文档库 最新最全的文档下载
当前位置:文档库 › 第五章 线性系统的频域分析法 单元测试题(A)

第五章 线性系统的频域分析法 单元测试题(A)

第五章 线性系统的频域分析法 单元测试题(A)
第五章 线性系统的频域分析法 单元测试题(A)

第五章 线性系统的频域分析法

单元测试题(A )

一、填空题:

1、用频域法分析控制系统时,最常用的典型输入信号是_ __。

2、控制系统中的频率特性反映了 信号作用下系统响应的性能。

3、已知传递函数s

s G 10)(=,其对应的幅频特性A(ω)=_ _,相频特性φ(ω)=___ ___。 4、常用的频率特性图示方法有极坐标图示法和_ _图示法。

5、对数频率特性曲线由对数 曲线和对数 曲线组成,是工程中广泛使用的一组曲线。

6、0型系统Bode 图幅频特性的低频段是一条斜率为 的直线。

7、I 型系统Bode 图幅频特性的低频段是一条斜率为 的直线。

8、Ⅱ型系统Bode 图幅频特性的低频段是一条斜率为 的直线。

9、除了比例环节外,非最小相位环节和与之相对应的最小相位环节的区别在于 。

10、传递函数互为倒数的典型环节,对数幅频曲线关于 0dB 线对称,对数相频曲线关于 线对

称。

11、惯性环节的对数幅频渐进特性曲线在交接频率处误差最大,约为 。

12、开环幅相曲线的起点,取决于 和系统积分或微分环节的个数。

13、开环幅相曲线的终点,取决于开环传递函数分子、分母多项式中 和 的阶次和。

14、当系统的多个环节具有相同交接频率时,该交接频率点处斜率的变化应为各个环节对应的斜率变化值的 。

15、复变函数F(s)的零点为闭环传递函数的 ,F(s)的极点为开环传递函数的 。

16、系统开环频率特性上幅值为1时所对应的角频率称为 。

17、系统开环频率特性上相位等于-1800时所对应的角频率称为 。

18、延时环节的奈氏曲线为一个 。

19、w 从0变化到+¥时,惯性环节的频率特性极坐标图在__ _象限,形状为___ ___。

20、比例环节的对数幅频特性L(w )= dB

二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。)

1、用频域法分析控制系统时,最常用的典型输入信号是( )。

A.脉冲函数

B.斜坡函数

C.阶跃函数

D.正弦函数

2、比例环节的频率特性相位移θ(ω)=( )。

A.90°

B.-90°

C.0°

D.-180°

3、微分环节的频率特性相位移θ(ω)=( )。

A. 90°

B. -90°

C 、 0° D. -180°

4、积分环节的频率特性相位移θ(ω)=( )。

A. 90°

B. -90°

C. 0°

D. -180°

5、0型系统对数幅频特性的低频段渐近线斜率为( )。

A.-60(dB/dec)

B.-40(dB/dec)

C.-20(dB/dec)

D.0(dB/dec)

6、I 型系统对数幅频特性的低频段渐近线斜率为( )。

A.-60(dB/dec)

B.-40(dB/dec)

C.-20(dB/dec)

D.0(dB/dec)

7、II 型系统对数幅频特性的低频段渐近线斜率为( )。

A.-60(dB/dec)

B.-40(dB/dec)

C.-20(dB/dec)

D.0(dB/dec)

8、下列判别系统稳定性的方法中,哪一个是在频域里判别系统稳定性的判据( )。

A.劳斯判据

B.赫尔维茨判据

C.奈奎斯特判据

D.根轨迹法

9、输出信号与输入信号的相位差随频率变化的关系是( )。

A.幅频特性

B.相频特性

C.传递函数

D.频率响应函数

10、伯德图中的高频段反映了系统的( )。

A .稳态性能

B .动态性能

C .抗干扰能力

D .以上都不是

11、惯性环节的对数频率特性相位移)(w j 在( )之间。

A .0o 和 90o

B .0o 和 -90o

C .0o 和 180

o D .0o 和 -180o

j w为()。

12、放大环节的频率特性相位移()

