文档库 最新最全的文档下载
当前位置:文档库 › 四年级列方程解应用题—找等量关系

四年级列方程解应用题—找等量关系

四年级列方程解应用题—找等量关系
四年级列方程解应用题—找等量关系

找等量关系列出方程

★方程指的是“含有未知数的等式”。

☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。

则列方程解应用题的关键是——找出相等关系

......,找出了相等的关系,方程也就可以列出来了.找等量关系常见方式有:

一、抓住数学术语找等量关系

一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。

习题1.某数与7的和的2倍是20,求这个数。

2.某数的一半与5的差是8,求这个数。

3.某数的2倍与5的差的3倍等于3,求这个数。

4.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?

(方法一)

(方法二)

5. 一个数的3倍与9的和恰好等于这个数的6倍,求这个数。

6.甲组4名工人1月完成的总工作量比该月人均定额的4倍多20件,乙组5名工人1月完成的总工作量比该月的人均定额的6倍少20件。

(1)设月人均定额为X件,则甲组人均生产量为乙组人均生产量为

(2)若两组工人人均生产量相等,可列方程为

(3)若甲组人均生产量比乙组多2件,可列方程为

(4)若甲组人均生产量比乙组少2件,可列方程为

二、根据常见的数量关系找等量关系

最常见的数量关系:

1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)

2.单价×数量=总价(总价÷单价=数量总价÷数量=单价)

★关于打折的问题:打几折=原价×百分之几十

3.工作效率×工作时间=工作总量

(工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率)

4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率)

习题:1.已知皮划艇500米最好成绩是1.65分钟,求平均速度?

2.学校跑道是200米环形跑道,小明跑完5个圈共用了4分钟,求他的平均速度。

3.小李30天一共跑了45000米,小张平均每天跑的距离比小李多200米,问小张30天一共跑了多远?

4.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。

5.李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和为15元,求文具盒的单价。

6.某项工程,甲队单独完成需要12天,乙队单独完成所需的天数是甲队的2倍。

(1)两队共同完成该工程需要多少天?

(2)若两队先合作了4天,余下部分由甲队单独完成,还需要多少天完成工程?

(3)若甲队先做3天,余下部分由两队合作,问一共需要多少天才完成工程?

三、根据常用的计算公式找等量关系

最常用的计算公式有:

1.正方形周长=边长×4 正方形面积=边长×边长=(边长)2

2.长方形周长=(长+宽)×2 长方形面积=长×宽

3.三角形面积=(底×高)÷2 梯形面积=(上底+下底)×高÷2

习题:1.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。

2.长方形的周长为20米,已知长比宽的2倍少2米,求它的面积。

3.三角形面积是20,底边长为8,求高。

4.梯形的下底比上底多2米,高5米,面积为40平方米。求梯形上底。

5.一个两位数,已知其十位上的数字比个位上的数字大2,若将其十位上的数字与个位上的数字对调,则得到的新的两位数比原两位数小18,求原两位数。

6.已知三个连续奇数的和为105,求这三个奇数。

四、理解文字找等量关系。

习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。问男生有多少人?

2.在生物竞赛中,某校共有22人获得一、二等奖,若一等奖的奖金是50元,二等奖的奖金是30元, 22人一共获得奖金860元,问有多少人获得二等奖?

3.一批图书分给班上学生,若每人分3本则多出20本,若每人分4本则还差25本。求班上有多少人?

4.船在甲、乙码头间往返。已知从甲码头至乙码头顺流航行用了2小时,返程时逆流航行用了2.5小时.若水流速度为3千米/时,求船在净水中的速度。

5.车间共22人生产螺钉和螺帽。若每人每天可生产螺钉1200个或者是螺帽2000个。一个螺钉要配两个螺帽,那么如何安排工人上茶才能使得每天生产的螺钉与螺帽刚好配套?

五、画图分析找等量关系

根据题意画出图形分析图或者是表格分析图,从中找出相关等量列方程。

习题:1.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?

2.快车与慢车分别从相距200千米的甲、乙两地出发,已知快车的速度比慢车速度的2倍还要多20千米/时。

(1)若两车同时出发,相向而行,1小时后相遇,求两车的速度。

(2)若两车同时出发,同向而行,2.5小时之后相遇,求两车的速度。

(3)若慢车在前面先出发2小时,两车同向而行,4小时之后相遇,求两车速度。

3.快马一天走240里,慢马一天走150里。慢马先走了12天后快马才出发,问快马出发后多少天可以追上慢马?

