文档库 最新最全的文档下载
当前位置:文档库 › 第四节 单链丝状噬菌体载体

第四节 单链丝状噬菌体载体

第四节 单链丝状噬菌体载体
第四节 单链丝状噬菌体载体

第四节单链丝状噬菌体载体

一、M13 噬菌体的生物学

1.M13 噬菌体的组成和结构

M13 噬菌体颗粒是丝状的,只感染雄性大肠杆菌。感染宿主后不裂解宿主细胞,而是从感染的细胞中分泌出噬菌体颗粒,宿主细胞仍能继续生长和分裂。

M13 噬菌体的基因组为单链 DNA ,由 6407 的碱基组成(GenBank 注册号为

V00604)。基因组 90% 以上的序列可编码蛋白质,共有 11 个编码基因,基因之间的间隔区多为几个碱基。较大的间隔位于基因Ⅷ 和基因Ⅲ 以及基因Ⅱ 和基因Ⅳ 之间,其间有调节基因表达和 DNA 合成的元件。

M13 噬菌体基因组可编码 3 类蛋白质,包括复制蛋白(基因Ⅱ,Ⅴ 和Ⅹ),形态发生蛋白(基因Ⅰ,Ⅳ 和Ⅺ),结构蛋白(基因Ⅲ 、Ⅵ、Ⅶ、Ⅷ 和Ⅸ)。所有结构蛋白在形态发生之前都插入在宿主细胞的质膜中。基因组 DNA 为正链,按基因Ⅱ 至基因Ⅳ 方向合成,与噬菌体的 mRNA 序列同义。图 3-20 是 M13 噬菌体的遗传图谱。

M13 噬菌体颗粒为丝状长管状结构,长 880nm ,直径 6-7nm 。噬菌体颗粒的核心由 2700 个基因Ⅷ 编码的结构蛋白呈管状排列而成(图 5-32),成熟的基因Ⅷ 的产物为由 50 个氨基酸残基组成的α螺旋蛋白。顶端由 5 个基因Ⅶ 和 5 个基因Ⅸ 产物组成,作用于间隔区中的包装信号。 5 个基因Ⅲ 蛋白和5 个基因Ⅵ 蛋白位于丝杆的末端,参与对性纤毛的吸咐。图 3-21 是 M13 噬菌体结构模型。

2.M13 噬菌体的增殖

吸附是噬菌体感染的第一步, M13 噬菌体只感染具有性纤毛的菌株,携带 F 质粒的菌株可产生性纤毛。在吸附过程中,噬菌体的基因Ⅲ 蛋白与性纤毛发生作用。随后丝状噬菌体穿入到性纤毛,基因Ⅲ 蛋白与宿主的 TolQ 、TolR 和 TolA 蛋白发生作用,去除外壳蛋白,致使病毒 DNA 及附着于其上的基因Ⅲ 蛋白进入宿主菌体内。

在宿主细胞内,感染性的单链噬菌体 DNA (正链)在宿主酶的作用下转变成环状双链 DNA ,用于 DNA 的复制,因此这种双链 DNA 称为复制型 DNA (replicative form DNA),即 RF DNA 。通过θ复制方式, RF DNA 进行扩增,基因的转录也随即开始。基因组中的任意一个启动子都可以启动基因的转录,单方向地终止于下游的终止子。启动子和终止子的位置关系使得靠近终止子的基因转录更频繁。 M13 噬菌体在感染细胞中的复制见图 3-22 。