A. -180o B.0o C.90o D.-90o

13、伯德图中的低频段反映了系统的()。

A.稳态性能 B.动态性能 C.抗高频干扰能力 D..以上都不是

14、ω从0变化到+∞时,惯性环节频率特性的极坐标图为()。

A.圆 B.椭圆 C.半圆 D.双曲线

15、已知某II型系统的开环传递函数为G(s)H(s) 当s从-j0 转到+j0 时,G(s)H(s)的奈氏曲线将以半径为无穷大( )。

A 顺时针转过π弧度

B 顺时针转过2π弧度

C 逆时针转过π弧度

D 逆时针转过2π弧度

16、某系统的开环传递函数为G(s)H(s)若增加2个有限负极点,当ω从零变化到无穷大时将使

G( jω)H( jω)的奈氏曲线( )。

A 顺时针逐渐转过π/ 2弧度

B 逆时针逐渐转过π/ 2弧度

C 顺时针逐渐转过π弧度

D 逆时针逐渐转过π弧度

17、某系统的开环传递函数为G(s)H(s) 若增加2个有限负零点,当ω从零变化到无穷大时将使

G( jω)H( jω) 的奈氏曲线( )。

A 顺时针逐渐转过π/ 2弧度

B 逆时针逐渐转过π/ 2弧度

C 顺时针逐渐转过π弧度

D 逆时针逐渐转过π弧度

18、已知某环节的幅相频率特性曲线如下图所示,试判定它是何种环节。()

A.开环幅值频率特性

B.开环相角频率特性

C.开环幅相频率特性

D.闭环幅相频率特性

三、已知系统传递函数1()1G s s =

+,()3sin(230)r t t =+°,求()ss c t 。

四、系统()L w 曲线如右,求()?G s =

五、某0型单位负反馈系统开环传递函数为

1212();,,0

(1)(1)K

G s K T T T s T s =>++

试概略绘制系统开环幅相曲线。

线性系统的时域分析法(第七讲)

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

线性系统的时域分析方法

第三章线性系统的时域分析方法 教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、 二阶系统的时域分析方法。 教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。 教学难点:高阶系统的的动态响应特性分析。 本章知识结构图: 系统结构图闭环传递函数 一阶标准式 二阶标准式 特征方程稳定性、稳定域 代数判据 误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益 公式 静态误差系数 第九讲

3.1 系统时间响应的性能指标 一、基本概念 1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。 (1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。 (2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。 系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点 (1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能 1、动态过程(过渡过程):在 典型信号作用下,系统输出从初始状态到最终状态的响应过程。(衰减、发散、等幅振荡) 2、稳态过程:在典型信号作 用下,当t → ∞ 系统输出量表现的方式。表征输出量最终复现输入量的程度。(稳态误差描述) 3、动态稳态性能指标 图3-1温度控制系统原理图 (1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。 (2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。 (3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。(稳) (3-1) %100)(()(%?∞∞-= h h t h p ) δ

第五章 频域分析法

第五章 频域分析法 时域分析法具有直观、准确的优点。如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。而且,按照给定的时域指标设计高阶系统也不是一件容易的事。 本章介绍的频域分析法,可以弥补时域分析法的不足。因为频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故其与时域分析法相比有较多的优点。首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。 5.1 频率特性 对于线性定常系统,若输入端作用一个正弦信号 t U t u ωsin )(= (5—1) 则系统的稳态输出y(t)也为正弦信号,且频率与输人信号的频率相同,即 ) t Y t y ?ω+=sin()( (5—2) u(t)和y(t)虽然频率相同,但幅值和相位不同,并且随着输入信号的角频率ω的改变,两者之间的振幅与相位关系也随之改变。这种基于频率ω的系统输入和输出之间的关系称之为系统的频率特性。 不失一般性,设线性定常系统的传递函数G(s)可以写成如下形式 ) () () () () ())(() ()()()(1 21s A s B p s s B p s p s p s s B s U s Y s G n j j n = +=+++== ∏=Λ (5—3) 式中B(s)——传递函数G(s)的m 阶分子多项式,s 为复变量; A(s)——传递函数G(s)的n 阶分母多项式 (n ≥m); n p p p ---,,,21Λ—传递函数G(s)的极点,这些极点可能是实数,也可能是复数,对稳定的系统采说,它们都应该有负的实部。 由式(5—1),正弦输入信号u(t)的拉氏变换为(查拉氏变换表) ) )(()(22ωωω ωωj s j s U s U s U -+=+= (5—4)

第五章 线性系统的频域分析法习题

501 第五章 线性系统的频域分析法 5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为 )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r , 根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 5-2 若系统的单位阶跃响应 t t e e t c 948.08.11)(--+-=, 试确定系统的频率特性。 解:s s s s C 1 361336)(2++= ,36 1336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=; 2 /122/12) 81()16(36 |)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。 或:)(2.7)()(94t t e e t c t g ---== ;36 1336 )]([)(2 ++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号 )452cos()30sin()( --+=t t t r 作用下,系统的稳态误差)(t e ss 。 解:2 1)(++=Φs s s e ; )452sin()30sin()( +-+=t t t r 6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ; 7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。 5-4 典型二阶系统的开环传递函数 ) 2()(2 n n s s s G ωζω+= , 当取t t r sin 2)(=时,系统的稳态输出为 )45sin(2)( -=t t c ss , 试确定系统参数n ω和ζ。 解:2 222)(n n n s s s ωζωω++=Φ; 1] 4)1[(2 2222=+-n n n ωζωω, 451 2arctan 2 -=--n n ωζω; 122 -=n n ωζω, 答案:414.12==n ω,3536.04/2==ζ。

