.05 6.25h

Hg 2Ta 2O 7

6.24 1.80–5.34 6.17h In 2O 3

5.28 2.80–3.888.64b KNbO 3 5.29 3.30–3.648.62b

KTaO 3

5.32 3.50–3.57–3.708.55h La 2O 3

5.28 5.50–2.5310.40i m LaTi 2O 7 5.90 4.00–3.907.06b

LiNbO 3

5.52 3.50–3.778.02b LiTaO 3

5.55 4.00–3.557.94b MgTiO 3 5.60 3.70–3.757.81b MnO 5.29 3.60–3.498.61b

MnO 2

5.950.25–5.83 4.60j l MnTiO 3 5.59 3.10–4.047.83b

Nb 2O 5

6.29 3.40–4.59–4.16 6.06h Nd 2O 3

5.21 4.70–2.878.81i NiO 5.75 3.50–4.0010.30b a NiTiO 3 5.79 2.18–4.707.34d PbO 5.42 2.80–4.02–4.468.29d PbFe 12O 19 5.85 2.30–4.70–5.207.17c PdO 5.79 1.00–5.297.34b

Pr 2O 3

5.19 3.90–3.248.87i Sb 2O 3

6.32 3.00–4.82 5.98b

Sm 2O 3

5.26 4.40–3.078.69i SnO 5.69 4.20–3.597.59b SnO 2

6.25 3.50–4.50–4.55 4.30d a

SrTiO 3

4.94 3.40–3.24–3.618.60c a Ta 2O 5

6.33 4.00–4.33–3.89 2.90a a Tb 2O 3 5.33 3.80–3.448.50i

TiO 2

5.81 3.20–4.21–4.16 5.80k a Tl 2O 3

5.35 1.60–4.558.47b V 2O 5

6.10 2.80–4.70–4.84 6.54c

WO 3

6.59 2.70–5.24–5.290.43a a Yb2O 3

5.47 4.90–3.028.15i YFeO 3 5.60 2.60–4.30–4.607.81a ZnO 5.79 3.20–4.19–3.918.80d a

ZnTiO 3

5.80 3.06–4.277.31k ZrO 2 5.91 5.00–3.41–3.08

6.70a a

Notes: a = Butler and Ginley 1978; b = Quarto et al. 1997; c = Nozik 1978; d = Halouani and Deschavers 1982; e = Rodriguez et al. 1998; f = Zhang and Satpathy 1991; g = Brezonik 1993; h = Kung et al. 1977; i = Shelykh et al. 1996; j = Shuey 1975; k = Oosawa et al. 1989; l = Sverjensky 1994,m = Yoon et al. 1979.lute band energies were given, the discrepancies between cal-culated and measured band edges were as large as a few eV (Bullett 1982; Caldas et al. 1984; Fazzio et al. 1984; Tian and Shen 1989).

In a much simpler approach, Butler and Ginley (1978) pro-posed that band edges at the semiconductor/electrolyte inter-face can be predicted from the electronegativity of the semiconductor. This method was based on Equations 4 and 5

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES549

(Fig.1), and the argument that the bulk electronegativity, χ, of a compound is the geometric mean of the electronegativities of the constituent atoms. Hence, for a M a X b compound, the con-duction band edge can be expressed as:

E C = – (χM aχX b)1/(a+b) –1/2 E g + 0.059(pH ZPC – pH) + E0(6) where χM andχX are the absolute electronegativity of the atoms M and X, respectively. Butler and Ginley (1978) were able to demonstrate that E C values for oxide semiconductors calculated using Equation 6 are in good agreement with the experimental values. This method was later applied to other non-oxide semi-conductors, and various electronegativity scales were used for calibration (Halouani and Deschavres 1982; Sculfort and Gautron 1984).

In Tables 1 and 2, we present conduction band edges calcu-lated based on the absolute electronegativities compiled by

T ABLE 2. Absolute electronegativity (x), band gap (E g), energy levels of calculated conduction band edge (E CB) and flatband potential at pH ZPC (U ft0) with respect to Absolute Vacuum Scale(AVS), and measured or estimated pH ZPC for metal sulfide minerals Mineral x E g E CB,U ft0,pH ZPC,Ref. for Ref. for eV eV eV eV E g,U ft0pH ZPC

Ag2S 4.960.92–4.50 2.00n

AgAsS2 5.49 1.95–4.51 2.00n

AgSbS2 5.37 1.72–4.51 2.00n

As2S3 5.83 2.50–4.58 2.00o

CdS 5.18 2.40–3.98–3.88 2.00p

Ce2S3 4.63 2.10–3.59 2.00i

CoS 5.170.00–5.17 2.00q

CoS2 5.490.00–5.49 1.50r hh

CoAsS 5.210.50–4.96 2.00n

CuS 5.270.00–5.27 2.00q

Cu2S 4.99 1.10–4.44 2.00n

CuS2 5.570.00–5.57 2.00r

Cu3AsS4 5.39 1.28–4.75 2.00n

CuFeS2 5.150.35–4.97 1.80s hh

Cu5FeS4 5.05 1.00–4.55 2.00s

CuInS2 4.81 1.50–4.06 2.00t

CuIn5S8 4.72 1.26–4.09 2.00u

Dy2S3 4.78 2.85–3.36 2.00j

FeS 5.020.10–4.97 3.00aa hh

FeS2 5.390.95–4.92–4.96 1.40v hh

Fe3S4 5.180.00–5.18 2.00s

FeAsS 5.110.20–5.01 1.50s hh

Gd2S3 4.84 2.55–3.57 2.00j

HfS2 5.27 1.13–4.71–4.63 2.00s

HgS 5.52 2.00–4.52–4.74 2.00w

HgSb4S8 5.65 1.68–4.81 2.00n

In2S3 4.70 2.00–3.70–3.69 2.00x

La2S3 4.70 2.91–3.25 2.00j

MnS 4.81 3.00–3.31 2.00y

MnS2 5.240.50–4.99 2.00z

MoS2 5.32 1.17–4.73–4.43 2.00p

Nd2S3 4.65 2.70–3.30 2.00j

NiS 5.230.40–5.03 2.00y

NiS2 5.540.30–5.390.60w hh

OsS2 5.74 2.00–4.74 2.00w

PbS 4.920.37–4.74–5.05 1.40d hh

Pb10Ag3Sb11S28 5.29 1.39–4.59 2.00n

Pb2As2S5 5.41 1.39–4.71 2.00n

PbCuSbS3 5.22 1.23–4.61 2.00n

Pb5Sn3Sb2S14 5.270.65–4.95 2.00n

Pr2S3 4.62 2.40–3.43 2.00j

PtS2 6.000.95–5.53 2.00w

Rh2S3 5.36 1.50–4.61 2.00w

RuS2 5.58 1.38–4.89 2.00bb

Sb2S3 5.63 1.72–4.72 2.00cc

Sm2S3 4.69 2.60–3.39 2.00j

SnS 5.17 1.01–4.66 2.00n

SnS2 5.49 2.10–4.44 2.00w

Tb2S3 4.75 2.50–3.51 2.00j

TiS2 5.110.70–4.76 2.00w

TlAsS2 5.06 1.80–4.16 2.00n

WS2 5.54 1.35–4.86 2.00w

ZnS 5.26 3.60–3.46–2.95 1.70dd hh

ZnS2 5.56 2.70–4.21 2.00ee

Zn3In2S6 5.00 2.81–3.59 2.00ff

ZrS2 5.20 1.82–4.29–4.28 2.00gg

Notes: n = Boldish and White 1998; o = Mills et al.1988; p = Sculfort and Gautron, 1984; q = Sugiura et al., 1974; r = Bullett 1982; s = Jaegermann and Tributsch 1988; t = Neff et al. 1985; u = Bicelli 1987; v = Wei and Osseo–Asare 1997; w = Dovgii and Bilen’kiiet al. 1966; x = Becker et al. 1986; y = Freidman and Gubanov 1983; z = Temmerman et al. 1993; aa = Sakkopoulos et al.1984; bb = Hunag and Chen 1988; cc = Efstathiou and Levin 1968; dd = Kanemoto et al. 1992; ee = Lauer et al. 1984; ff = Poulios and Papadopoulos 1990; gg = Chamelra et al. 1987; hh = Beibie et al. 1996.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 550

Pearson (1988). The absolute electronegativities for rare-earth elements are calculated from the ionization energy and elec-tron affinity data by Huheey (1978) using Equation 1. Because the zero-energy point of the absolute electronegativity scale is that of electrons at rest in a vacuum rather than an artificial reference point (such as Pauling’s scale), the calculated band edges are expressed in the AVS scale directly. The energy posi-tions of band edges in the electrochemical scale can be con-verted from the values in A VS scale using:

E(NHE) = –E(AVS) – 4.50(7) As indicated in the Equation 6, it is crucial to know pH ZPC to estimate interfacial band edge energies. For a number of oxide minerals, pH ZPC values have been obtained experimentally (But-ler and Ginley 1978; Davis and Kent 1990). For those oxides experimental values of pH ZPC were not available, pH ZPC values are estimated using the method developed by Butler and Ginley (1978). For metal sulfide minerals, we use data reported by Dekkers et al. (1994) and Bebié et al. (1998). Because pH ZPC values for most metal sulfides are at or below pH = 2 in solu-tions where no metal ions and/or dissolved sulfide are added, a value of 2.0 was used in the calculation when sulfides experi-mental values of pH ZPC were not available. The flatband poten-tials at pH ZPC (U0fb) shown in Tables 1 and 2 are calculated from the measured flatband potentials at various experimental pH values using the Nernstian relation given by Equation 4. The calculated band edges are generally within 0.5 eV of U fb0 val-ues, as shown in the Figure 3.

Systematics of band edge positions of metal oxide semiconductors

Figure 4 shows the conduction and valence band edge posi-tions at pH 0 obtained from empirical calculation for a number of semiconducting oxides which may be important in aqueous geochemical systems. The correlation between band edges and electronic structures will be discussed briefly below.

For non-transition metal oxides (ZnO, PbO, CdO, SnO2,etc.), the bottom of the conduction band is primarily from the metal s orbitals, whereas the top of the valence band is derived primarily from oxygen 2p orbitals. The top of the valence band of most oxides of transition metals with low d electron occu-pancy (such as TiO2, ZrO2, WO3) is also derived from oxygen 2p orbitals, but the conduction band edge for those oxides is generally derived from metal d orbitals (Shuey 1975). These minerals usually have large bandgaps. Their valence band edges are situated at energy levels close to the absolute electronega-tivity of oxygen (–7.54 eV), and much lower than the oxida-tion potential of water (redox potential of O2/H2O couple). The conduction band edges of these minerals are close to the re-duction potential of water (redox potential of H2/H+ couple). Hence, electrons in the conduction band and holes in the va-lence band of these minerals are very high in reducing and oxi-dizing power, respectively.