4.A、B两地相距1250千米,一汽车从A地出发前往B地,匀速行驶5小时后,提速20千米/时;又匀速行驶5小时后,再提速20千米/时;又匀速行驶了5小时,减速10千米/时;然后匀速行驶了5小时后,到达B地。问最初汽车的速度。

五年级数学下列方解应用题找等量关系练习题

1 2 五年级列方程解应用题找等量关系练习题 .关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克? .关键句是“相差关系”句型。 7〃4元,比买橘子多用0〃6元,每千克橘子多少元? =相差数: 关键句是“倍数关系”句型。 2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? 列除法式: .有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x ,几倍数设为几x 。) 一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的x ,则较大数为x +a 。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包? (二)没有关键句,找关键字上,寻找等量关系式。 “一共”、“还剩” 例:网球场一共有1428个网球,每筒装5个,还剩3个。装了多少筒? 例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。在火车站上车的有多少人? (三)从常见的数量关系中找等量关系。 这种方法一般适用于工程问题、路程问题、价格问题。 工作效率×工作时间=工作总量 速度×时间=路程 单价×件数=总价 例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米? 理解:这是典型的相遇问题(行程问题)。速度和×相遇时间=相遇路程 (四)从公式中找等量关系。 例:一幅画长是宽的2倍,做画框共用了1.8的木条,求这幅画的面积是多少? 理解:“做画框共用了的木条”这句话是告诉我们画框的周长。 (五)从隐蔽条件中找等量关系。 例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只? 理解:题中隐藏了两个重要的条件:鸡有2条腿,兔有4条腿。 例:两个相邻的奇数之和是176,这两个数各是多少? 理解:题中隐藏的条件:大奇数比小奇数多2。 二、列表法。(数学书第76页第8题、期末卷子蜗牛爬树题) 将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。 例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约0.4吨,这样一来可以用多少天? 每天用量 天数 原计划 6 70 实际 6-0.4 x 实际总量= 原计划总量 (6-0.4)

沪教版五年级列方程解应用题

教师姓名学生姓名年级五年级上课时间2015/ 11/21 学科数学课题名称简易方程(列方程解应用题) 教学目标1.复习列方程解应用题的解题思路(找数量间的相等的关系)。 2.培养学生根据不同的情况,合理选择简便的解题方法的能力。 教学重难点1.根据题意,找等量关系列出方程,掌握列方程解应用题的方法。 2.正确找出相等关系,根据等量关系列方程。认识顺向思考与逆向思考应用题的不同,正确地选择算术解法或列方程解法解。 ?知识归纳 生活实际中的许多应用问题在数学问题中就是列方程解应用题,而列方程解应用题最关键是如何寻找量与量的相等关系。 接下来,我们来一起探讨如何寻找量与量相等关系的方法。 1、利用基本公式(关系式) 常见的公式有:工作量=工作效率×工作时间 路程=速度×时间 现价=原价×折扣率 总价=单价×数量 例、6个易拉罐瓶,9个饮料瓶,每个的价钱都一样,一共是 1.5元。回收一个多少钱? 2、理解关键词 常用的如:多、少、和、差、倍、分、增、减、早、迟等等,通过对关键词的正确理解,就能找出量之间的相 互关系,并最终找出其中的相等关系。 例1.根据题意,说出等量关系 (1)圆珠笔比钢笔多5支,圆珠笔10支,钢笔几支? (2)一支钢笔的售价是一支圆珠笔的5倍,一支钢笔10元,一支圆珠笔多少元? (3)圆珠笔的支数比钢笔的2倍多4支,圆珠笔20支,钢笔几支? (4)圆珠笔的支数比钢笔的一半多2,圆珠笔20支,钢笔几支? 3、运用列表法

表格是处理数据的重要工具,运用表格可以直观、简明地梳理复杂的数量关系,寻找隐藏的规律。如: 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,应调往甲、乙两处各多少人? 设应调往甲处x人,题目中所涉及的有关数量及其关系可用下表 表示: 甲处乙处 原有人数23 17 增加人数x 20-x 增加后的人数23+x 17+20-x 4、用线形示意图法 例.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”? 如何把问题中的等量关系的分析过程直观地展示出来? 画线形示意图进行分析.(1) 仿照(1)画出(2)的线形示意图. 分析: 解:设该小组共有x人. (1)如果每人做5个“中国结”,那么共做了5x个,比计划多了9个. (2)如果每人做4个“中国结”,那么共做了4x个,比计划少了15个. 课堂练习:

四年级列方程解应用题

列方程解应用题 提高练习 一、看图列方程,并解。 1、 — 2、每天修x 米, 》 3、 , 二、列方程并解。 ! (1)一个数比多,求这个数。 (2)ⅹ的5倍比28大,求ⅹ。 三、列方程解答(先写出等量关系,再列方程解答) 1. 王老师买了一个足球和6个排球,一共花了470元。一个足球的价格是80元,一个排 球的价格是多少元 X 棵 3倍 枫树: 白杨: 共96棵 还剩500米 X X [ X X 2500米 男生: 多3人 24人 女生: x 人