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

第5章频域分析法习题解答

第5章频域分析法 5.1 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 5.2 思考与习题祥解 题5.1 判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1)阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线 随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如 t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425 )()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈:。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题 系统结构如题图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

噪声中正弦信号的经典法频谱分析

实验报告 一、实验名称 噪声中正弦信号的经典法频谱分析 二、实验目的 通过对噪声中正弦信号的经典法频谱分析,来理解和掌握经典谱估计的知识,以及学会应用经典谱估计的方法。 三、基本原理 1.周期图法:又称直接法。把随机信号)(n x 的N 点观察数据)(n x N 视为一能量有限信号,直接取)(n x N 的傅里叶变换,得)(jw N e X ,然后再取其幅值的平方,并除以N ,作为对)(n x 真 实的功率谱)(jw e P 的估计,以)(?jw PER e P 表示用周期图法估计出的功率谱,则2)(1)(?w X N w P n PER =。 2.自相关法:又称为间接法功BT 法。先由)(n x N 估计出自相关函数)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT ,并以此作为对)(w P 的估计,即1,)(?)(?-≤=--=∑N M e m r w P jwm M M m BT 。 3.Bartlett 法:对L 个具有相同的均值μ和方差2σ的独立随机变量1X ,2X ,…,L X ,新随机变量L X X X X L /)(21+++= 的均值也是μ,但方差是L /2σ,减小了L 倍。由此得 到改善)(?w P PER 方差特性的一个有效方法。它将采样数据)(n x N 分成L 段,每段的长度都是M ,即N=LM ,第i 段数据加矩形窗后,变为L i e n x M w x M n jwn i N I PER ≤≤=∑-=-1,)(1)(?2 10 。把)(?w P PER 对应相加,再取平均,得到平均周期图2 1110 )(1)(?1)(∑∑∑==-=-==L i L i M n jwn i N i PER PER e n x ML w P L w P 。 4.Welch 法:它是对Bartlett 法的改进。改进之一是,在对)(n x N 分段时,可允许每一段的数据有部分的交叠。改进之二是,每一段的数据窗口可以不是矩形窗口,例如使用汉宁窗或汉明窗,记之为)(2n d 。这样可以改善由于矩形窗边瓣较大所产生的谱失真。然后按Bartlett

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξσe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈ 。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系?

实验三 线性系统的频域分析

北京联合大学 实验报告 课程名称:实验三线性系统的频域分析 学院:自动化专业:电气工程与自动化 班级:学号: 姓名:成绩: 2014年11月12日

实验三 线性控制系统的频域分析 3. 1 频率特性测试 一.实验目的 1.了解线性系统频率特性的基本概念。 2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。 二.实验内容及步骤 被测系统是一阶惯性的模拟电路图见图3-1,观测被测系统的幅频特性和相频特性,填入实验报告,並在对数座标纸上画出幅频特性和相频特性曲线。 本实验将正弦波发生器(B5)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。 图3-1 被测系统的模拟电路图 实验步骤: (1)将函数发生器(B5)单元的正弦波输出作为系统输入。 ① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘正弦波’(正弦波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器2”,使之正弦波频率为8Hz (D1单元右显示)。 ③ 调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出为2V 左右(D1单元左显示)。 (2)构造模拟电路:按图3-1安置短路套及测孔联线,表如下。 (a )安置短路套 (b )测孔联线 (3)运行、观察、记录:

①运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应 分析实验项目,选择 时域分析,就会弹出虚拟示波器的界面,点击开始,用示波器观察波形,应避免系统进入非线性状态。 ②点击停止键后,可拖动时间量程(在运行过程中,时间量程无法改变),以满 足观察要求。 示波器的截图详见虚拟示波器的使用。 三.实验报告要求: 按下表改变实验被测系统正弦波输入频率:(输入振幅为2V)。 观测幅频特性和相频特性,填入实验报告。並画出幅频特性、相频特性曲线。 频率=1.6Hz 频率=3.2Hz