For oxides of transition metals with high d electron occu-pancy, metal d states are present in both valence band edges and conduction band edges. As a result, the band structures become complicated and bandgaps are generally smaller. In Fe2O3, for example, the top of the valence band is the occupied e g doublets of the Fe 3d orbital with a strong hybridization of the O 2p or-bital, whereas the bottom of the conduction band is the Fe t2g orbitals with opposite spin. For Cu2O, the top of the valence band is derived from the Cu 3d orbital, whereas the bottom of conduction band is derived from the Cu 4s orbitals. In MnO2, the top of the valence band is the t2g triplet of Mn d orbitals, whereas the bottom of the conduction band is the e g doublet of Mn d orbitals.

Fe3O4 is a temperature-dependent Mott-semiconductor/con-ductor. In Fe3O4, there are separate Fe 3d sub-bands for octa-hedral and tetrahedral atoms, and each degenerates to t2g and e g orbitals and has two possible spins. Half of these bands are filled and the 3d electrons could be localized or delocalized depending on the spin-polarization. Below the Verwey transi-tion temperature (120 K), Fe3O4 is a semiconductor when the antiferromagnetism ordering splits the partially filled d

bands

F IGURE 4. Calculated energy positions of conduction band edges and valence band edges at pH 0 for selected metal oxide semiconductors. The bottom of open squares represent conduction band edges, and the top of solid squares represent valence band edges. The solid lines indicate water stability limits.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 551

into filled and empty sub-bands with a bandgap of 0.1 eV . How-ever, above the Verwey temperature, Fe 3O 4 is a conductor of low electron mobility (Zhang and Satpathy 1991).Systematics of band edge positions of metal sulfide semiconductors

The electronic structures of sulfide minerals are described in detail by Vaughan and Craig (1978). The relationship be-tween the energy position of band edges and band structures,especially the effect of d electrons of transition metals, is briefly discussed below.

Figure 5 shows the calculated band edge positions of com-mon metal sulfides. The top of the valence band of non-transi-tion metal sulfides is primarily derived from S 3p orbitals,whereas the bottom of the conduction band is mainly derived from metal s orbitals. Both conduction and valence band edges of these sulfides are generally higher in energy than those of oxides. Hence, electrons in the conduction band of these min-erals are higher in reducing power than in their oxide counter-parts, whereas the holes in the valence band are less oxidizing.The valence band edges of sulfides deviate substantially from the absolute electronegativity of sulfur (–6.22 eV) for some of the minerals, perhaps due to the more covalent nature of sul-fide minerals than that of oxide minerals.

As in the case of oxide minerals, when more metal d states are present near the valence and conduction band edges, band gaps are substantially narrowed, and band structure becomes complicated. Exceptions to this general pattern are the Mn sul-fides (both MnS and MnS 2) where Mn has a half-filled d shell (d 5). In MnS, the Mn d orbitals are split into two groups of opposite spin. The top of the valence band is the filled e g or-bital of majority spin, and the bottom of the conduction band derived from the empty t 2g orbital of minority spin, and its measured bandgap is about 3.0 eV (Freidman and Gubanov 1983). From FeS to CuS, additional d electrons gradually fill in the minority-spin t 2g orbitals. Because of their partially filled d bands, CoS and CuS are conductors. FeS and NiS are, how-

ever, temperature-dependent Mott-semiconductors, with tran-sition temperatures of 573 K and 264 K, respectively (Sakkopoulos et al. 1984, 1986). Below the transition tempera-ture, FeS and NiS are semiconductors with a bandgap of 0.2eV and 0.4 eV, respectively.

Among transition-metal disulfides, FeS 2 is a semiconduc-tor, MnS 2 and NiS 2 are Mott-semiconductors, whereas CoS 2 and CuS 2 are conductors. Band structures of these minerals have been discussed in detail by Vaughan and Craig (1978), Bullett (1982), Lauer et al. (1984), and Folkerts (1987). In MnS 2, d orbitals split into two spin-groups with a high-spin configura-tion. The top of the valence band is the occupied t 2g orbitals with majority spin, and the bottom of the valence band is unoc-cupied e g orbitals with minority spin, separated by a 1.7 eV gap. In FeS 2, d electrons have a low-spin configuration. The full t 2g orbitals make up the top of the valence band, whereas the empty e g * orbitals make up the conduction band. Pyrite has a bandgap of 0.95 eV. In NiS 2, the top of the valence band is derived from the full minority spin t 2g orbitals, whereas the bottom of the conduction band is derived from the empty mi-nority-spin e g * orbitals, separated by a bandgap of about 0.27eV . Although FeAsS has a crystal structure derived from the pyrite structure, its electronic structure is remarkably differ-ent. In FeAsS, the t 2g orbitals are further split. The empty split-off t 2g sub-band of higher energy constitutes the bottom of the conduction band, whereas other occupied non-bonding orbit-als serve as the top of the valence band, separated by a bandgap of 0.2 (Shuey 1975; Vaughan and Craig 1978).

B AND EDGE ENERGIES AND INTERFACIAL ELECTRON

TRANSFER

Interfacial electron transfer is a complicated process con-strained by a variety of thermodynamic and kinetic factors. The sorbed aqueous species will interact with electronic surface states, which may be different in energy from the bulk band edges. One may expect that the interaction between an aque-

ous redox species and a mineral surface can be predicted only

F IGURE 5. Calculated energy positions of conduction band edges and valence band edges at pH 0 for selected metal sulfide semiconductors.The bottom of open squares represent conduction band edges, and the top of solid squares represent valence band edges. The solid lines indicate water stability limits.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 552

if the surface electronic state is taken into account. Experimental

studies (Inoue et al. 1979; Kanemoto et al. 1992, 1996) and our

work (Xu and Schoonen 1995; Xu et al. 1996, 1999) suggest,

however, that the electron transfer between semiconductors and

aqueous redox species only occurs at a semiconductor/electro-

lyte interface where two orbitals, one belonging to the semi-

conductor and one belonging to aqueous species, are of

approximately the same energy. This suggests that thermody-

namic properties of the semiconductor and the electrolyte, i.e.,

the relative energies at the semiconductor/electrolyte interface,

are the fundamental constraints that dictate the interfacial elec-

tron transfer processes. The following section reviews three

types (direct electron injection, photosensitized electron injec-

tion, and the photo activation of a semiconductor) from the

point of view of interfacial energetics. This simplified treat-

ment ignores the fact that the transfers must occur between the

frontier orbitals of sorbate and semiconductors, which may raise

activation barriers, and does not account for changes in free

energy due to chemisorption, which may shift the E0oc and E0unoc

with respect to the values for those species in solution. In fact,

the formation of a chemisorbed complex is also a key to cata-

lytic activity and selectivity. To go beyond our crude approach

presented below, however, one would have to obtain a wealth

of information of the exact reaction mechanism and associated

energetics for each reaction of interest.

Direct electron injection into the conduction band of a

semiconductor

If the redox potential of an aqueous redox couple is higher

in energy than the conduction band edge of a mineral, the di-

rect electron transfer from the aqueous electron donor into the

conduction band of the mineral can proceed because such a

transfer is energetically favorable. For example, Freund (1969)

found that Cr2+, Eu2+, V2+, and Ti3+(which all have E0 higher

than –4.4 eV A VS) can inject electrons into the ZnO conduction

band (E C = –4.3 eV A VS at pH 7), but Co2+, Fe2+, and Mn2+ cannot

(which all have E0lower than –4.4 eV AVS). Kohl and Bard also

showed that the direct electron injection into the conduction

band of a semiconductor does not occur when the redox poten-

tial of the redox couple is appreciably below the flatband po-

tential of the solid (Kohl and Bard 1977).

Semiconductor particles in an electrolyte solution may be-

have as a short-circuited electrochemical cell, with both ca-

thodic and anodic reactions occurring on the same particle.

Because of the delocalized nature of electrons in the conduc-

tion band of a semiconductor, electrons injected from an aque-

ous donor can be transferred to an aqueous electron acceptor at

a different site (Fig. 6a). This process may facilitate the elec-tron transfer from aqueous electron donors to aqueous electron acceptors when direct electron transfer is inhibited by symme-try mismatch of their frontier orbitals. For example, pyrite and galena, as well as Ni- and Cu-doped sphalerite can catalyze the reaction between thiosulfate and dissolved molecular oxygen to tetrathionate (E0 = –4.6eV A VS), a redox reaction that does not proceed at any significant rate in homogeneous aqueous sys-tems (Xu and Schoonen 1995; Xu et al. 1996). Although the absolute energy (i.e., reducing power) of electrons does not increase when electrons are injected from an aqueous electron

F IGURE 6. Electron transfer processes at a semiconductor/ electrolyte interface. (a) direct injection of electrons from an aqueous electron donor into the conduction band of a semiconductor and the subsequent transfer of the electron to an aqueous electron acceptor. (b) indirect electron-injection from an aqueous electron donor sorbed on the semiconductor surface into the conduction band through a photo-sensitizer excited with sub-band irradiation, and the subsequent transfer of the electron to an aqueous electron acceptor; (c) photo-induced formation of electron-hole pair in a semiconductor, and the subsequent reactions of the conduction electron and valence hole with an aqueous electron acceptor and an

electron acceptor, respectively.

donor to the conduction band of a semiconductor, this hetero-geneous electron transfer process does provide an alternative pathway for aqueous redox reactions. It is noteworthy that the semiconductor does not need to be illuminated for direct elec-tron injection to proceed. Hence, the direct injection of an elec-tron into the conduction band of a semiconductor may be an important catalytic mechanism beneath the photic zone in aquatic systems.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES553

Photo-sensitized electron injection into the conduction band of a semiconductor

For direct electron injection into a semiconductor to occur, the redox potential of the electron donor must have higher en-ergy than the conduction band of the semiconductor. For semi-conductors such as ZnS, TiO2, ZrO2, SnO2, where conduction band energy is very high, it requires an electron donor with redox potential at even higher energy. This requirement restricts the utilization of these minerals as catalysts for aqueous redox reactions via a direct electron injection mechanism. However, electrons can be injected into conduction bands of these min-erals through the excitation of an aqueous photo-sensitizer sorbed on the semiconductor (Fig. 6b). In the photo-sensitized electron injection, an electron in the highest occupied molecu-lar orbital (HOMO) of the sensitizer is excited to its lowest unoccupied molecular orbital (LUMO) with a sub-bandgap ir-radiation (i.e., photon energy less than E g of semiconductor), and is subsequently injected into the conduction band of the semiconductor. Concurrently, an electron is transferred from the aqueous electron donor to the hole created in the HOMO of the sensitizer by the irradiation. Many factors are important to the photo-sensitized electron injection, such as the type of the chemical bond that connects the semiconductor and the sensi-tizer, and competitive sorption. The most fundamental prop-erty controlling this process, however, is the relative energies at the semiconductor/sensitizer/electrolyte interface. To inject an electron to the conduction band of the semiconductor, the LUMO of the sensitizer must have an energy higher than the conduction band edge of the semiconductor. To provide the driving force for the hole transfer, the energy level of HOMO of the sensitizer must be lower than the redox potential of the electron donor in the solution (Waite 1990; Zaban et al. 1998).