当基因Ⅱ 蛋白在亲代 RF DNA 的正链特定位点上产生一个切口时,便启动噬菌体基因组进行滚环复制。此时,在大肠杆菌的 DNA 聚合酶Ⅰ 的作用下,以负链为模板在切口的 3' 末端加入核苷酸,并持续 DNA 的合成,用新合成的 DNA 替换原有的正链。当复制叉环绕模板整整一周时,被取代的正链由基因Ⅱ 产物切去,经环化后形成单位长度的噬菌体基因组 DNA 。在感染开始的 15~20 分钟内,这些子代正链在宿主细胞酶的作用下,又转变成 RF DNA ,然后以之为模板继续转录并继续合成子代正链 DNA 。当感染细胞内累计有 100-200 个 RF DNA 时,细胞内也产生了足够的单链 DNA 结合蛋白,即基因Ⅴ 蛋白。该蛋白可以抑制翻译活性,特别是抑制基因Ⅱ mRNA 的翻译,并且强烈地结合在新合成的正链 DNA 上,阻止其转化成 RF DNA 。此时, DNA 的合成几乎只产生子代正链 DNA 。另外,基因Ⅹ 蛋白和基因Ⅴ 蛋白也是噬菌体特异 DNA 合成的强力抑制子,从而限制感染细胞内 RF DNA 的数量。结果,感染细胞内 RF DNA 的数目和子代正链 DNA 的产生速率都能保持适度。

成熟噬菌体颗粒由 11 个病毒蛋白中的 5 个组成,至少 4 个其他蛋白(如基因Ⅰ 、Ⅳ 和Ⅺ 蛋白,以及宿主的硫氧还蛋白(thioredoxin)对噬菌体颗粒的组装和分泌是必须的。

二、M13 噬菌体载体

单链 DNA 的酶切和连接是比较困难的,因此 M13 噬菌体在用作载体时是利用其双链状态的 RF DNA。RF DNA 很容易从感染细胞中纯化出来,可以象质粒一样进行操作,并可通过转化方法再次导入细胞。

1.载体的插入位点

在 M13 噬菌体基因组中绝大多数为必需基因,只有两个间隔区可用来插入外源DNA(基因Ⅱ/Ⅳ 和基因Ⅷ/Ⅲ 之间)。基因Ⅱ 和基因Ⅳ 之间的 508bp 间隔区是主要的外源片段插入位点。在基因Ⅷ 和基因Ⅲ 之间的小间隔区也可用来插入外源片段,但是在操作过程中,需要获得感染细胞的菌落进行影印筛选,比利用可见的噬菌斑方法更慢更麻烦。基因Ⅹ 也可用来克隆外源片段。

2.M13 噬菌体载体组成

现在所使用的 M13 噬菌体载体是 Messing 及其同事建立的 mp 系列载体,以基因Ⅱ 和基因Ⅳ 之间的区域作为外源 DNA 插入区。

mp 载体系列都是从同一个重组 M13 噬菌体(M13mpl)改造而来的。在 M13mpl 载体中,间隔区内的HaeⅢ 位点插入了一小段大肠杆菌 DNA ,引入α互补筛选。

3.M13mpl8 和 M13mpl9

M13mpl8 和 M13mpl9 这两个载体含有 13 个不同的酶切位点,可供插入由多种各不相同的限制酶切割而成的 DNA 片段(图 3-23)。 M13mpl8 和 M13mpl9 DNA 的全序列已经测定完成(GenBank 注册号为 M77815 和 L08821),这两种载体只是在lacZ 区内不对称的多克隆区的方向上有所不同。

当 RF DNA 被两种不同的限制酶切割以后, M13mpl8 和 M13mpl9 轻易不能重新环化。仅当连接混合液中含有带匹配末端的外源双链 DNA片段时,方可闭合成环。这一片段在 M13mpl8 和 M13mpl9 中将以两个互为相反的方向插入。这样一

来,在 M13mpl8 的正链中含有外源 DNA 双链的其中一条链,而在 M13mpl9 正链中则含有外源 DNA 的另一条链,即 M13mpl8 重组体的子代噬菌体内含有外源DNA 的一条链, M13mpl9 重组体的子代噬菌体内则含有它的互补链。故用

M13mpl8 和 M13mpl9 作为一对载体,就可能用一个引物(通用引物),从所插入 DNA 片段的任一端开始,测定互为相反的两条链的 DNA 序列,并可制备只与外源 DNA 的任意一条链互补的 DNA 探针。

三、 M13 噬菌体载体的宿主菌

由于 M13 噬菌体通过 F 质粒编码的性纤毛进入宿主细胞内,故只能用雄性细菌来增殖病毒。 Messing 及其同事已经构建了许多携带 F' 质粒并便于 M13 载体进行基因操作的多种大肠杆菌菌株,其中最重要的遗传标志有:

(1)lacZ D Ml5 lacZ 基因缺失突变体。

(2) D(lac-proAB)lac 基因缺失突变体。

(3)lacI q lacI 基因的突变体。

(4)proAB 细菌染色体上脯氨酸生物合成酶类的编码区域。

(5)traD36 抑制 F' 因子接合转移的突变。

(6)hsdR l7 与hsdR 4 对大肠杆菌 K 株Ⅰ 类限制 - 修饰系统失去限制活性但仍保留修饰功能的突变体。

(7)recA1大肠杆菌重组酶基因。

(8)supE 琥珀抑制基因。

在 M13 噬菌体载体中进行克隆时常用的宿主菌株如下。

JM101 supE D (lac-proAB)[F'traD 36 proAB + lac I q lacZ D M15]

JM105 JM101/ hsdR 4

JM107 JM101/ hsdR 17

JM109 JM101/ hsdR 17 recA1

TG1 JM101/ hsd D5(不修饰不限制)

XL1-Blue supE lac- hsdR 17 recA1 [F' proAB + lac I q lacZ D M15]Tn 10 (Tet r)

四、丝状噬菌体载体克隆中经常遇到的问题

在丝状噬菌体载体的克隆中经常遇到两类问题。

(1)外源 DNA 区段的部分缺失

(2)外源 DNA 总是以单方向插入

五、噬菌粒

噬菌粒(phagemid)实际上是带有丝状噬菌体大间隔区的质粒载体,是集质粒和丝状噬菌体的有利特征于一身的载体,具有 ColE1 复制起点及抗生素抗性选择标记的质粒,以及丝状体噬菌体的间隔区。此间隔区含噬菌体 DNA 合成的起始与终止及噬菌体颗粒形态发生所必需的全部顺式作用序列。含噬菌粒的细菌被噬菌体感染后,基因Ⅱ 蛋白可作用于噬菌粒的间隔区,启动滚环复制产生 ssDNA 并进行包装。

克隆于这些载体内的外源 DNA 区段可以象质粒一样用常规方法进行增殖。而带有这种质粒的细菌被 M13(或 f1)丝状噬菌体感染后,在病毒的基因Ⅱ 蛋白影响下,质粒的复制方式发生改变。基因Ⅱ 产物与质粒所携带的基因间隔区相

互作用,启动滚环复制,产生质粒 DNA 一条链的拷贝,最终包装在子代噬菌体颗粒中。

pUC118 和 pUC119 是功能比较完善的噬菌粒载体,对外源 DNA 片段的大小不那么敏感,并且保留了 pUC 质粒在克隆操作方面的优点(图 3-24)。在 pUC18/19 中增加了带有 M13 噬菌体 DNA 合成的起始与终止以及包装进入噬菌体颗粒所必需的顺式序列(IG),当含这些质粒的细胞被适当的 M13 丝状噬菌体感染时,可合成质粒 DNA 的其中一条链,并包装在子代噬菌体颗粒中。通过纯化噬菌体颗粒,可制备单链 DNA ,用于 DNA 序列测定、定点诱变或制备探针。

噬菌粒具有以下特征:

① 双链 DNA 既稳定,又高产,具有常规质粒的特征;

② 免却了将外源 DNA 片段从质粒亚克隆于噬菌体载体这一既繁琐又费时的步骤;

③ 由于载体足够小,故可得到长达 10kb 的外源 DNA 区段的单链。噬菌粒的主要优点在于它可以产生大段外源 DNA 的适量单链拷贝,又不必担心发生缺失突变,而这些外源 DNA 区段常常由于太大而不能克隆于常规 M13 载体。但许多噬菌粒都有一个主要缺点,即辅助噬菌体感染后,有时候单链 DNA 的产量较低且重复性较差。

六、M13KO7 辅助噬菌体

M13KO7 辅助噬菌体是 M13 的衍生株,大小为 8.7kb ,其结构组成见下图。

M13KO7 噬菌体带有来自 p15A 质粒的复制起点,因此可以象质粒一样复制,且可以与带 ColE1 的质粒共存于同一个宿主菌中。还带有一个来自转座子 Tn903 的卡那霉素抗性基因(kan r),用作选择标记。基因Ⅱ 带有一个 G 至 T 的突变(第 6125 核苷酸),导致基因Ⅱ 蛋白第 40 位氨基酸由甲硫氨酸变为异亮氨酸。辅助噬菌体 M13KO7 的遗传图谱见图 3-25 。