% 2.三四年级一共有400名学生,四年级人数是三年级的倍,三、四年级个有学生多少名; 3.水果店新进香蕉和菠萝共848千克,香蕉的质量是菠萝的3倍,香蕉和菠萝各有多少千克 4.】 5.36名学生去划船,分乘4条大船和3条小船,每条大船坐6名学生,每条小船坐几名 学生 6.一盒牛奶元,一袋豆浆元。小明家每天要买一盒牛奶和一袋豆浆,一个星期买牛奶和豆 浆一共要花多少钱 【 7.三个好朋友共有邮票180张。小波:我的邮票数是小玲的2倍。小玲:我的邮票最少。 小亮:我的邮票数是他们俩的总和。小波、小玲、小亮各有邮票多少张

、 8.爸爸今年32岁,比儿子的年龄的3倍还大5岁,儿子今年多少岁 课后作业 1.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子 每件19元,问老师买上衣和裤子各多少件 / 2.— 3.学校饲养小组今年养鸡123只,比去年养鸡只数的5倍少2只,去年养鸡多少只 @ 4.淘气买了千克的苹果,交给售货员30元,找回元,每千克苹果多少元

五年级数学下列方解应用题找等量关系练习题培训资料

五年级数学下列方解应用题找等量关系练 习题

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 五年级列方程解应用题找等量关系练习题 一、译式法 将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1.关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克? 2.关键句是“相差关系”句型。 关键词:比一个数多几,比一个数少几, 例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? (推荐)直译法列式:从“比”字后面开始列: 比较法列式:较大数-较小数=相差数: 3.关键句是“倍数关系”句型。 饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? (推荐)列乘法式:(从“是”字后面开始列) 列除法式: 4.有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x ,几倍数设为几x 。) 如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x ,则较大数为x +a 。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包? (二)没有关键句,找关键字上,寻找等量关系式。 “一共”、“还剩” 例:网球场一共有1428个网球,每筒装5个,还剩3个。装了多少筒? 例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。在火车站上车的有多少人? (三)从常见的数量关系中找等量关系。 这种方法一般适用于工程问题、路程问题、价格问题。 工作效率×工作时间=工作总量 速度×时间=路程 单价×件数=总价 例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米? 理解:这是典型的相遇问题(行程问题)。速度和×相遇时间=相遇路程 (四)从公式中找等量关系。 例:一幅画长是宽的2倍,做画框共用了1.8的木条,求这幅画的面积是多少? 理解:“做画框共用了的木条”这句话是告诉我们画框的周长。 (五)从隐蔽条件中找等量关系。 例:鸡和兔数量相同,两种动物的腿共有48条,求鸡和兔各有多少只? 理解:题中隐藏了两个重要的条件:鸡有2条腿,兔有4条腿。 例:两个相邻的奇数之和是176,这两个数各是多少? 理解:题中隐藏的条件:大奇数比小奇数多2。 二、列表法。(数学书第76页第8题、期末卷子蜗牛爬树题) 将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。 例:某工地有一批钢材,原计划每天用6吨,可以用70天,现在每天节约0.4吨,这样一来可以用多少天? 每天用量 天数 原计划 6 70 实际 6-0.4 x 实际总量= 原计划总量

五年级数学下册列方程解应用题提高题

五年级数学提高班练习卷(1)—(列方程解应用题)班级:姓名:成绩: 例题: 1、大杯内有酒精610毫升,小杯内有50毫升,现在向两个杯内倒入相等的酒精,使大杯内的酒精是小杯的8倍。两个杯内各应倒入多少毫升酒精? 2、学校有一批树苗,分给同学们栽,如果只分给男生,每人3棵多4棵;如果只分给女生,则每人4棵少6棵。已知男生比女生多5人,这批树苗共有多少棵? 3、方糖每千克8.8元,圆糖每千克7.2元,用方糖5千克与多少千克圆糖混合,才能使混合后的糖每千克8.2元? 自我检测: 1、甲、乙两人年龄之和为40岁,已知甲的年龄是乙的1.5倍,则甲、乙两人各是多少岁? 2、一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半。这条大鲨鱼全长是多少米? 3、有伍元的和拾元的人民币共14张,共100元。伍元币和拾元币各有多少张? 4、有壹元、贰元和伍元的人民币共50张,总面值为116元。已知壹元的比贰元的多两张,问三种面值的人民币各多少张? 5、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时。原计划几小时到达?

6、两个水池共蓄水50吨,甲池用去5吨,乙池又注入3吨后,这样甲池的水比乙池少3吨。原来两池各蓄水多少吨? 7、把一个数的小数点向右移动两位后,得到的数比原来的数大9.9。原来的数是多少? 8、某小学举行了两次数学竞赛(参加人数相同),第一次及格人数是不及格人数的3倍还多4人;第二次及格人数增加5人,正好是不及格人数的6倍。参加竞赛的有多少人? 9、篮球、足球、排球平均每个36元,篮球比排球每个多10元,足球比排球每个多8元,每个排球多少元? 10、快车与慢车同时从甲、乙两地相对开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时与慢车还相距7千米。慢车每小时行多少千米? 11、五(1)班的男生人数和女生人数同样多。选派18名男生和26名女生参加实践活动,剩下的男生是女生的3倍。五(1)班原来男、女生各多少人? 12、五年级的同学去去划船,若每条船只坐4个人,则还有5个人留在岸上;若每条船坐5个人,则最后一条船上还有4个空位。一共有多少同学参加春游活动?