Photo-sensitized electron injection is an important mecha-nism in the photic zone of aquatic systems. For example, pho-tosensitized interfacial electron transfer involving sediments coated with a humic substance is critical for the reduction of metallic pollutants (Selli et al. 1996). The photoreductive dis-solution of ferric (hydr)oxide sensitized by surface complexes, such as Fe(III)-oxalate or Fe(III)-EDTA, is an important mecha-nism in controlling iron concentration in natural environments (Faust and Hoigne 1987; Stumm and Morgan 1995; Stumm and Sulzberger 1992; Sulzberger 1990).

Photo-induced electron transfer at the semiconductor/ electrolyte interface

The irradiation of a semiconductor with ultra-bandgap en-ergy results in the promotion of an electron from the valence band to the conduction band, with the concomitant generation of a hole in the valence band. The photo-excited electrons and holes can then react with aqueous electron acceptor and donor, respectively (Fig. 6c). If the ΔG R0 of the overall reaction be-tween the electron acceptor and donor is negative, the reaction is a photocatalytic proccess. Alternatively, if the ΔG R0 is posi-tive, the reaction is a photosynthetic process. The photocataly-sis and photosynthses have been the subject of numerous investigations, and research in this area is growing rapidly. To illustrate the role of interfacial energetics in controlling the elec-tron transfer in these processes, we briefly mention two well-investigated processes: (1) photoreduction of CO2 and (2) pho-todecomposition of H2O.

Semiconductor-catalyzed CO2 photoreduction is a poten-tially important process in the prebiotic synthesis of organic compounds and the origin of life as well as in efforts to counter the greenhouse effect. The CO2 photoreduction to organic com-pounds has been studied with suspensions of various semicon-ductor particles, including WO3, TiO2, SnO2, CdS, GaP, SiC, and ZnS (Inoue et al. 1979; Kanemoto et al. 1992). To reduce CO2, one needs a semiconductor with a conduction band edge higher than the CO2 reduction potential (E0 = –3.9 eV for the redox couple of HCOOH/H2CO3 at pH 5). ZnS, SiC, GaP, CdS can effectively reduce CO2, whereas WO3, TiO2, and ZnO can-not (for E C values, see Tables 1 and 2, and Figs. 4 and 5).

Similar constraints on the effectiveness of semiconductor ca-talysis by conduction-band energy have been shown for H2O pho-todecomposition. For example, the E C of rutile is lower than the redox potential of H2/H2O (E0 = –4.5 eV V AS at pH 0), hence rutile cannot photo-reduce H2O to H2. In an early photoelectrolysis study of H2O on the rutile electrode, a 0.2 V bias was added to generate H2 (Inoue et al. 1979). Because of the quantum size effect, col-loidal TiO2 particles have a higher E C value than the H2O/H2 redox couple. Consequently, no bias is required for H2O pho-todecomposition in the presence of a colloidal TiO2 suspen-sion (Gr?tzel 1988, 1989). Semiconductors with conduction band edges higher than that of the water reduction potential, such as SrTiO3 and other ternary titanates (Oosawa et al. 1989) and CdS (Aspnes and Heller 1983; Darwent 1981), have been reported to generate H2 via water photoreduction.

Sphalerite has a very high conduction band edge energy (Table 1 and Fig. 5), hence it is to be expected that sphalerite would photochemically reduce water to H2. This photoreduc-tion process has been demonstrated by Reber and Meier (1984) and Kanemoto et al. (1992). However, Yanaginda et al. (1990) reported that defect-free quantized ZnS particles do not cata-lyze the photoreduction of water to H2, but catalyze energeti-cally less-favorable reactions such as reduction of aldehydes and aliphatic ketons. Yanaginda et al. (1990) attributed the lack of H2 production to the large energy gap between the sphalerite E C and the potential of water reduction. Although the rates of electron transfer reactions generally increase with increase in the driving force (i.e., the energy difference between electron donor and acceptor levels), a large difference in energy be-tween donor and acceptor levels results in a slow electron trans-fer. This phenomenon has been described as the “inverted region effect” (Miller 1987). The optimum energetic relation for elec-tron transfer at a semiconductor/electrolyte interface has not been investigated systematically. Yanaginda et al. (1990) pointed out that only the surface states formed within the bandgap of ZnS serve as active sites for the H2 evolution. Li and Morrison (1985) also showed that one of the mechanisms for high exoenergic electron transfer involves moving electrons to aqueous oxidant through states at dislocations.

At valence bands, photo-induced holes can take part in two different types of reactions. First, if the redox potential of the aqueous couple is higher in energy than the valence band edge, electrons will be transferred from the aqueous donor to fill the hole in the valence band, thereby oxidizing the aqueous elec-

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 554

tron donor. As a photo-catalyst, semiconducting minerals can photo-oxidize a wide range of compounds. Some geochemi-cally and environmentally important reactions include photo-oxidation of phenol (Augugliaro et al. 1988), PCBs (Pelizzetti et al. 1988), sulfur-containing organic compounds (Davis and Huang 1991; Spikes 1981), insecticides (Harada et al. 1990) and nitrogen-containing organic compounds (Ferry and Glaze 1998; Low et al. 1991; Takeda and Fujiwara 1996). Second, if the standard potential for anodic decomposition of the semi-conductor is higher in energy than the valence band edge, the hole can also cause oxidation of the semiconductor. In aque-ous solutions, the photo-electrochemical stability of a semi-conductor is determined by the standard potential for anodic decomposition relative to the oxidation potential of water. Most metal oxide semiconductors are kinetically stable against photo-oxidation in water (Figs. 4 and 5), whereas most sulfide semi-conductors are unstable. By introducing a sacrificial electron-donor (i.e., an electron donor with a redox potential higher than the anodic decomposition potential of a semicon-ductor), a photo-electrochemically unstable semiconductor can be stabilized kinetically. For example, reducing agents such as HS–, SO32–, and S2O32– have been used to stabilize sulfide semi-conductors in aqueous solutions (Inoue et al. 1979; Minoura et al., 1977). In this case, photooxidation of the semiconductor is eliminated because the valence band process is dominated by the oxidation of the sacrificial aqueous electron donor.

These two types of photoelectron transfer processes associ-ated with a valence band indicate that the energy position of valence band edges is crucial for determining the activity and stability of a semiconducting mineral in aqueous geochemical environments. For example, under anaerobic conditions, aque-ous sulfur oxyanion species can be generated from the photo-corrosion of a semiconducting sulfide mineral without the involvement of a strong oxidant such as molecular oxygen. The significance of this process in controlling aqueous sulfur spe-ciation, and consequently the redox state, in the prebiotic oceans is still an unexplored subject.

A CKNOWLEDGMENTS

This paper results from the Ph.D. studies by Y.X. at SUNY-Stony Brook. This work was supported by grants from NSF-EAR and NASA-Exobiology to M.S.. We thank R. Reeder, J. Parise, and D. Strongin, A. Suero, and R. Penfield for comments on an earlier version, D. Vaughan and an anonymous reviewer for their thorough reviews, and M. Fleet for his editorial handling of the manu-script.

R EFERENCES CITED

Anderson, G.M. and Crerar, D.A. (1993) Thermodynamics in geochemistry, 588 p.

Oxford, New York.

Anpo, M., Yamashita, H., Ishihashi, Y., Fujii, Y., and Honda, M. (1997) Photocata-lytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt.

Journal of Physical Chemistry, 101, 2632–2636.

Arico, A.S., Antonucci, V., Antonucci, P.L., Cocke, D.L., Russo, U., and Giordano, N. (1990) Photoeffects at the polycrystalline pyrrhotite-electrolyte interface.

Solar Energy Materials, 20, 323–340.

Aspnes, D.E. and Heller, A. (1983) Photoelectrochemical hydrogen evolution and water-photolyzing semiconductor suspensions: Properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen. Journal of Ameri-can Chemical Society, 87, 4919–4929.

Augugliaro, V. and Palmisano, L. (1988) Reduction of dinitrogen to ammonia in irradiated heterogeneous systems. In M. Schiavello, Ed., Photocatalysis and Environment, p. 425–444. Kluwer Academic Publishers, Dordrecht. Augugliaro, V., Palmisano, L., Minero, C., and Pelliezzetti, E. (1988) Photocata-

lytic degradation of phenol in aqueous TiO2 dispersions. Toxicology and Envi-ronmental Chemistry, 16, 89–109.

Balzani, V. and Scandola, F. (1989) Interaction between light and matter. In N. Serpone and E. Pelizetti, Eds., Photocatalysis: Fundamentals and Applications, p. 9–44.

Wiley Interscience, New York.

Bebié, J., Schoonen, M.A.A., Strongin, D.R., and Fuhrmann, M. (1998) Surface charge development on transition metal sulphides: an electrokinetic study.

Geochimica Cosmochimica Acta, 62, 633–642.

Becker, R.S., Zheng, T., Elton, J., and Saeki, M. (1986) Synthesis and photoelectrochemistry of In2S3. Solar Energy Materials, 13, 97–107. Bicelli, L.P. (1987) Thermodynamic evaluation of the n-AgIn5Se8 and n-CuIn5S8 stability in photoelectrochemical cells. Solar Energy Materials, 15, 77–98. Bickley, R.I., Navio, J.A., Jayanty, R.K.M., and Vishwanathan, V. (1988) Photoassisted dinitrogen fixation on TiO2 (rutile) surfaces. In M. Schiavello, Ed., Photocatalysis and Environment, p. 683–684. Kluwer Academic Publish-ers, Dordrecht.

Bockris, J.O.M. and Khan, S.U.M. (1993) Surface electrochemistry, 1014 p. Ple-num, New York.

Boldish, S.I. and White, B.E. (1998) Optical band gaps of selected ternary sulfide minerals. American Mineralogist, 83, 865–871.

Borg, R.J. and Dienes, G.J. (1992) The physical chemistry of solids. 584 p, Aca-demic Press, Boston.

Borgarello, E., Pappa, R., Serpone, N., and Pelizzetti, E. (1988) Disposal of hydro-gen sulfide: conventional and photochemical methods. In M. Schiavello, Ed., Photocatalysis and Environment, p. 567–581. Kluwer Academic Publishers, Dordrecht.

Brezonik, P. (1993) Chemical kinetics and process dynamics in aquatic systems, 754 p. Lewis Publishers.

Brinkley, D. and Engel, T. (1998) Photocatalytic dehydrogenation of 2-propanol on TiO2 (110). Journal of Physical Chemistry, 102, 7596–7605.

Bullett, D.W. (1982) Electronic-structure of 3d pyrite- and marcasite-type sulphides.

Journal of Physics C: solid state physics, 15, 6163–6174.

Butler, M.A. (1977) Photoelectrolysis and physical properties of the semiconductor electrode WO3. Journal of Applied Physics, 48, 1941–1919.

Butler, M.A. and Ginley, D.S. (1978) Prediction of flatband potentials at semicon-ductor-electrolyte interfaces from atomic electronegativities. Journal of Elec-trochemical Society, 125, 228–232.

Caldas, M.J., Fazzio, A., and Zunger, A. (1984) A universal trend in the binding energies of deep impurities in semiconductors. Journal of Applied Physics, 45, 671–673.