当 M13KO7 感染带有噬菌粒的大肠杆菌后,如E.coli(pUC118),进入宿主细

胞内的单链 DNA ,在宿主胞内酶的作用下转变为双链形式,后者可在质粒 p15A 的复制起点控制下进行复制。由于细胞内 M13K07 双链 DNA 的积累并不需要病毒基因产物,细胞内的噬菌粒几乎没有机会干扰所进入的 M13K07 病毒基因组的早期复制。

M13KO7 基因组双链 DNA 可表达产生子代单链 DNA 所必需的所有蛋白。但

M13K07 中突变的基因Ⅱ 产物与自身携带的噬菌体复制起点的作用尚不如它与克隆于噬菌粒 pUCll8 和 pUCll9 中的病毒复制起点的作用有效,这就使噬菌粒正链 DNA 能够优先合成,以确保在细胞所产生的病毒颗粒中来自噬菌粒的单链DNA 能够占据优势。

辅助噬菌体

英文名称:

helper phage;help bacteriophage

定义:通过对细菌的感染向某种缺陷性噬菌体提供后者所缺少的功能,使后者能够完成其感染生活周期的一种噬菌体。

单链丝状噬菌体载体研究

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

噬菌体的分类

病原微生物名词解释与解答题 噬菌体的分类:毒性噬菌体温和噬菌体 沙门菌肠热证胃肠炎败血症病 毒复制T:吸附穿入脱壳生物合成装配与释放 乙肝颗粒:大小球形颗粒管型颗粒 梅毒分期硬性下疳全身和皮肤黏膜出现梅毒疹皮肤黏膜溃疡性坏死和内脏器官肉芽肿样变(梅毒骝) 细菌的致病性物质:毒素(外神经毒素细胞毒素肠毒素内) 霍乱弧菌致病因子:霍乱肠毒素鞭毛菌毛及其他毒力因子内毒素 细胞壁保护细菌物质交换决定抗原性与致病性染色性药物敏感性有关 真菌培养基沙保弱(G 蛋白胨) 病毒培养法细胞培养鸡胚接种动物接种 AIDS性接触血源性母婴垂直 IMVIC:I吲哚M甲基红VP C枸橼酸盐 病毒自然条件入侵机体呼吸道消化道皮肤黏膜 病毒抗原变异类型抗原漂移抗原性转变 细菌生繁条件水碳源氮源无机盐生长因子(有些)温度:37℃ pH:7.2~7.6 气体:对O2要求(专性需氧菌、微需氧菌、兼专性厌氧菌)对CO2求: 5~10% CO2 渗透压 革兰染色初染媒染脱色复染将细菌涂片标本固定,初染加结晶紫,约一分钟,水洗。滴加碘液媒染,约一分钟,水洗,形成结晶紫—碘复合物,成深紫色。用95 %酒精脱色,30 秒钟,用水冲净酒精。用稀释复红复染1 分钟,水洗。镜检干燥后,置油镜观察.革兰氏阴性菌呈红色,革兰氏阳性菌呈紫色。 链球菌所致脓疾病:化脓性感染(淋巴管炎淋巴结炎蜂窝组织炎痈等局部皮肤和皮下组织感染)毒素性疾病(猩红热)超敏反应性疾病(风湿病急性肾小球肾炎)