列方程解应用题(四年级)

七、列方程解应用题(小学四年级) 1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒? 2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米? 3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米? 4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少千米? 5、世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。大洋洲的面积是多少万平方千米? 6、一座居民大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米? 7、太阳系的九大行星中,离太阳最近的是水星。地球绕太阳一周是365天,比水星绕太阳一周所用时间的4倍还多13天,水星绕太阳一周是多少天? 8、地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米? 9、红红课间捡了6个易拉罐,9个饮料瓶,回收站每个饮料瓶比易拉罐便宜,她一共卖了2.7元。易拉罐和饮料瓶回收单价各多少钱?

10、四个相邻自然数的和是398,其中最小的一个自然是多少? 11、鸡和兔的数量相同,两种动物的腿加起来共有48条。鸡和兔各有多少只? 12、妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。儿子和妈妈今年分别是多少岁? 13、我买了两套丛书,单价分别是:《科学家》2.5元/本,《发明家》3元/本,两套丛书的本数相同,共花了22元。每套丛书多少本? 14、一幅油画的宽是长的50%,小明做一个画框用了1.8m木条。这幅画的长、宽、面积分别是多少? 15、小红家到小明家距离是560米,小明和小红在校门口分手,7分钟后他们同时到家,小明平均每分钟走45m,小红平均每分钟走多少米? 16、小明的玻璃球是小刚的4/7,小刚给小明9颗,他俩就一样多了。他们两个人分别有多少颗玻璃球? 17、一个数的3倍加上这个数的2倍等于1.5,求这个数。 18、明明对爷爷说:“您现在比我大60岁,再过10年,您的岁数就是我的3倍了。”你知道明明现在多大吗? 19、甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇。已知客车每小时行45千米,货车每小时行多少千米? 20、张老师第一次到体育用品商店买了24套运动服,第二次又买了同样的运动服30套,第二次比第一次多付了510元。每套运动服多少元?

五年级数学下列方解应用题找等量关系练习题

五年级数学下列方解应用题找等量关系练习题 一、译式法 将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1、关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。 苹果+梨 = 720 270 + x = 720 2、关键句是“相差关系”句型。 关键词:比一个数多几,比一个数少几, 例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? 理解:苹果与橘子相比较,多用了0.6元。 (推荐)直译法列式:从“比”字后面开始列:橘子+0.6 = 苹果 x + 0.6 = 7.4 比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元 7.4 - x = 0.6 3、关键句是“倍数关系”句型。 饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? 理解:公鸡是1倍数,要求,母鸡是2倍数,为2400只。 (推荐)列乘法式:(从“是”字后面开始列)公鸡×2 = 母鸡 2X = 2400 列除法式:母鸡÷公鸡= 2倍 2400 ÷ x = 2 4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。一般把“和 差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。) 如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x,则较大数为x+a。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 解:设梨树为x棵,则桃树为2x棵。 桃树+梨树= 240 2x +x = 240 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 解:设鹅为x只,则鸭为4x只。 鹅+27只= 鸭鸭-鹅= 27只 x + 27= 4x 4x-x = 27 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包? 1 / 5

(word完整版)五年级列方程解应用题182题

五年级列方程解应用题182题 1.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。问大船和小船 各几只? 2.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行 85千米,乙车每小时行多少千米? 3.育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。参加科技小组的男、 女生各有多少人? 4.大车每次运1.3吨,小车每次运1.2吨,运多少次后,大车比小车多运2.4吨? 5.某机械厂今年每月生产机床150台,比去年每月产量的3倍少30台,去年每月生产机床多少台? 6.体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳 绳、踢毽子各有多少人? 7.师徒合做180个零件。师傅每小时做18个,徒弟每小时做12个,几小时做完? 8.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程 队从两端同时想象施工,要多少天可以铺好? 9.幼儿园小朋友分糖,每人分5块就多出13块,每人分6块就还少7块,请问有多少小朋友,有 多少块糖? 10.四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多 少人? 11.某校五年级两个班共植树385棵,5(1)班植树棵树是5(2)班的1.5倍。两班各植树多少棵? 12.57.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?

多少元? 14.食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。买来西 红柿多少千克? 15.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元? 16.面粉每千克1.9元,大米每千克1.8元,买面粉和大米各10千克,付出50元,应找回多少元? (用两种方法解答) 17.用一根长54厘米的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少? 面积是多少? 18.一只麻雀的体重是81克,恰好是蜂鸟的40倍。一只蜂鸟重多少克? 19.一块长方形菜地的面积是180平方米,它的宽是12米,长是多少米? 20.食堂有一批大米,每袋25千克,用去6袋以后,还剩50千克,这个食堂原来有大米多少千克? 21.香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨, 能买梨多少千克? 22.买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元? 23.一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少 元?