Chamelra, N., Leland, J.K., and Bard, A.J. (1987) Semiconductor electrodes LXI: Photoelectrochemistry of n-ZrS2 in aqueous solutions. Journal of Electrochemical Society, 134, 76–80.

Chen, G., Zen, J., Fan F., and Bard, A.J. (1991) Electrochemical investigation of the energetics of irradiated FeS2 (pyrite) particles. Journal of Physics and Chemis-try, 95, 3682–3687.

Darwent, J.R. (1981) H2 Production photosensitized by aqueous semiconductor dis-persions. Journal of Chemical Society, Faraday Transaction 2, 77, 1703–1709. Davis, A.P. and Huang, C.P. (1991) The photocatalyticoxidation of sulfur-contain-ing organic compounds using CdS and the effect on CdS photocorrosion. Water Research, 25, 1273–1281.

Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. In Mineralogical Society of America Reviews in Mineralogy, 23, 177–260.

Dekkers, M.J. and Schoonen, M.A.A. (1994) An electrokinetic study of synthetic greigite and pyrrhotite. Geochimica Cosmochimica Acta, 58, 4147–4153. Dovgii, Y.O. and Bilen’kii, B.F. (1966) Investigation of the fumdamental absorp-tion edges of α-HgS singal crystals. Sovit Physics. Solid State, 8, 1280–1282. Efstathiou, A. and Levin, E.R. (1968) Optical properties of As2Se3, (As x Sb1–x)2Se3 and Sb2S3. Journal of the Optical Society of America, 58, 373–377.

Fan, F.R., Leempoel, P., and Bard, A.J. (1983) Semiconductor electrodes. Journal of Electrochemical Society, 130, 1866–1874.

Faust, B. and Hoigne, J. (1987) Photoinduced reductive dissolution of a α-Fe2O3 by bisulfite. Environmental Science and Technology, 20, 943–948.

Fazzio, A., Caldas, M.J., and Zunger, A. (1984) Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. Physics Review B, 30, 3430–3455.

Ferry, J. and Glaze, W.H. (1998) Photocatalytic reduction of nitro-organics over illuminated titanium dioxide: electron transfer between excited-state TiO2 and nitroaromatics. Journal of Physical Chemistry B, 102, 2239–2244. Folkerts, W., Sawatzky, G.A., and Haas, C. (1987) Electronic structure of some 3d-transition metal pyrites. Journal of Physics C: Solid State Physics, 20, 4135–44. Fox, M.A. (1988) Photocatalytic oxidation of organic substrates. In M. Schiavello, Ed., Photocatalysis and Environment, p. 445–467. Kluwer Academic Publish-ers, Dordrecht.

Freidman, S.P. and Gubanov, V.A. (1983) Electronic structure of 3d-metal monosulfides by the Xα discrete variational method. Journal of Physics and Chemistry of Solids, 44, 187–194.

Freund, T. (1969) Electron injection into zinc oxide. Journal of Physical Chemistry, 73, 468–469.

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES555

Ginley, D.S. and Butler, M.A. (1978) Flatband potential of cadmium sulfide (CdS) photoanodes and its dependence on surface ion effects. Journal of Electrochemi-cal Society, 125, 1968–1974.

Gonzalez, J., Calderon, E., Tinoco, T., Itie, J.P., Polian, A., and Moya, E. (1995) CuGa(S x Se1–x)2 alloys at high pressure: Optical absorption and x-ray diffraction studies. Journal of Physical Chemistry, 56, 507–516.

Gr?tzel, M. (1988) Photocatalysis with colloidal semiconductors and polycrystal-line films. In M. Schiavello, Ed., Photocatalysis and Environment, p. 367–398.

Kluwer, Dordrecht.

———(1989) Heterogeneous photochemical electron transfer. CRC Press, Boca Raton. Halouani, F.E. and Deschavres, A. (1982) Interfaces semi-conducteur-electrolyte: correlations entre le potentiel de bande plate et les echelles d’electronegativite.

Material Research Bulletin, 17, 1045–1052.

Harada, K., Hisanaga, T., and Tanaka, K. (1990) Photocatalytic degradation of orga-nophosphorus kkkkinsecticides in aqueous semiconductor suspensions. Water Research, 24, 1415–1417.

Huang, Y.S. and Chen Y.F. (1988) Electronic-structure study of RuS2. Physical Re-view B, 38, 7997–8001.

Huang, M. and Ching, W. (1993) Calculation of optical excitations in cubic semi-conductors. I. Electronic structure and linear response. Physics Review B, 47, 9449–9463.

Huheey, J.E. (1978) Inorganic Chemistry. Harp and Row Publisher.

Inoue, T., Fujishima, A., Konishi, S., and Honda, K. (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor pow-ders. Nature, 277(22), 637–638.

Jaegermann, W. and Tributsch, W. (1988) Interfacial properties of semiconducting transition metal chalcogenides, Progress in surface sciences, 29, 1–167. Kanemoto, M., Shiragami, T., Pac, C., and Yangida, S. (1992) Semiconductor ca-talysis: effective photoreduction of carbon dioxide catalyzed by ZnS quantum crystallites with low density of surface defects. Journal of Physical Chemistry, 96, 3521–3526.

Kanemoto, M., Hosokawa, H., Wada, Y., Murakoshi, K., Y anagida, S., Mori, H., Ishikawa, M., and Kobayashi, H. (1996) Semiconductor photocatalysis.20. Role of surface in the photoreduction of carbon dioxide catalyzed by colloidal ZnS nanocrystallites in organic solvent. Journal of the Chemical Society, Faraday Transactions, 92, 2401–2411.

Kish, H. (1989) What is photocatalysis? In N. Serpone and E. Pelizetti, Ed., Photo-catalysis: Fundamentals and Applications, p. 1–8. Wiley Interscience, New Y ork. Kohl, P.A. and Bard, A.J. (1977) Semiconductor electrodes: 13. Characterization and behavior of n-type ZnO, CdS, and GaP electrodes. Journal of American Chemical Society, 99, 7531–7539.

Kung, H.H., Jarrett, H.S., Sleight, A.W., and Ferretti, A. (1977) Semiconducting oxide anodes in photoasted electrolysis of water. Journal of Applied Physics, 48, 2463–2469.

Lauer, S., Trautwein, A.X., and Harris, F.E. (1984) Electronic-structure calcula-tions, photoelectron spectra, optical spectra, and M?ssbauer parameters for the pyrite MS2 (M = Fe, Co, Ni, Cu, Zn). Physical Review B, 29, 6774–6783. Lauermann, I., Meissner, D., and Memming, R. (1987) The problem of light-in-duced oxygen production at catalytic loaded CdS suspensions. Journal of Elec-troanalytical Chemistry, 228, 45–55.

Leland, J.K. and Bard, A.J. (1987) Electrochemical investigation of the electron-transfer kinetics and energies of illuminated tungsten oxide colloids. Journal of Physical Chemistry, 91, 5083–5087.

Lewis, S., and Rosenbluth, M.L. (1989) Theory of semiconducting materials. In N.

Serpone and E. Pelizetti, Ed., Photocatalysis: Fundamentals and Applications, p. 45–98. Wiley Interscience, New York.

Li, B. and Morrison, S.R. (1985) Excited dye reaction with damaged zinc oxide.

Journal of Physical Chemistry, 89, 5442–5446.

Low, G.K.C., McEvoy, S.R., and Matthews, R.W. (1991) Formation of nitrate and ammonium ions in TiO2 mediated photocatalyticdegradation of organic com-pounds containing nitrogen atoms. Environmental Science and Technology, 25, 460–467.

Machesky, M.L., Palmer, D.A., and Wesolowski, D.J. (1994) Hydrogen ion adsorp-tion at the rutile-water interface to 250 °C. Geochimica Cosmochimica Acta, 58, 5627–5632.

Matsumoto, Y., Yoshikawa, T., and Sato, E. (1989) Dependence of the band bending of the oxide semiconductors on pH. Journal of Electrochemical Society, 136, 1389–1391.

Miller, J.R. (1987) Controlling charge separation through effects of energy, distance and molecular structure on electron transfer rate. New Journal of Chemistry, 11, 83–89.

Mills, G., Li, Z., and Meisel, D. (1988) Photochemistry and spectroscopy of colloi-dal As2S3. Journal of Physical Chemistry, 92, 822–828.

Mills, A. and Le Hunte, S. (1997) An overview of semiconductor photocatalysis.

Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35. Minoura, H., Wanatabe, T., Oki, T., and Tsuiki, T. (1977) Effects of dissolved Cd2+ and S2– ions on the flatband potential of CdS electrodes in aqueous solution.

Japan Journal of Applied Physics, 16, 865–866.

Morrison, S.R. (1990) The Chemical physics of surfaces, 438 p. Plenum, New York. Neff, H, Lange, P., Fearheiley, L., and Bachmenn, I. (1985) Optical and electro-

chemical properties of CuInSe2 and CuInS2-CuInSe2 alloys. Applied Physics Letters, 47, 1089–1091.

Nozik, A.J. (1978) Photoelectrochemistry: Applications to solar energy conversion.

Annual Review Physical Chemistry, 29, 189–222.

Nozik, A.J. and Memming, R. (1996) Physical chemistry of semiconductor-liquid interfaces. Journal of Physical Chemistry, 100(31), 13061–13078. Oosawa, Y., Takahashi, R., Yonemura, M., Sekine, T., and Goto, Y. (1989) Photo-catalytic hydrogen evolution and oxygen evolution over ternary titanates and relationship between physical properties and kinetic properties. New Journal of Chemistry, 13, 435–440.

Pearson, R.G. (1988) Absolute electronegativity and hardness: Application to inor-ganic chemistry. Inorganic Chemistry, 27, 734–740.

Pelizzetti, E., Pramauro, E., Minero, C., and Serpone, N. (1988) Photodegradation of organic pollutants in aquatic systems catalyzed by semiconductors. In M.

Schiavello, Ed., Photocatalysis and Environment, p. 469–497. Kluwer Academic Publishers, Dordrecht.

Poulios, I. and Papadopoulos, N. (1990) Photoelectrochemical behavior of Zn s In2S6 single crystals in aqueous solutions. Solar Energy Materials, 20, 43–51. Quarto, F., Sunseri, C., Piazza, S., and Romano, M. (1997) Semiempirical correla-tion between optical band gap values of oxides and the difference of electrone-gativity of the elements. Its importance for a quantitative use of photocurrent spectroscopy in corrosion studies. Journal of Physical Chemistry, 101, 2519–2525.

Reber, J. and Meier, K. (1984) Photochemical production of hydrogen with zinc sulfide suspensions. Journal of Physical Chemistry, 88, 5903–5913. Rodriguez, J. A., Chaturvedi, S., Kuhn, M., and Hrbek J. (1998) Reaction of H2S and S2 with metal/oxide surface: band-gap size and chemical reactivity. Journal of Physical Chemistry B, 102, 5511–5519.

Sakkopoulos, S., Vitoratos, E., and Argyreas, T. (1984) Energy-band diagram for pyrrhotite. Journal of Physical Chemistry of Solids, 45, 923–928.———(1986) Correlation between chemical bonds and properties in pyrrhotite. Journal of Chemical Education, 63, 665.