狂犬病:管理传染源(捕杀野犬多犬预防接种对咬过人的猫犬隔离观察7·10发病处死取脑组织检查病毒抗原和內基小体)伤口处理和注射抗体(用3%·5%肥皂水0.1%苯扎溴铵或清水洗再用75%乙醇或碘酒注射高效价抗狂犬病毒血清于伤口周围与底部)预防接种(咬后和接触病毒危险的人及早接种疫苗) 真原核差异:无典型细胞结构核质无核膜核仁仅核糖体DNA RNA 细菌生长曲线分期定义将一定量的细菌接种于合适的培养基和T 过程有规律数目对数纵T横的曲线a迟缓期(最初准备代谢活跃V大储蓄E 中间代谢产物不繁殖1-4h 对数期(最快先短暂的加速期后对数期活细菌快增细菌形态染色性生理活性典型)稳定期(繁殖减慢死活相等活细菌保持稳定典型小改变代谢产物产生)衰退期(更慢死大于活典型大改变生理活动停滞出现衰退形菌体自溶) 内外毒素差异1(来源阳及部分阴分泌于菌体外或菌体自溶阴细胞壁裂解释放)2化学成分(蛋白质脂多糖)3稳定性(不稳定60死160 2-4h死)3抗原性(强产抗毒素经甲醛脱毒成类毒素4毒性作用强选择性毒害较弱引起发热休克DIC) 病毒感染类型隐性感染(无明显症状获得免疫力显性感染感染靶细胞大量增殖造成细胞结构域功能损伤急性感染持续性感染(慢性感染潜伏感染慢病毒感染) 微生物是存在于自然界的一群体形微小、结构简单、肉眼直接看不见,必须借助于光学显微镜或电子显微镜放大数百倍、数千倍,甚至数万倍才能观察到的微小生物 消毒消除和杀灭物体上或环境中的病原微生物及其它有害因子,但不一定能杀死全部非病原微生物的方法 灭菌杀死物体上所有微生物的方法,包括杀死芽胞 无菌操作防治病原微生物进入人体或其他物品上的方法 热原质是细菌合成的一种注入人体或动物体内能引起发热反应的物质,产生它的dad是阴,其细胞壁的脂多糖是热原质 正常菌群正常下人动物体表及呼吸道消化道泌尿生殖道德微生物种类数量稳定与机体平衡 致病菌少数正常菌在条件下致病 病原菌:少数微生物引起人动植物具有致病性

第一章1-6噬菌体载体2

3、λ噬菌体载体的优缺点:?优点:包装的λ噬菌体感染大肠杆菌要比 质粒转化细菌的效率高。 ?缺点:λ噬菌体载体的克隆操作要比质粒载体复杂。 ?用途:λ噬菌体载体比质粒载体能插入的DNA长得多,常用于构建cDNA文库或基因组文库。 第一章 分子克隆的工具酶和载体?第八节噬菌体载体 ?一、λ噬菌体 ?(一)λ噬菌体 ?(二)λ噬菌体载体的改造 ?(三)λ噬菌体载体举例 (三)λ噬菌体载体举例?Lambda gt10 ?Lambda gt11 ?EMBL3和EMBL4Lambda gt10 概述: ?Lambda gt10是一种插入载体。 ?在噬菌体阻遏基因cI 内有单一的EcoRⅠ克隆位点。用于插入小的cDNA片段(约6kb),构建cDNA文库或基因文库。 ?该载体克隆效率很高。 ?在构建cDNA文库时,利用Oligo(dT)或随机引物合成的cDNA经过EcoRⅠadaptors或Linkers修饰后,就可以和λgt10连接起来。?克隆到λgt10的噬菌体,可用核酸探针进行筛选。 Lambda gt10map 宿主: ?建议用C600 and C600hf1作受体菌。 筛选: ?如果有外源DNA插入,cI基因失活,该噬 菌体进入裂解生长途径,在培养皿形成噬 菌斑。反之,若无插入,cI基因表达,噬 菌体进入溶原生长途径,不形成噬菌斑。 ?核酸探针杂交。