列方程解应用题时如何找等量关系

列方程解应用题时如何找等量关系 如何让学生正确提取应用题中的数量关系在上一单元学生学习方程的时候,对于已有的方程一般都能正确解答,但是在碰到一些需要用方程解答的应用题时,往往会搞不清题目之中的数量关系,特别是一些题目中出现两个数量关系时,很多学生好像一下子蒙了,而提取出正确的数量关系,又是解决这些应用题的关键所在,所以最后导致列出来的方程不符合题意,那么下面的计算都将是做无用功。针对这一现象,应该怎样提高学生的分析能力,从而提取正确的数量关系?例:为了美化校园,五、六年级学生开展植树活动。计划六年级学生比五年级学生多植树75棵,又正好是五年级学生植树棵数的1.5倍。五、六年级学生各植树多少棵? 【答】: 应用题教学是小学数学教学的一个重点,也是一个难点。如何正确解答,一般处决于学

生的理解能力,即能正确理解题意,分析已知条件,理清数量之间的关系,从而推导出正确的解答方法。但在实际教学中,尤其是教学列方程解应用题时,我们也常会发现,学生找不到等量关系,从而无法正确解答。那么,如何让学生正确地找出应用题中的等量关系呢?我认为可以从以下几方面入手:1.牢记计算公式,根据公式来找等量关系。这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。 如一个长方形的长为15厘米,面积为80 平方厘米,它的宽为多少厘米?”一题,就可以根据长方形的面积计算公式长X宽= 长方形面积”来计算,列出方程:15X=80 。 2.熟记数量关系,根据数量关系找等量关系。这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率X 工作时间=工作总量;速度x时间=路程;单价X件数

五年级列方程解应用题讲义

★小学五年级奥数专题讲解之“列方程解应用题(一)” 同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。用算术方法解答比较困难,如果用方程解就简便得多。它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步: (一)审题;(弄清已知数和未知数以及它们之间的关系) (二)用字母表示未知数;(通常用“x”表示) (三)根据等量关系列出方程; (四)解方程求出未知数的值; (五)验算并答题。 一、译式法 将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1、关键句是“求和”句型的. 例:水果店运来苹果和梨共570千克,其中苹果是270。运来的梨有多少千克? 理解:720千克由两部分组成:一部分是苹果,一部分是梨子。 苹果+梨=570 270+x=570 2、关键句是“相差关系”句型。 关键词:比一个数多几,比一个数少几, 例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? 理解:苹果与橘子相比较,多用了0.6元。 (推荐)直译法列式:从“比”字后面开始列:橘子+0.6=苹果 x+0.6=7.4 比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元 7.4-x=0.6 3、关键句是“倍数关系”句型。 关键词:XXX是XXX的几倍 饲养场共养800只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? (推荐)列乘法式:(从“是”字后面开始列)公鸡×2=母鸡 x×2=800 列除法式:母鸡÷公鸡=2倍 800÷x=2 4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。(必考考点) 一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。) 如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x,则较大数为x+a。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 解:设梨树为x棵,则桃树为2x棵。 桃树+梨树=240 2x+x=240 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只? 解:设鹅为x只,则鸭为4x只。 鹅+27只=鸭鸭-鹅=27只 x+27=4x4x-x=27

小学五年级列方程解应用题步骤和方法

列方程解应用题 1、列方程解应用题的意义 ★用方程式去解答应用题求得应用题的未知量的方法。 2、列方程解答应用题的步骤 ★弄清题意,确定未知数并用x表示; ★找出题中的数量之间的相等关系; ★列方程,解方程; ★检查或验算,写出答案。 3、列方程解应用题的方法 ★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。 ★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 4、列方程解应用题的范围 a一般应用题; b和倍、差倍问题; c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。 5、常见的一般应用题? ? ? ? ? ? ? ?? 以总量为等量关系建立方程 以相差数为等量关系建立方程 以题中的等量为等量关系建立方程 以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法

一、以总量为等量关系建立方程 例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时 解:设快车小时行X千米 解法一:快车 4小时行程+慢车4小时行程=总路程解法二:快车的速度+慢车的速度) 4小时=总路程4X+60×4=536 (X+60)×4=536 4X+240=536 X+60=536÷4 4X=296 X=134一60 X=74 X=74 答:快车每小时行驶74千米。 练一练: ①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在 空中相遇,热汽球每秒上升多少米 ②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池, 乙管每分钟注水多少千克 ③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米, 几小时两车相遇