Santoni, A., Paolicci, G., Santoro, G., Prince, K., and Christensen, N. (1992) Band structure of lead sulphide. Journal of Physics: Condensed Matter, 4, 6759–6768. Schoonen, M.A.A. (1994) Calculation of the point of zero charge of metal oxides between 0 and 350 °C. Geochimica et Cosmochimica Acta , 58, 2845–2851. Schoonen, M.A.A., Xu, Y., and Strongin, D.R. (1998) A n introduction to geocatalysis.

Journal of Geochemical Exploration, 62, 201–215.

Schrauzer, G.N. and Guth, T.D. (1977) Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of American Chemical Society, 99, 7189–7193.

Schroer, P., Kruger, P., and Pollmann, J. (1993) First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Physics Re-view B, 47, 6917–6979.

Sculfort, J. and Gautron, J. (1984) The role of the anion electronegativity in semi-conductor-electrolyte and semiconductor-metal junctions. Journal of Chemis-try and Physics, 80, 3767–3773.

Selli, E., Giorgi, A.D., and Bidoglio, G. (1996) Humic acid-sensitized photoreduc-tion of Cr(VI) on ZnO particles. Environmental Science and Technology, 30, 598–604.

Serpone, N., Borgadello, E., and Pelizzetti, R. (1988a) Photoreduction and photodegradation of inorganic pollutants: I. Cyanides. In M. Schiavello, Ed., Photocatalysis and Environment, p. 499–526. Kluwer Academic Publishers, Dordrecht.

Serpone, N., Borgadello, E., and Pelizzetti, R. (1988b) Photoreduction and photodegradation of inorganic pollutants: II. Selective reduction and recovery of Au, Pt, Rh, Hg, and Pb. In M. Schiavello, Ed., Photocatalysis and Environ-ment, p. 527–565. Kluwer Academic Publishers, Dordrecht.

Shelykh, A.I., Prokf’ev, A.V., and Melekh, B.T. (1996) Band gap variation in Ln2X3 compounds (Ln = rare earth element, X= O, S, Se). Physics of Solid State, 38, 236–238.

Shuey, R.T. (1975) Semiconducting ore minerals. Elsevier, Amsterdam. Smith, B.B. and Nozik, A.J. (1997) Theoretical studies of electron transfer and elec-tron localization at the semiconductor-liquid interface. Journal of Physical Chem-istry B, 101, 2459–2475.

Soria, J., Conesa, J.C., Augugliaro, V., Palmisano, L., Schiavello, M., and Sciafani,

A. (1991) Dinitrogen photoreduction to ammonia over titanium dioxide pwoders

doped with ferric iron. Journal of Physical Chemistry, 95, 274–282. Spikes, J.D. (1981) Selective photooxidation of thiols sensitized by aqueous sus-pensions of CdS. Photochemistry and Photobiology, 34, 549–556. Stumm, W. and Morgan, J.J. (1995) Aquatic Chemistry: chemical equilibria and rates in natural waters, 1022 p. Wiley Interscience, New York.

Stumm, W. and Sulzberger, B. (1992) The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes.

Geochimica Cosmochimica Acta, 56, 3233–3257.

Sugiura, C., Gohshi, Y., and Suzuki, I. (1974) Sulfur kβ x-ray emmision spectura and electronic structures of some metal sulfides. Physical Review B, 10, 338–343.

Sulzberger, B. (1990) Photoredox reactions at hydrous metal oxide surfaces: A sur-face coordination chemistry approach. In W. Stumm, Ed., Aquatic Chemical

XU AND SCHOONEN: SEMICONDUCTING OXIDES AND SULFIDES 556

Kinetics. Wiley Interscience, New York.

Sverjensky, D.A. (1994) Zero-point-of-charge predication from crystal chemistry and solvation theory. Geochimica Cosmochimica Acta, 58, 3123–3129. Takeda, K. and Fujiwara, K. (1996) Characterization on the determination of dis-solved organic nitrogen compounds in natural waters using TiO2 and platinized TiO2 mediated photocatalyticdegradation. Water Research, 30, 323–330. Temmerman, W.M., Durham, P.J., and V aughan, D.J. (1993) The electronic struc-tures of the pyrite-type disulphides (MS2, where M= Mn, Fe, Co, Ni, Cu, Zn) and the bulk properties of pyrite from local density approximation (LDA) band structure calculations. Physics and Chemistry of Minerals, 20, 248–254. Tian, Z. and Shen, X. (1989) Defect-molecule model calculations of 3d transition metal ions in II-VI semiconductors. Journal of Applied Physics, 66, 2414–2419. Tributsch, H. (1989) Photoelectrocatalysis. In N. Serpone and E. Pelizetti, Ed., Pho-tocatalysis: Fundamentals and Applications, p. 339–384. Wiley Interscience, New York.

V aughan, D.J. and Craig, J.R. (1978) Mineral chemistry of metal sulphides. Cam-bridge University Press, Cambridge.

Waite, T. (1990) Photo-redox complexes at the mineral-water interface. In Mineral-ogical Society of America Reviews in Mineralogy, 23, 559–603.

Ward, M.D. and Bard, A.J. (1982) Photocurrent enhancement via trapping of photogenerated electrons of TiO2 particles. Journal of Physical Chemistry, 86, 3599–3605.

Wei, D. and Osseo-Asare, K. (1997) Semiconductor electrochemistry of particulate pyrite. Journal of Electrochemical Society, 145, 544–563.

Xu, Y. (1997) Kinetics of redox transformations of aqueous sulfur species: the role of intermediate sulfur oxyanions and mineral surfaces, 327 p. Ph.D. disserta-

tion, SUNY, Stony Brook.

Xu, Y. and Schoonen, M.A.A. (1995) The stability of thiosulfate in the presence of pyrite in low-temperature aqueous solutions. Geochimica Cosmochimica Acta, 59, 4605–4622.

Xu, Y., Schoonen, M.A.A., and Strongin, D.R. (1996) Thiosulfate oxidation: Ca-talysis of synthetic sphalerite doped with transition metals. Geochimica Cosmochimica Acta, 60, 4701–4710.

Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., Cunningham, K.M., and Ball, J.W.

(1999) Sulfur geochemistry of hydrothermal waters in Y ellowstone National Park: II Formation and decomposition of thiosulfate and polythionates in Cin-der Pool. Journal of V olcanology and Geothermal Research, in press. Yanagida, S., Y oshiya, M., Shiragami, T., and Pac, C. (1990) Semiconductor photo-catalysis. Quantitative photoreduction of aliphatic ketones to alcohols using defect-free ZnS quantum crystallites. Journal of Physical Chemistry, 94, 3104–3111.

Yoon, R. H., Salman, T., and Donnay, G. (1979) Predicating points of zero charge of oxides and hydroxides. Journal of Colloid and Interface Science, 70, 483–493. Zaban, A., Ferrere, S., and Gregg, B.A. (1998) Relative energetics at the semicon-ductor/sensitizing dye/electrolyte interface. Journal of Physical Chemistry B, 102, 452–460.

Zhang, Z. and Satpathy, S. (1991) Electron states, magnetism, and Verwey transi-tion in magnetite. Physics Review B, 44, 13319–13331.

M ANUSCRIPT RECEIVED M ARCH 9, 1999

M ANUSCRIPT ACCEPTED OCTOBER 25, 1999

P APER HANDLED BY M ICHAEL E. F LEET

2020市场推广年度工作计划模板(完整版)

计划编号:YT-FS-3872-21 2020市场推广年度工作计划模板(完整版) According To The Actual Situation, Through Scientific Prediction, Weighing The Objective Needs And Subjective Possibilities, The Goal To Be Achieved In A Certain Period In The Future Is Put Forward 深思远虑目营心匠 Think Far And See, Work Hard At Heart

2020市场推广年度工作计划模板(完 整版) 备注:该计划书文本主要根据实际情况,通过科学地预测,权衡客观的需要和主观的可能,提出在未来一定时期内所达到的目标以及实现目标的必要途径。文档可根据实际情况进行修改和使用。 1 市场部职能 2 市场部组织架构 3 市场部工作计划 4 市场部xx年销售计划 实行精兵简政、优化销售组织架构 实行严格培训、提升团队作战能力 科学市场调研、督促协助市场销售 协调职能部门、树立良好企业文化 把握市场机会、制定实施销售推广 信息收集反馈、及时修正销售方案 一市场部职能: 市场部直接对销售总经理负责,是企业的灵魂,

其工作职能在生产、销售、服务中的作用十分重要,是销售环节核心的组成部分,作为市场部,重要的工作是协助总经理收集、制订、执行。衡量市场部工作的标准是:销售政策、推广计划是否科学、执行力度是否严谨。 1.市场部作用: 直接对总经理负责,协助总经理进行市场策划、销售计划的制定和实施。 督促销售部对销售计划进行事实。 全面协调各部门工作职能。 是企业的灵魂。 2.市场部工作标准: 准确性 及时性 协调性 规划力 计划性 执行力

《驱动电机及控制技术》课程标准-电气自动化专业

《电机驱动技术》课程标准 一、课程基本信息 二、课程定位与作用 (一)课程定位 《电机驱动技术》课程的开设是通过深入企业调研,与专业指导委员会专家共同论证,根据工作任务与职业能力分析,以必须、够用为度,以掌握知识、强化应用、培养技能为重点,以机电一体化相关工作任务为依据设置本课程。 (二)课程的作用 《电机驱动技术》课程是机电一体化专业必修的一门专业核心课程。是在电工电子、电力拖动等课程基础上,开设的一门综合性较强的核心课程,其任务是使学生掌握常用电动机的结构及其控制方法,培养学生对常用电动机的结构原理分析及控制策略的设计能力;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。 三、课程设计理念 《电机驱动技术》课程的设计以生产实际中的具体案例为主,其服务目标是以就业为导向,以能力为本位,以素质为基础。注重实用性,坚持以实为本,避开高深理论推导和内部电路的过细研究,适当降低理论教学的重心,删除与实际工作关系不大的繁冗计算,注重外部特性及连线技能,同时兼顾对学生素质、能力的培养,做到既为后续课程服务,又能直接服务于工程技术应用能力的培养。 四、课程目标 学生通过学习《电机驱动技术》课程,使学生能掌握机电设备常使用的几种电动机--直流电动机、交流感应电动机、交流永磁电动机和开关磁阻电动机的结构、原理及应用以及驱动电动机的结构及其控制方法。熟悉电机调速、分析及控

制。结合生产生活实际,培养学生对所学专业知识的兴趣和爱好,养成自主学习与探究学习的良好习惯,从而能够解决专业技术实际问题,养成良好的工作方法、工作作风和职业道德。 【知识目标】 掌握驱动电机的结构原理及应用,掌握功率变换器电路及其应用技术,驱动电机控制技术及新型电机的结构特点与选用。 【能力目标】 能对对驱动电机各种控制电路进行选择、应用和设计,能够准确描述各种电机控制技术的控制原理及特点,并针对不同电机选用不同的控制方式。 【素质目标】 能整体把握驱动电机及控制技术的应用及在日后的工作中解决实际问题。培养学生实事求是的作风和创新精神,培养学生综合运用所学知识分析问题和解决问题的能力,培养学生一丝不苟的工作作风和良好的团队协作精神。 五、课程内容设计 根据学院对机电一体化专业人才培养方案的要求,结合就业岗位的技能需求,按照职业教育理念,本课程设计了三个教学项目,具体内容如下:

MPV底盘对比 宝骏730 VS 长安欧尚 来源:汽车之家 编辑:王鹤璇

MPV底盘对比宝骏730 VS 长安欧尚来源:汽车之家编 辑:王鹤璇 1前悬架结构对比[汽车之家底盘解析] 在国内热销MPV月度排行榜中,宝骏730与长安欧尚已经是榜中常客,甚至还经常成为月销前三甲的最热门车型。它们外观时尚、配置丰富、价格亲民(宝骏730指导价为6.08-8.98万元,欧尚指导价为5.19-6.49万元),有这样的销售成绩也可谓是实至名归。之前我的同事对这两款车型的外观、内饰、空间、动力做了比较详细的对比(对比文章),那今天我们就来聊一聊之前没有提及的部分,一起来看看这两款车的底盘有着怎样的表现吧。■ 阅读提示■ 我们进行底盘解析对比的车型我们用于拍摄底盘的车型为2016款宝骏730 1.5L手动舒适型(以下简称宝骏730,厂商指导价为7.58万元)和2016款欧尚1.5L手动豪华型(以下简称欧尚,厂商指导价为6.49万元)。 ■ 底盘全景图 这次两款车型均采用前麦弗逊后扭力梁的悬架搭配。当然,不同品牌的这两款车在结构设计以及底盘做工细节上肯定有着诸多差异。下面为您带来详细解析。■ 前悬架对比 这两款车均采用了麦弗逊式前悬架。麦弗逊式悬架由A型下控制臂与弹簧支柱共同组成,车轮的通过轴承座、弹簧支柱、

下控制臂与车身相连。其中弹簧支柱集成了减振弹簧与减振器,这根支柱不仅起承担车体、减振的作用,而且还要承受车身的横向力。下控制臂承担悬架系统的横向与纵向载荷。麦弗逊式前悬架具有结构简单、质量轻、占用空间小的优点。在紧凑型车或更小级别的车型上,大多采用此类前悬架形式。 虽然两款车型都采用了麦弗逊式前悬架,但在具体的设计方面还是有着较大的区别。宝骏730采用的是H型副车架,在车辆的轻量化方面占优;右侧传动轴装配有阻尼块,以抑制特定转速下它与其他部件产生共振;发动机油底壳最下方为钢板材质,可独立拆卸,维修更换更为方便,且配备了比欧尚更大一些的发动机下护板。欧尚采用的是全框式副车架,可以增强正碰防护性能,同时对提升车辆前部刚性也有一定的帮助;右侧传动轴配备了万向节,使左右传动轴长度趋于一致,半轴与水平面夹角相等,这样可以最大程度的抑制扭矩转向;发动机油底壳的最下方为铝合金材质,属于轻量化设计。2后悬架结构对比■ 后悬架对比宝骏730与欧尚的后悬架均为扭转梁式非独立悬架。这种悬架的扭转梁的断面呈V型或U型,两端与纵臂焊接后成为一个整体。纵臂前端通过橡胶衬套与车身相连,后端连接在轴承座与减振器上。在汽车行驶时,车轮带动纵臂与扭转梁上下摆动,依靠扭转梁发生的扭转变形力矩来平衡车身,有效地减小了车辆行驶时的侧倾问题。

市场部营销推广工作计划4(完整版)

计划编号:YT-FS-1634-77 市场部营销推广工作计划 4(完整版) According To The Actual Situation, Through Scientific Prediction, Weighing The Objective Needs And Subjective Possibilities, The Goal To Be Achieved In A Certain Period In The Future Is Put Forward 深思远虑目营心匠 Think Far And See, Work Hard At Heart

市场部营销推广工作计划4(完整版) 备注:该计划书文本主要根据实际情况,通过科学地预测,权衡客观的需要和主观的可能,提出 在未来一定时期内所达到的目标以及实现目标的必要途径。文档可根据实际情况进行修改和使用。 针对市场部的工作职能,我们制订了市场部×× 年工作思路,现在向大家作一个汇报: 一、建立酒店营销公关通讯联络网 今年重点工作之一建立完善的客户档案,对宾客 按签单重点客户,会议接待客户,有发展潜力的客户 等进行分类建档,具体记录客户的所在单位,联系人 姓名,地址,全年消费金额及给该单位的折扣等,建 立与保持同政府机关团体,各企事业单位,商人知名 人士,企业家等重要客户的业务联系,为了巩固老客 户和发展新客户,除了日常定期和不定期对客户进行 销售访问外,在年终岁末或重大节假日及客户的生日, 通过电话、发送信息等平台为客户送去我们的祝福。 今年计划在适当时期召开次大型客户答谢联络会,以

加强与客户的感情交流,听取客户意见。 二、开拓创新,建立灵活的激励营销机制。开拓市场,争取客源 今年市场部将配合酒店整体新的营销体制,重新制订完善××年市场市场部销售任务计划及业绩考核治理实施细则,提高营销代表的工资待遇,激发、调动营销人员的积极性。营销代表实行工作日记志,每工作日必须完成拜访两户新客户,三户老客户,四个联络电话的二、三、四工作步骤,以月度营销任务完成情况及工作日记志综合考核营销代表。督促营销代表,通过各种方式争取团体和散客客户,稳定老客户,发展新客户,并在拜访中及时了解收集宾客意见及建议,反馈给有关部门及总经理室。 强调团队精神,将部门经理及营销代表的工薪发放与整个部门总任务相结合,强调互相合作,互相帮助,营造一个和谐、积极的工作团体。 三、热情接待,服务周到 接待团体、会议、客户,要做到全程跟踪服务,

驱动电机与控制技术技术试卷(A)

院 年 学期新能源汽车驱动电机技术课程试卷 共 3 页第 1 页题次 一 二 三 四 总分 得分 第一部分.概念辨析模块 请判断下列说法是否正确,正确在括号内画“√”,错误则在括号内画“×” (共25分,每空1分) ( )1、新能源汽车要求驱动电机体积小、质量轻,具有高可靠性和寿命长。 ( )2、新能源汽车无需要求驱动电机全速段高效运行。 ( )3、电机驱动系统一般由电动机、功率变换器、传感器和控制器组成。 ( )4、直流电机一般具有电刷装置和换向器。 ( )5、电刷装置的作用是把直流电压、直流电流引入或引出。 ( )6、磁导率是表示物质导磁性能的参数。 ( )7、直流电机的工作原理是通电直导线在磁场中受力。 ( )8、交流异步电机的工作原理是由三相交流电在定子绕组中产生旋转磁场,从而在鼠笼中产生感应电流,从而在磁场中受力。 ( )9、永磁同步电机的工作原理是通过电子开关电路产生旋转磁场,转子根据磁阻最小的原理进行旋转。 ( )10、无刷直流电机的工作原理是通过电子开关产生旋转磁场,转子跟随磁场旋转。 ( )11、开关磁阻电机的工作原理是三相交流电在定子绕组中产生旋转磁场,由永磁铁构成的转子跟随旋转磁场旋转。 ( )12、直流电机调速性能好,启动转矩大。 ( )13、直流电机控制复杂,易磨损。 ( )14、交流异步电机具有高可靠性,制造成本高。 ( )15、无刷直流电机无换向器和电刷,结构简单牢固,尺寸和质量小,基本免维护。 ( )16、开关磁阻电机一般定子凸极比转子凸极少两个。 ( )18、开关磁阻电机的成本相对而言最低。 ( )19、功率二极管基本结构和工作原理与电子电路中的二极管都是相同的。 ( )20、占空比指的是电力电子开关的导通时间与开关周期之比。 ( )21、直流斩波电路只有降压斩波电路。 ( )22、PWM 整流电路采用脉冲宽度调制控制,能够实现电能双向变换。 ( )23、轮毂电机结构简单、布置灵活,车辆的空间利用率高,传动系统效率高。 ( )24、开关磁阻电机的噪音较大。 ( )25、永磁同步电机和无刷直流电机的转子结构相似,都是由永磁铁组成。 第二部分.基本知识模块 下列题目只有一个正确答案,请选择正确答案并将代码填写在括号里。 (共15分,每题1分) 1.交流异步电机的转速为( )r/min 。 A 4000-6000 B 12000-15000 C 4000-10000 D >15000 2.永磁同步电机的转速为( )r/min 。 A 4000-6000 B 12000-15000 C 4000-10000 D >15000 3.磁通所通过的路径称为( ) A 磁感线 B 磁场强度 C 磁路 D 磁阻 4.用于制造永久磁铁和扬声器的磁钢的是( )。 A 硬磁材料 B 软磁材料 C 矩磁材料 D 普通材料 5.用于制造计算机中磁存储元件的磁芯、磁棒和磁膜等的是( )。 A 硬磁材料 B 软磁材料 C 矩磁材料 D 普通材料 6.用于制造电动机、变压器和继电器的铁芯的是( )。 A 硬磁材料 B 软磁材料 C 矩磁材料 D 普通材料 7.右图的电路符号所示为( )。 A 功率二极管 B 功率MOSFET C IGBT D GTR 8.功率MOSFET 指的是( )。 系 班 级 姓 名 学 号 命题教师 教研室负责人 系 负责人 试卷类型 A ………………………………………密封线………………………………………密封

地铁车辆再生制动能量利用方案

地铁车辆再生制动能量利用方案 摘要:目前,节能减排已成为我国的基本国策,建设低碳型交通基础设施、推广应用低碳型交通运输装备是城市轨道交通建设者责任。地铁由于站间距比较短,制动频繁、列车起动,考虑各钟车型、站距、编组、发车间隔等差异,列车电制动时产生的再生能量可达到牵引能量的40%以上。充分利用列车再生能量将节约大量能量,产生效益可观,为节能减排做出贡献。西安市地铁已经运营1、2号线,在建3、4、5、6号线,如何在保证线路运行安全的前提下,提高供电水平,同时为城市节能减排做出贡献,是我们必须考虑的问题。 关键词:轨道交通;列车制动;能量回馈 1 传统列车车载制动电阻方案存在的问题 目前国内外城市轨道交通动车组列车均采用VVVF牵引/制动系统,采用交流电机驱动列车,制动系统普遍采用空气制动和电制动混合的形式。列车在运行时,牵引系统将电能转为机械能,使机车启动加速;在制动时,一部分采用电制动,将机械能转为电能使列车制动,另一部分采用空气制动,通过刹车闸瓦与车轮踏面摩擦而产生制动使列车减速。传统列车上设置了车载制动电阻。当列车制动时,首先采用再生制动方式,列车电机从电动机状态转换为发电机状态,将机械能转换为电能返回到牵引网系统,返回到牵引网系统的能量部分被相邻列车吸收,由于线路的行车密度等多种因素,很大部分能量不能被回馈,此时大量电能量得不到释放,将会使系统供电网电压