Insertional cloning ?Insertional cloning into the cI gene of the lambda -gt10 cDNA cloning vector (DNA inserts of ~1-5 kb) can be selected in hfl (high frequency of lysogeny ) mutant strains of E. coli. In hflA strains of E. coli, expression of the lambda cII gene is elevated, resulting in transcriptional induction of the lambda cI repressor gene which promotes lysogeny . Disruption of the lambda cI coding sequence by DNA insertion into the unique EcoRI site of the lambda gt10 cDNA cloning vector, blocks the lysogenic pathway leading to cell lysis and plaque formation. Lambda gt11 ?λgt 载体系列:是插入型载体。插入了大肠 杆菌β-半乳糖苷酶基因片段,可以表达外源cDNA 而形成β-半乳糖苷酶融合蛋白。?λgt18/19 、λgt20/21和λgt 22/23 是λgt 11的衍生载体。?重组体筛选: ?未重组的噬菌体载体转入lac -宿主后,在X-gal 平板上形成淡蓝色噬斑;而外源DNA 片段插入载体后,重组噬菌体形成无色噬斑,很容易辩别。 ?常常用免疫学方法对噬班或菌落进行筛选。 Lambda gt10 map Lambda gt11 map Lambda gt11 概述: ?Lambda gt11是一个克隆和表达载体。 ?用于小的插入(7.2 kb )片断构建cDNA 文库或基因文库。 ?在其β-半乳糖苷酶翻译终止位点上游的LacZ 基因内,有单一的EcoR Ⅰ位点。 ?如果外源DNA 的阅读框与lacZ 吻合,即可表达融合蛋白。 ?在构建cDNA 文库时,利用Oligo (dT)或随机引物合成的cDNA 经过EcoR ⅠAdaptors 或Linkers 修饰后,可以和λgt11连接起来。 宿主: ?建议用Y1089(r-) and Y1090(r-)作受体菌。筛选: ?利用特异的抗体进行筛选。 EMBL3和EMBL4 ?EMBL3/4是由λ1059衍生的λ置换型载体。?是常用的基因组克隆载体,克隆的DNA 片 段大小为9-23kb 。 ?多克隆位点分别位于一个14 kb 填充片段的两侧。 ?两载体均在填充片段内含有red 及gam 基因,可由Spi 表现型筛选重组子。 ?除多克隆位点的顺序相反外,EMBL3和EMBL4的其余特征相同。

第八讲单链噬菌体载体及噬菌粒载体

第八讲单链噬菌体载体及噬菌粒载体 吴乃虎 中国科学院遗传与发育生物学研究所

第八讲单链噬菌体载体及噬菌粒载体 一、单链噬菌体的一般生物学 1.单链噬菌体的优越性 2.M13噬菌体的生物学特性 二、M13克隆体系 1.M13克隆体系 2.M13克隆体系-半乳糖苷酶的显色反应原理 3.M13载体系列的发展 4.M13载体系列的优点 三、噬菌体展示载体 1.噬菌体展示载体的构建原理 2.噬菌体展示载体 3.噬菌体表面展示文库 4.应用噬菌体展示载体分离有关蛋白质的实例 四、噬菌粒载体

1.M13噬菌体载体克隆的若干难点2.噬菌粒 3.若干常用的噬菌粒载体4.pBluescript噬菌粒载体5.pUC118和pUC119噬菌粒载体

第八讲单链噬菌体载体 一、单链噬菌体一般生物学 大肠杆菌丝状单链DNA噬菌体有M13噬菌体、f1噬菌体及fd 噬菌体,它们均含有分子量约为6400个核苷酸的单链闭环DNA分子。 1.单链DNA phage的优越性 A.具有双链的复制型DNA(RF DNA),可如质粒质粒一样进行遗传操作;RF DNA:Replication Form DNA。 B.RF DNA和ssDNA均可感染感受态的寄主细胞——形成phaque或colony。 C.不受包装的限制。因为单链DNA phage的大小是受其DNA 多寡制约的。 D.可容易地测出外源DNA的插入取向。 E.可产生大量的含有外源DNA的单链DNA分子,这种单链DNA分子有如下用途(作为模板): *1用作双脱氧链终止法进行DNA测序

*2制备单链的放射性标记的杂交用DNA探针 *3利用寡核苷酸进行定点突变 2.M13 phage的生物学特性 A.M13 phage同f1 phage亲缘关系十分密切,例如: ①基因组组织形式相同; ②病毒颗粒大小、形状相近; ③DNA同源性高达98%以上。 B.在M13 phage颗粒中只有(+)链DNA,感染具F性须的大肠杆菌菌株,因此M13噬菌体是雄性E.coli特有的;M13噬菌体的(+)链DNA,又称为感染性单链DNA。 C.复制型双链DNA(RF DNA=Replication Form DNA) 感染过程:当感染的M13 phage颗粒穿过性须时,其外层主要 衣壳蛋白质脱落,M13 DNA及附着其上的Gene Ⅲ 蛋白进E.coli细胞内, ↓ 感染性单链DNA(正链DNA)在细菌胞内酶的作用 下转变为双链DNA,称复制型DNA。通过结构 进行几轮复制。