简易方程--怎样找等量关系

怎样找等量关系 一、抓住数学术语找等量关系 应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍””等术语表示。在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年 级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程。 二、根据常见的数量关系找等量关系 常见的数量关系:工作效率×工作时间=工作总量;亩产量×亩数=总产量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量 =总价”的数量关系,可以列出方程。 三、根据常用的计算公式找等量关系 常用的计算公式有:长方形面积=长×宽;圆面积=……在解题时,可以根据计算公 式找等量关系。例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?” 根据长方形面积的计算公式“长×宽=面积”,可列出方程。 四、根据文字关系式找等量关系 例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是: 一班+二班+三班=总数 一班+二班=总数-三班 一班+三班=总数-二班 二班+三班=总数-一班 根据这些文字等量关系式,可列出以下方程,如: 五、根据图形找等量关系 例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图。 从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数。根据这个关系式, 可列出方程。

四年级列方程解应用题

王者大冲关(列方程解应用题) 冲关一:倔强青铜称号 1.我国《国旗法》规定,国旗的长应该是宽的1.5倍,一面红 旗长144厘米,则宽应该是多少厘米? 2.公园里有一个正方形的荷花池,它的周长是64米,边长是 多少米? 冲关二:秩序白银称号 3.淘气对笑笑说:”你先想好一个数,把它乘5再减去3.9,报出 你的得数。”笑笑说:”是6.1”。笑笑心里想的数是多少? 4.同学们进行投篮比赛,小明投中了31个,比小丽的2倍少5 个,小丽投中了多少个?

5.希望小学开展体育竞赛,参加跑步的有44人,比参加跳远 的人数的3倍少7人,参加跳远的有多少人? 6.爷爷今年63岁,爷爷的年龄比小明的5倍大3岁,小明今 年多少岁? 7.一台冰箱2600元,比一台电磁炉的5倍还贵100元,一台 电磁炉多少元? 冲关三:荣耀黄金称号 8.

9. 冲关四:尊贵铂金称号 10.一个齿轮一昼夜转了480米,这个齿轮每时转动多少米? 11.一艘轮船从甲港开往乙港,4小时到达终点,已知两港之间的水路长128千米,这艘轮船每时行多少千米? 冲关五:永恒钻石称号 12.甲车间有84人,如果从甲车间调14人到乙车间,那么两个车间的人数相等,乙车间原有多少人?

13.2017年中国在线餐饮外卖的收入达到2052.7亿元,从2017年的收入中拿出195.15亿元加入到2016年的收入中后,两年的收入一样多。2016年中国在线餐饮外卖的收入为多少亿元? 冲关六:至尊星耀称号 14.修一段长2400米的路,已经修了3天,还剩300米,平均每天修多少米? 15.笑笑和妈妈去采摘园采摘了2袋苹果和4串葡萄,共重10千克。每袋苹果重3千克,平均每串葡萄重多少千克? 16.三个连续的奇数的和是57,中间的数是m,求m的值? 17.四一班给同学们准备合买一份礼物,若每人出2.5元,则少4元,若每人出2.8元,则多8元,四一班共有多少人?

找等量关系专题练习卷

找等量关系列出方程 ★方程指的是“含有未知数的等式”。 ☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。 则列方程解应用题的关键是——找出 ...,找出了相等的关系,方程也就 ..相.等关系 可以列出来了.找等量关系常见方式有: 一、抓住数学术语找等量关系 一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。 习题:1.某数的三分之一比这个数小1,求这个数。 2.某数的3倍比这个数的一半大2,求这个数。 3.某数与7的和的四分之一是10,求这个数。 4.某数的30%与5的差是8,求这个数。 变4.某数的30%与5的差的三分之一等于3,求这个数。 5.甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?(方法一) (方法二) 6.一个数比它的相反数大8,求这个数。 变6. 一个数的3倍与(-9)的绝对值的和恰好等于这个数的6倍,求这个数。 7.甲组4名工人1月完成的总工作量比该月人均定额的4倍多20件,乙组5名工人1月完成的总工作量比该月的人均定额的6倍少20件。 (1)设月人均定额为X件,则甲组人均生产量为乙组人均生产量为 (2)若两组工人人均生产量相等,可列方程为 (3)若甲组人均生产量比乙组多2件,可列方程为 (4)若甲组人均生产量比乙组少2件,可列方程为 二、根据常见的数量关系找等量关系 最常见的数量关系: 1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)

2.单价×数量=总价(总价÷单价=数量总价÷数量=单价) ★关于打折的问题:打几折=原价×百分之几十 3.工作效率×工作时间=工作总量 (工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率) 4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率) 习题:1.已知皮划艇500米最好成绩是1.65分钟,求平均速度? 2.学校跑道是200米环形跑道,小明跑完5个圈共用了4分钟,求他的平均速度。 3.小李30天一共跑了45000米,小张平均每天跑的距离比小李多200米,问小张30天一共跑了多远? 4.小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。 5.李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和为15元,求文具盒的单价。 6.某商品八折以后再降价10元卖出,仍旧赚了20元。已知该商品成本为50元,求原价。 7.某商品进价为200元,按标价的九折卖出后,利润率为35%,求标价。 8.某项工程,甲队单独完成需要12天,乙队单独完成所需的天数是甲队的2倍。 (1)两队共同完成该工程需要多少天? (2)若两队先合作了4天,余下部分由甲队单独完成,还需要多少天完成工程? (3)若甲队先做3天,余下部分由两队合作,问一共需要多少天才完成工程? 9.要生产一批篮球,若每天生产25个,则到了规定时间还有50个未完成。若每天生产28个,则到了规定时间超产40个。问一共要生产多少个篮球? (变)9.已知5台A型机器生产的产品装满8箱后还剩4个,7台B型机器生产的产品装满11箱后还剩1个。若每台A型机器比B型机器多生产1个,问每箱可装多少个产品。