急剧上升,为此列车上设置了制动电阻,将这部分能量通过电阻变成热能吸收,稳定系统电压。电阻所转化的热能,车站环控专业通过隧道活塞风、车站轨顶排风和车站轨底排风,将热量排出车站外。 车载制动电阻使用虽然方便,但也有缺点:(1)列车制动电阻吸收再生制动能量转换为热能白白消耗了,没有起到节能减排作用。(2)列车制动电阻吸收再生制动能量转换为热能散于隧道内,虽然部分可以通过隧道活塞风排出隧道,但还有部分遗留在隧道,这部分热量使隧道温升逐步上升;(3)列车制动电阻重量大,列车运行时,不仅没有节能,还增加列车牵引能耗。(4)制动电阻体积大,而且考虑制动电阻散热需在列车上安装通风设备,这样会使列车底部其他设备安装布局困难;(5)制动电阻发热会对车体底板形成烘烤效应,有引发火灾危险。(6)列车采用车空气制动,增加闸瓦的损耗,加大车辆维修工作量,提高了运营成本,摩擦闸瓦产生大量金属粉尘,造成环境污染。 2 国内外现状 在国外城市轨道交通运输系统中,再生制动能量吸收技术发展历程主要有车载电阻耗能式、逆变回馈式、超级电容储能式以及飞轮储能式吸收等。其中最先发展的车载电阻耗能式因其可靠、结构简单等优点应用最为广泛,相对较少的是能量回馈式和能量存储式的应用。国外轨道交通研究制动能量吸收技术较早,已有成熟产品,而国内在这方面的研究刚起步,使用车载电阻耗能式较多,不能够很好的把再生制动能量充分利用起来。 图1 2.1 车载电阻耗能型吸收

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

营销年度工作计划正式版

Making a comprehensive plan from the target requirements and content, and carrying out activities to complete a certain item, are the guarantee of smooth implementation.营销年度工作计划正式版

营销年度工作计划正式版 下载提示:此计划资料适用于对某个事项从目标要求、工作内容、方式方法及工作步骤等做出全面、 具体而又明确安排的计划类文书,目的为完成某事项而进行的活动而制定,是能否顺利和成功实施的 重要保障和依据。文档可以直接使用,也可根据实际需要修订后使用。 1. 长远目标:20xx年实现行业品牌效应 2. 1-2年目标:打好营销内部基础,抓好产品品质,树立好辉达品牌在消费者心中的形象,调研市场需求,开发设计新产品,不断的完善产品链,推动好企业正式运行品牌渠道销售进程。 3. 20xx年度目标: ①. 业绩目标 理想目标:0.7个亿基本目标:0.5亿 产品种类:电子人体秤电子厨房秤

电子厨房秤电子营养秤电子口袋秤机械人体秤机械厨房秤 ②. 营销团队:6-8人 ③. 市场覆盖面:国内范围发展、一线城市、二线城市为主拓展到地级市国外市场主要以欧美亚洲市场为主. ④. 市场占有率:3%-5% ⑤. 其他目标: 外贸销售目标:做电子衡器的专业贸易公司 渠道销售目标:做国内家用电子秤行业领军者 构建正常运转的营销管理体制; 组建优秀的营销团队; 一、市场调研与分析

(一)经营环境 1. 国际经营环境 整个国际环境经济萎靡,大部分垮地区、垮国界的投资在衰退。小型家用电子产品国际贸易有上升趋势 2. 国内经营环境 一线城市不断成熟,二线城市不断崛起,国家经济重点开发区快速发展 (二) 市场需求 1. 行业环境:随着人们生活的稳定,品味的提高,消费者对美的追求,对人体秤也越来越受女性朋友的追捧,随着人们健康的要求也越来越高,厨房秤也随之走进千家万户。市场需求在不断提高,行业处于快速发展期。

市场推广年度工作计划范文

市场推广年度工作计划范文 推广年度时间:20**0月——20**2月31日 年度销售任务:6125万 年度推广费用:340万 策略阐述: 根据市场现状及竞争对手的状况来看,照明行业走到今天,经验主义、行业瓶颈等已经影响整个照明行业的发展,整个行业的抄袭之风成灾,照明营销走到今天已经失去了创新、发展的激情,在世界营销大变革 的时代,完全套用行业内多年前的成功模式已经失去意义。 · 在市场推广的整体区域规划中我们将采用集中资源、局部突破并最 后影响全国市场形成特有的安尚营销模式,利用有限的资源集中投放 在少数几个重点市场,在短时间内占据区域市场份额的前列,再将区 域市场的营销模式总结分析,快速在全国实行推广,完成全国市场的 战略布局; · 在市场推广的产品规划中,我们拟采用单个特色化产品、优势(成 本优势或技术优势等)产品的重点推广带动整个产品群的提升,确定 其在照明行业某一领域的补缺和领导地位,进而通过一系列的市场运作,影响、带动其它相关产品群的提升; · 在市场推广的策略组合中,我们拟希望通过突破传统的照明行业推 广手段,选择性的导入其它行业的成功推广模式,以品牌主题推广影 响市场推广,以市场推广加速品牌影响,并根据不同时期内市场情况 通过组织数次“海陆空”式的纵深立体化战役推广,分步骤的实现营 销推广目标。 · 在推广的目标受众选择上我们前期主要集中在行业内的专业人士以 及渠道经销商、工程建筑商、承包商等,逐步建立在行业内的专业品

牌地位,再根据流通类产品的推出,再将推广的重心向目标消费群体转移,完成专业领域的强势品牌向大众化品牌的转化。 · 推行体验营销,围绕核心竞争力以服务为舞台、以商品为道具、以消费者为中心,创造、设计一系列能够使消费者参与、值得消费者回忆的活动(路演)模式,让消费者亲自体验安尚照明带来的利益; · 以行业内、跨行业、渠道内、渠道外的联合促销为主要推广方式,化的利用传播资源,形成一个立体的装饰、建筑消费整体。 【一、推广目标】 · 销售任务目标:完成年度销售任务6125万; · 广告宣传目标:在推广年度内确立行业内专业品牌地位,在行业内具有一定知名度; · 渠道目标:完成全国布点任务,在全国主要一、二类市场建立销售网点;并在推广年度末在全国范围内建立100家以上专卖店;全国隐性渠道体系的建立。 · 管理目标:在推广年度内建立完善的推广策划、执行、反馈、评估体系; · 产品目标:完善产品线;确立在市场竞争力的核心产品群。 【二、推广目标受众】 · 推荐作用类:设计院、监理公司、建委; · 目标客户类:建设单位、房地产公司、装修公司等 · 渠道成员:经销商、导购人员、员工等 【三、重点推广区域】 全国发达地级市以上市场

城市轨道交通再生制动能量回收系统研究

华东理工大学 毕业设计(论文) 题目城市轨道交通再生制动能量 回收系统研究 学院华东理工大学 专业电气自动化 年级 2016 学号 26140118 姓名 导师 定稿日期: 2016年 11月12 日

摘要 城市轨道交通作为一种运量大、速度快、污染少、舒适性好的交通工具,很有力的缓解大中型城市乘车难、环境污染及交通拥堵等难题。近年来我国着力发展城市轻轨和地铁,本文主要以地铁作为研究对象。城市轨道交通站间距离短、运行密度高,机车频繁制动吋产生相当可观的再生能量,将产生的能量得以利用,不仅节约能源、保护环境同时降低电压利于机车安全运行。再生制动产生的能量得以利用是本文研究的重点,提出逆变电阻混合型再生制动能量吸收方案。本课题以建立地铁再生制动及能量吸收仿真平台为目的,利用仿真软件建立机车运行制动模型及混合型能量吸收模型。首先,分析和总结几种城市轨道交通车辆制动方案的优缺点,重点研究馈能型再生制动方案的基本原理及主要技术问题,提出逆变电阻混合型再生制动能量吸收方案。然后基于电阻制动原理,结合逆变并网电阻制动方案进行建模、仿真分析,并对再生制动产生功率及电流进行粗略的计算。 关键词:再生制动;逆变并网;电阻制动 Abstract

As a large capacity, fast speed, less pollution and comfortable transportation, urban rail transit effectively alleviate the transportation pressure of the large and medium-sized city, environmental pollution and traffic congestion . In recent years, China began to develop the light rail transit and subway. The subway stations has shorter distance and locomotive has haig density running. During locomotive frequently braking, it produced considerable regeneration energy. Reasonable utilization of the regeneration energy not only save energy, protect environment but also reduce the regeneration energy not only save energy, protect environment but also reduce the voltage grade for the locomotive’s safety operation. This paper is the focus on utilization of the regeneration energy, and The inverter-resistance hybrid method is propose. This topic is purposed to build Metreo regenerative braking and inverter-resistance hybrid energy absorption model by simulation software. Firstly, the urban rail transit power supply system has been introduced. Several vehicle braking scheme has been summarized and analyzed for their advantages and disadvantages. The inverter-resistance hybrid of regenerative braking energy absorption solution has been purposed. Secondly, combined with inver and resistance braking scheme, the model was built analyze and the power and current ofregenerative braking was computd.

2020市场部年度营销工作计划

2020市场部年度营销工作计划 导读:本文是关于2020市场部年度营销工作计划,希望能帮助到您! 伴随着万达购物广场的落成,市场部始终坚信“公司的战略是清晰的,定位是准确的,决策是正确的”,随着发展适时调整适合现阶段中国市场发展的商业营销模式,快速确定了最合适的营销理念。职务分析,万达购物广场市场部,主要负责购物广场战略目标的规划,对市场“商场如战场”发展趋势做出预测,对目标客户的需求做出判断,对竞争对手和潜在竞争对手的策略做出分析。包括广告宣传、公关活动、促销活动、讲座与展会,以及网上资料、印刷资料、音像资料的制作。正常来讲他们并不大量接触零散的客户,而是紧盯住一个目标客户“群体”去做工作,去激发他们的潜在需求。因此,在下一年的工作规划中,将针对以下几点工作来进行。 一、主要竞争对手分析 就现阶段而言,我市各大购物广场的销售额主要是依靠制造各种形式的活动,让利于消费者、吸引消费者,从而达到引导消费者消费、提升自身销售额的目的。作为我们而言,市场的分析是重中之重,如何把握市场发展趋势,在众多商家、众多活动中脱颖而出,吸引更多的消费者,创造更多价值,在招数上出奇制胜非常关键。也是我们在 2020 年的工作重点。 去年我们着重对全国的商业模式进行了考察,大连万达模式对我们深受启发我们也通过网络了解和电话咨询等进一步了解到万达的整体策划也不是他们自己搞的完全是依赖大连的展览公司。整体策划是以 4t 商业营销模式为基础以休闲、体验、互动、娱乐四大元素组成,直击网络购物的致命弱点,他们在策划方案中融入各种展览旅游文化教育等形成互位交叉