线性系统的时域分析

第3章 线性系统的时域分析 本章讨论线性系统的运动分析。主要介绍连续系统与离散系统的状态空间模型的求解、状态转移矩阵的性质和计算以及连续系统状态方程的离散化。本章最后介绍基于Matlab的状态空间模型求解与控制系统的运动仿真问题的程序设计与仿真计算。 建立了系统的数学描述之后,接下来要对系统作定量和定性分析。定量分析主要研究系统对给定输入信号的响应问题,也就是对描述系统的状态方程和输出方程的求解问题。定性分析主要研究系统的结构性质,如能控性、能观性、稳定性等。本章先讨论用状态空间模型描述的线性系统的定量分析问题,即状态空间模型的求解问题。根据常微分方程理论求解一个一阶定系数线性微分方程组是很容易的,可是求解一个一阶变系数线性微分方程组却非易事。状态转移矩阵的引入,使得定常系统和时变系统的求解公式具有一个统一的形式。为此,本章将重点讨论状态转移矩阵的定义、性质和计算方法,并在此基础上导出状态方程的求解公式。本章讨论的另一个中心问题是连续系统状态方程的离散化,即建立连续系统的离散系统状态方程。随着计算机在控制系统分析、设计和实时控制中的广泛应用,这个问题显得越来越重要。在离散系统状态方程建立的基础上,本章也将讨论相应的状态方程求解问题,并将导出在形式上与连续系统状态方程的解一致的离散系统状态方程的解。 3.1 线性定常连续系统状态方程的解 在讨论一般线性定常连续系统状态方程的解之前,我们先讨论线性定常齐次状态方程的解,以便引入矩阵指数函数和状态转移矩阵的概念。所谓齐次状态方程,就是指状态方程中不考虑输入项的作用,满足方程解的齐次性的一类状态方程。研究齐次状态方程的解,就是研究系统本身在无外力作用下的自由运动。 3.2 状态转移矩阵及其计算 在状态方程求解过程中,关键是状态转移矩阵Φ(t)的计算。对于线性定常连续系统,该问题又归结到矩阵指数函数e At的计算。上一节已经介绍了基于拉氏反变换技术的矩阵指数函数e At的计算方法,下面讲述计算矩阵指数函数的其他3种常用方法。 3.2.1级数求和法

线性系统的频域分析

线性系统的频域分析 1.实验目的 1. 掌握用MATLAB语句绘制各种各样频域曲线。 2. 掌握控制系统的频域分析方法。 二.练习: 1.典型二阶系统 绘制出,,0.3,0.5,0.8,2的bode图,记录并分析对系统bode图的影响。 解:MATLAB编程如下: >> num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; >> den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; >> w=logspace(-2,3,100); >> bode(num,den1,w) >> grid >> hold Current plot held >> bode(num,den2,w) >> bode(num,den3,w) >> bode(num,den4,w) >> bode(num,den5,w)

(2)系统的开环传递函数为 绘制系统的Nyquist曲线Bode图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解:(1)MATLAB如下 >> num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); >> w=logspace(-1,1,100); >> nyquist(num1,den1,w)

(2)MATLAB编程如下: >> num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); >> w=logspace(-1,1,100); >> nyquist(num2,den2)

最新用MATLAB实现线性系统的频域分析

实验二用MATLAB实现线性系统的频域分析 [实验目的] 1.掌握MATLAB平台下绘制典型环节及系统开环传递函数的Bode图和Nyquist图(极坐标图)绘制方法; 2.掌握利用Bode图和Nyquist图对系统性能进行分析的理论和方法。 [实验指导] 一、绘制Bode图和Nyquist图 1.Bode图绘制 采用bode()函数,调用格式: ①bode(sys);bode(num,den); 系统自动地选择一个合适的频率范围。 ②bode(sys,w); 其中w(即ω)是需要人工给出频率范围,一般由语句w=logspace(a,b,n)给出。logspace(a,b,n):表示在10a到10b之间的 n个点,得到对数等分的w值。 ③bode(sys,{wmin,wmax}); 其中{wmin,wmax}是在命令中直接给定的频率w的区间。 以上这两种格式可直接画出规范化的图形。 ④[mag,phase,ω]=bode(sys)或[m,p]=bode(sys) 这种格式只计算Bode图的幅值向量和相位向量,不画出图形。 m为频率特性G(jω )的幅值向量; p为频率特性G(jω )的幅角向量,单位为角度(°)。 w为频率向量,单位为[弧度]/秒。 在此基础上再画图,可用: subplot(211);semilogx(w,20*log10(m) %对数幅频曲线 subplot(212);semilogx(w,p) %对数相频曲线 ⑤bode(sys1,sys2,…,sysN) ; ⑥bode((sys1,sys2,…,sysN,w); 这两种格式可在一个图形窗口同时绘多个系统的bode图。 2. Nyquist曲线的绘制

实验:典型信号频谱分析

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

相关文档