人教版五年级数学列方程解应用题练习题

五年级数学列方程解应用题练习题 1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒? 2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米? 3、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米? 设:住宅每层高x米 4、地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米? 5、妈妈今年的年龄是儿子的3倍,妈妈比儿子大24岁。儿子和妈妈今年分别是多少岁? 6、一个数的3倍加上这个数的2倍等于1.5,求这个数。 7、一个数乘0.75等于6个2.4相加的和,这个数是多少? 8、甲、乙两地的公路长285千米,客、货两车分别从甲、乙两地同时出发,相向而行,经过3小时两车相遇。已知客车每小时行45千米,货车每小时行多少千米?

9、张老师第一次到体育用品商店买了24套运动服,第二次又买了同样的运动服30套,第二次比第一次多付了510元。每套运动服多少元? 10、一个长方形的周长是72厘米,长是宽的2倍,求长方形的长和宽各是多少厘米。 1、共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒? 2、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积多少万平方米? 3、宁夏的同心县是一个“干渴”的地区,年平均蒸发量是2325mm,比年平均降水量的8倍还多109mm,同心县的年平均降水量多少毫米? 4、猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少千米? 5、世界上最大的洲是亚洲,面积是4400万平方千米,比大洋洲面积的4倍还多812万平方千米。大洋洲的面积是多少万平方千米? 6、大楼高29.2米,一楼准备开商店,层高4米,上面9层是住宅。住宅每层高多少米?

小学四年级下册列方程解应用题word版

列方程解应用题 一、填空题。 1、一个正方形的边长是a 厘米,它的周长是( )厘米,面积是( )平方厘米。 2、( )的等式叫方程。 3、简写下面各式。 x ×0.8=( ) m ·n=( ) 2×(a+c)= 4、四年级(1)班有男生x 人,女生y 人,全班有( )人。 5、用字母表示乘法的分配律是 。 6、小红看一本书有a 页,她每天看5页,看了x 天后,一共看了( )页,还剩( ) 页。 7、成人脚的长度大约是身高的7 1 ,如果一个成人的身高为x 米,那么他的脚长大 约是( )米。 8、梨和苹果的单价分别是每千克4元和5元,买m 千克的梨和n 千克的苹果,共需 ( )元。 9、右图是由等边三角形和正方形组成的,它的周长是( )。 10、完成淘气的日记: 今天是我最快乐的一天,我和同学们一起到欢乐谷玩。车上有男同学m 人,女同学15人,共( )人。看到路边红花有50盆,黄花有n 盆,红花比黄花多( )盆。欢乐谷的成人票价为w 元,儿童票价为成人的一半,儿童的票价为( )元。 二、选择题(请将正确答案的序号填在括号里) 1、下列各式是方程的是( )。 A 、10ⅹ=1 B 、ⅹ+14 C 、21—20=1 2、m 的2倍比52少多少,算式为( ) A 、2(m -52) B 、2m -52 C 、52-2m 3、方程18-ⅹ=6的解是( )。 A 、ⅹ=24 B 、ⅹ=20 C 、ⅹ=12 4、每千克苹果是m 元,买4千克要( )元。 A 、m ÷4 B 、4m C 、m-4 5、甲数是15,比乙数的3倍少3,乙数是( ) A 、4 B 、5 C 、6 6、妈妈今年a 岁,爸爸比妈妈大5岁,再过n 年后,爸爸比妈妈大( )岁。 A 、a +5 B 、5 C 、5+ n