和资源共享购物广场在营销策划上逐渐向以服务为轴心的商业综合体转化;将原来的美陈的投资大量压缩全部采用租赁的模式。他们的策划方案深受启发很值得我们学习和借鉴。这一点我们市场部已经开始学习和贯彻《商业 4t 营销理论》。把我们原来的供应商体系重新做了梳理,引进大连几家专业从事展览器材及展品租赁的供应商,这样我们将大大节省了 2020 年商业美陈的投入。并随时关注大连万达的发展动向,即时做出调整。购物广场的壮大,离不开新老顾客不间断的物质资助。不断把潜在顾客变为顾客,把顾客变为老顾客、忠实顾客,也将是购物广场发展的必由之路。因此,发展会员,推行会员卡,同时不断通过相关活动把顾客提升为沈阳大悦城家族的一分子、一部分,应是2020年战略规划之一,而会员卡也将在下一年的各个活动中具体体现和运用起来。 二、广告公关 我们做广告的目的,就是第一在消费者心目中树立良好、牢固的企业形象,提高美誉度和认同度;其二就是借助广告媒体对商业信息进行有效传递,提升实效性。两相结合,才是相对完善的广告宣传。 长期以来,我们的广告媒体主要是以电视字幕广告为主流媒体,从实效性来看,的确具有一定的效果,但是作为主流媒体,欠缺的是无法将形象树立在市民心中,而对于现代广告营销而言,电视字幕、短信等广告媒体也只是起到发布信息的作用,并没有完全发挥出“广告形象宣传”的作用。在 2020 年,首要的任务则是根据以往收集来的各广告公司、广告媒体进行深入分析,确定出着实适合我们企业的主流媒体作为宣传平台,并根据该媒体特点制定长期宣传战略,使其切实为我们服务,达到真正广告宣传的目的。其次,在依托主流媒体进行形象宣传的同时,尽可能多地通过各种方式增加社会影响力,如制造新闻看点、发展大型文化主题巡展等

市场推广年度工作计划(标准版)

市场推广年度工作计划(标准 版) Through the work plan, you can make a plan for future work and work out a detailed plan; the work plan function greatly improves work efficiency. ( 工作计划) 部门:_______________________ 姓名:_______________________ 日期:_______________________ 本文档文字可以自由修改

市场推广年度工作计划(标准版) 导语:通过工作计划,可以对未来工作进行一个规划,制定出详细计划;这样能让工作更有条理性,还能对工作进行全局的管理,可以更好的应对工作中遇到的问题,工作计划功能对提升工作效率有很大提升。 推广年度时间:20**0月——20**2月31日 年度销售任务:6125万 年度推广费用:340万 策略阐述: 根据市场现状及竞争对手的状况来看,照明行业走到今天,经验主义、行业瓶颈等已经影响整个照明行业的发展,整个行业的抄袭之风成灾,照明营销走到今天已经失去了创新、发展的激情,在全球营销大变革的时代,完全套用行业内多年前的成功模式已经失去意义。 ·在市场推广的整体区域规划中我们将采用集中资源、局部突破并最后影响全国市场形成特有的安尚营销模式,利用有限的资源集中投放在少数几个重点市场,在短时间内占据区域市场份

额的前列,再将区域市场的营销模式总结分析,快速在全国进行推广,完成全国市场的战略布局; ·在市场推广的产品规划中,我们拟采用单个特色化产品、优势(成本优势或技术优势等)产品的重点推广带动整个产品群的提升,确定其在照明行业某一领域的补缺和领导地位,进而通过一系列的市场运作,影响、带动其它相关产品群的提升; ·在市场推广的策略组合中,我们拟希望通过突破传统的照明行业推广手段,选择性的导入其它行业的成功推广模式,以品牌主题推广影响市场推广,以市场推广加速品牌影响,并根据不同时期内市场情况通过组织数次“海陆空”式的纵深立体化战役推广,分步骤的实现营销推广目标。 ·在推广的目标受众选择上我们前期主要集中在行业内的专业人士以及渠道经销商、工程建筑商、承包商等,逐步建立在行业内的专业品牌地位,再根据流通类产品的推出,再将推广的重心向目标消费群体转移,完成专业领域的强势品牌向大众化品牌的转化。

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

2019年市场推广工作计划模板

2019 年市场推广工作计划模板 20xx 年公司成立市场部,它是公司探索新管理模式的重大变革。但在经过一年之后,市场部成为鸡肋,嚼之无味,弃之可惜; 市场部除了做了很多看起来似是而非的市场活动,隔靴搔痒的市场推广,就是增加了很多直接或间接的费用,而看起来对市场没什么协助。但在公司领导高层的支持和我们持续地学习中,在后几个月的工作中也探索我们的生存和发展之路,在公司的各项市场活动中,公司资源整合过程中,持续进步。 二、【工作思路】 1、明确工作内容 首先就必须让市场部从围绕营业部转、担当营业内勤的角色中快速转变过来,从事务型的办公室职能里解脱出来,真正赋予市场部战略规划、策略制定、市场调研、产品开发等基本的岗位职能,以消费者需求为中心,根据不同的市场环境,对市场运作实行策划及指导。 2、驻点营销 驻点市场的推行既锻炼、提升市场部人员自身,又贴身服务了一线业务人员,市场部只有提供了这种贴身、顾问、教练式的全程跟踪服务,市场部才能彻底改变一线人员对其的片面看法。(此工作策略需建立在市场部有较宽松及多余的自由支配工作时间及较合理的人员配备条件下展开实施) 市场部驻点必须完成六方面的工作: a、通过全面的调研,发现市场机会点,并针对性地拿出市场提升方案; b搜集竞争品牌产品和活动信息,捕获市场消费需求结合行业发展趋势,提出新产品的开发思路; C、指导市场做好终端标准化建设,推动终端门店健康稳定发展 d、针对性地制定并组织实施促销活动方案,对市场促销、费用及政策使

用情况实行核查与落实,发现情况即时予以上报处理。 e、即时全面宣贯公司政策,提升一线人员的战斗力;制定不同时期的有针对性的员工激励方案,提升员工积极性,进一步为公司提升竞争力; f 、在市场实践中搜集整理亮点案例,重点总结出方法和经验,即时推荐给市场复制; 3 、与营业部强强联合,营运部相互配合促动提升,成立品牌推广小组市场部要在市场一线真正发挥作用,除了调整市场部定位及提升市场部自身服务水平外,还离不开一线部门的支持和配合。如果得不到市场一线的认可和有效执行,即使再好的方案,最终也只能是一纸空文。由市场部和营业部两部门的主管和骨干组成品牌小组,由市场部确定活动企划方案,再由品牌小组成员发表意见,主要对方案提出看法和改进建议,对于需进一步修改完善的方案,由市场部负责调整; 对于会议讨论通过的方案,由总经办最终确认执行,交营业部执行,由品牌小组负责跟踪执行进度和效果。而公司的态度和做法,决定了市场部能否与营业部实现共融和共荣。品牌小组计划主要执行工作: 1.【规范终端门店品牌形象】20xx 年4-5 月份制定家家知连锁门店统一门店形象标准,包括门店陈列规范、音乐播放(不同季度及节日音乐)、家家知统一服务礼仪、家家知终端宣传品使用规范等终端门店统一形象,方便对家家知连锁品牌的统一性实行规范; 2.【门店稽核管理制度】由品牌小组成员及总经办成员组成门店督察小组,建立门店稽查制度,不定期对上述第一条中规范内容实行稽查,稽查结果算入门店店长及责任员工绩效考核中,协助公司建立统一的终端形象和后期品牌形象的管理维护; 品牌小组组成: 组长:市场部经理副组长:营运部总监顾问:副总经理 执行队长:营业部经理组员:门店主管 备注:各项规范制度由整个品牌小组共同协商制定,经总经办批准确定后长期执行,后期门店运营管理中,品牌小组中成员每次对门店实行巡店均为一次稽核过程,稽核内容如上,稽核过程中会根据各项稽核内容对门店店长及

电动车驱动电机和控制技术综述

电动车驱动电机及其控制技术综述 摘要:简述了电动车驱动系统及特点,在此基础上详细分析并比较了电动车主要电气驱动系统,着重介绍了一种深埋式永磁同步电动机及其控制系统,最后简要概述了电动车电气驱动系统的发展方向。 1 概述 电动车是一种安全、经济、清洁的绿色交通工具,不仅在能源、环境方面有其独特的优越性和竞争力,而且能够更方便地采用现代控制技术实现其机电一体化的目标,因而具有广阔的发展前景。 现有电动车大致可以分为以下几个主要部分:蓄电池、电池管理、充电系统、驱动系统、整车管理系统及车体等。驱动系统为电动车提供所需的动力,负责将电能转换成机械能。无论何种电动车的驱动系统,均具有基本相同的结构,都可以分成能源供给子系统、电气驱动子系统、机械传动子系统三部分,其中电气驱动子系统是电动车的心脏,主要包括电动机、功率电子元器件及控制部分。如图1所示。 其中,电动车驱动系统均具有相同或相似的功能模块,如图2所示。 2 电动车电气驱动系统比较 电动机的类型对电气驱动系统以及电动车整体性能影响非常大,评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车电动机主要有直流电动机、感应电动机、永磁无刷电动机、开关磁阻电动机四类。由这四类电动机所组成的驱动系统,其总体比较如下表所示。 电动车电气驱动系统用电动机比较表 下面分别对这几种电气驱动系统进行较为详细地分析和阐述。 2.1 直流驱动系统

直流电动机结构简单,具有优良的电磁转矩控制特性,所以直到20世纪80年代中期,它仍是国内外的主要研发对象。而且,目前国内用于电动车的绝大多数是直流驱动系统。 但普通直流电动机的机械换向结构易产生电火花,不宜在多尘、潮湿、易燃易爆环境中使用,其换向器维护困难,很难向大容量、高速度发展。此外,电火花产生的电磁干扰,对高度电子化的电动汽车来说将是致命的。此外,直流电动机价格高、体积和重量大。随着控制理论和电力电子技术的发展,直流驱动系统与其它驱动系统相比,已大大处于劣势。因此,目前国外各大公司研制的电动车电气驱动系统已逐渐淘汰了直流驱动系统。 2.2 感应电动机驱动系统 2.2.1 感应电动机 电动车感应电动机与一般感应电动机相比较具有以下特征: (1)稳定运行时,与一般感应电动机工况相似。 (2)驱动电动机没有一般感应电动机的起动过程,转差率小,转子上的集肤效应不明显。 (3)运行频率不是50hz,而是远远在此之上。 (4)采用变频调速方式时,转速与极数之间没有严格对应关系。 为此,电动车感应电动机设计方面如下特点: (1)尽力扩大恒转矩区,使电动机在高速运转时也能有较高转矩。而要提高转矩,则需尽量减小定转子之间的气隙,同时减小漏抗。 (2)更注重电动机的电磁优化设计,使转矩、功率和效率等因素达到综合最优。 (3)减少重量、体积,以增加与车体的适配性。 2.2.2 控制技术 应用于感应电动机的变频控制技术主要有三种:v/f控制、转差频率控制、矢量控制。20世纪90年代以前主要以pwm方式实现v/f控制和转差频率控制,但这两种控制技术因转速控制范围小,转矩特性不理想,而对于需频繁起动、加减速的电动车不太适宜。近几年

相关文档