五年级数学下列方解应用题找等量关系练习题

五年级列方程解应用题找等量关系练习题 一、译式法 将题目中的关键性语句翻译成等量关系。 (一)从关键语句中寻找等量关系。 1、关键句是“求和”句型的. 例:先锋水果店运来苹果和梨共720千克,其中苹果是270。运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。 苹果+梨 = 720 270 +x = 720 2、关键句是“相差关系”句型。 关键词:比一个数多几,比一个数少几, 例:小买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元? 理解:苹果与橘子相比较,多用了0.6元。 (推荐)直译法列式:从“比”字后面开始列:橘子+0.6 = 苹果 x +0.6 = 7.4 比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元 7 .4 -x = 0.6 3、关键句是“倍数关系”句型。 饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只? 理解:公鸡是1倍数,要求,母鸡是2倍数,为2400只。 (推荐)列乘法式:(从“是”字后面开始列)公鸡×2 = 母鸡 2X = 2400 列除法式:母鸡÷公鸡= 2倍 2400 ÷x = 2 4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。一般把 “和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。(1倍数设为x,几倍数设为几x。) 如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。(把较小数设为x,则较大数为x+a。) 例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵? 解:设梨树为x棵,则桃树为2x棵。 桃树+梨树= 240 2x +x = 240 例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。又知鸭比鹅多27只,鹅和鸭各多少只?解:设鹅为x只,则鸭为4x只。 鹅+27只= 鸭鸭-鹅= 27只 x +27= 4x 4x-x = 27 例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?解:设下午运了x包,则上午运了x+14包。 上午+下午= 全天共运的 (x+14)+x = 986 (二)没有关键句,找关键字上,寻找等量关系式。 “一共”、“还剩” 例:网球场一共有1428个网球,每筒装5个,还剩3个。装了多少筒? 理解:网球分成了两个部分,一部分数装了的,另一部分是还剩下没装的。 共有的-装了的= 还剩的 解:设装了X筒。 装了的+ 剩下的= 共有的 1428 -5x = 3 5x + 3 = 1428 5X=1428-3 5X=1425 X=1425÷5 X=285 例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。在火车站上车的有多少人? 解:设在火车站上车的有 X人。 原有人数-下车人数+上车人数= 现有人数 38 -12 +X = 54 (三)从常见的数量关系中找等量关系。 这种方法一般适用于工程问题、路程问题、价格问题。 工作效率×工作时间=工作总量 速度×时间=路程 单价×件数=总价 例:两辆汽车同时从相距的两个车站相向开出,3小时两车相遇,一辆汽车每小时行68千米,另一辆汽车每小时行多少千米? 理解:这是典型的相遇问题(行程问题)。 速度和×相遇时间=相遇路程 (68+x)× 3 = 498 (四)从公式中找等量关系。 例:一幅画长是宽的2倍,做画框共用了1.8的木条,求这幅画的面积是多少?

五年级解方程应用题专题训练

五年级解方程应用题专题训练购物问题: 1、食堂买了8千克黄瓜,付出15元,找 回1.4元,每千克黄瓜是多少钱? 2、买4枝钢笔比买5枝圆珠笔要多花2.2 元,每枝圆珠笔的价钱是0.6元,每 枝钢笔是多少元? 3、明明家买了一套桌椅,6张椅子配一张 桌子,一共用了1120元。如果一张 餐桌730元,那么一把椅子多少元?4、王老师带500元去买足球。买了12个 足球后,还剩140元,每个足球多 少元? 5、奶奶买4袋牛奶和2个面包,付给售货 员20元,找回5.2元,每个面包5.4 元,每袋牛奶多少元? 6、大瓜去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和若干大米,共付款61.6元,买大米多少千克? “谁是谁的几倍多(少)几”(形如ax±b=c的方程)问题: 1、有甲、乙两个书架.已知甲书架有540 本书,比乙书架的3倍少30本.乙书 架有多少本书? 2、甲、乙两人做零件.甲做了240个,比乙做的2倍还多40个.乙做了多少个? 2、培英小学有学生350人,比红星小学的 学生的3倍少19人.红星小学有学 生多少人? 3、水果店运来橘子340千克,比运来苹果 的3倍少80千克.运来苹果多少千 克?

4、一只鲸的体重比一只大象的体重的 37.5倍多12吨.已知鲸的体重是 162吨,大象的体重是多少吨? 5、某玩具厂九月份的产量比八月份产量 的2.5倍还多500个.已知九月份的 产量是3500个,八月份的产量是多 少? 6、洗衣机厂今年每日生产洗衣机260台, 比去年平均日产量的2.5倍少40 台,去年平均日产洗衣机多少台? 7、某饲养场养鸡352只,比鸭的只数的4 倍还多32只。养鸭多少只? 形如ax±bx=c的方程问题: 1、育新小学共有108人参加学校科技小 组,其中男生人数是女生人数的1.4 倍。参加科技小组的男、女生各有 多少人? 2、体育比赛中参加跳绳的人数是踢毽子 人数的3倍,已知踢毽子的人数比 跳绳的人数少20人,跳绳、踢毽子 各有多少人? 3、某校五年级两个班共植树385棵,5(1) 班植树棵树是5(2)班的1.5倍。 两班各植树多少棵?4、一支钢笔比一支圆珠笔贵6.8元。钢笔 的价钱是圆珠笔价钱的4.4倍。钢 笔和圆珠笔的价钱各是多少元? 5、食堂买来一些黄瓜和西红柿,黄瓜的质 量是西红柿的1.2倍,黄瓜比西红 柿多6.4千克。买来西红柿多少千 克? 6、强强和丽丽共有奶糖40粒,强强比丽 丽少6粒,强强有奶糖多少粒?

相关文档
相关文档 最新文档