噬菌体载体word版

第三章噬菌体载体 一、填空题 1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是—-----------—;二是----------——。 2.第一个报道的全测序的单链DNA噬菌体是ФX174,DNA长5386个碱基对,共一个基因,为一环状DNA分子,基因组的最大特点是—----------—。 3.λ噬菌体的基因组DNA为———————kb,有——多个基因。在体内,它有两种复制方式,扩增时(早期复制)按—-----—复制,成熟包装(晚期复制)则是按—--------—复制。它有一个复制起点,进行—-------—向复制。λ噬菌体的DNA既可以以线性存在又可以环状形式存在,并且能够自然成环。其原因主要是在λ噬菌体线性DNA分子的两端各有一个——个碱基组成的天然黏性末端。这种黏性末端可以自然成环。成环后的黏性末端部位就叫做——————位点。 4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA改造成插入型载体,该载体的最小分子大小约为————kb,插入的外源片段最大不超过——————kb。 5.野生型的M13不适合用作基因工程载体,主要原因是————和--------------—。 6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自——、COS位点序列来自—--------—,最大的克隆片段达到—----------—kb。 7.有两类改造型的λ噬菌体载体,即插入型和取代型。从酶切点看,插入型为——个,取代型为——个。 8.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1)---------------——(2)——————————(3)—---------------------—。 9. M13单链噬菌体的复制分为三个阶段:(1)————————(2)—-------------—, (3)———————————。 10.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是—-----—,而来自噬菌体的主要结构是—-------------------—。 11.M13单链噬菌体基因2和基因4之间的IG区有三个最重要的功能,即(1)—————(2)—------------—(3)—-------------—。 12.野生型的M13有10个基因,分为三个功能集团,其中与复制有关的两个基因是:——------------------和——-----------------。 13.以丸噬菌体载体和黏粒载体构建文库时,起始DNA的长度是不同的,前者为—----— kb,后者为————kb。

λ噬菌体载体

λ噬菌体载体 λ噬菌体,一种大肠杆菌双链RNA噬菌体。 是一种中等大小的温和噬菌体。迄今已经定位的λ噬菌体的基因至少有61个,其中有一半左右参与了噬菌体生命周期的活动,我们称这类基因为λ噬菌体的必要基因;另一部分基因,当它们被外源基因取代之后,并不影响噬菌体的生命功能,我们称这类基因为λ噬菌体的非必要的基因。 一.λ噬菌体的分子生物学概述 (1)λ噬菌体基因组的结构 在λ噬菌体线性双链 DNA分子的两端,各有一条由12个核劳酸组成的彼此完全互补的5′单链突出序列,即通常所说的粘性末端。注入到感染寄主细胞内的λ噬菌体的线性DNA分子,会迅速地通过粘性末端之间的互补作用,形成环形双链DNA分子。随后在DNA连接酶的作用下,将相邻的5′-P和3′-OH基团封闭起来,并进一步超盘旋化。这种由粘性末端结合形成的双链区段称为cos 位点(略语cos,系英语cohesive-end site的缩写,即粘性末端位点之意)(如图)。 在环化的状态下,λ噬菌体DNA分子的长度为48 502碱基对。

(2)λ噬菌体DNA的复制 在λ噬菌体感染的早期,环形的λ DNA分子按θ形式从双向进行复制。到了感染的晚期,控制滚环复制机理的开关被启动了,合成出了由一系列线性排列的人基因组oxA组成的长多连体分子。 (3)λ噬菌体DNA的整合与删除 λ噬菌体基因组的整合作用,是通过它的附着位点att,同大肠杆菌染色体DNA的局部同源位点之间的重组反应实现的。整合作用需要int基因的表达,它是一种可逆的过程。的复制子,这种过程叫做原噬菌体的删除作用。λ噬菌体的删除,需要噬菌体xis基因和bio基因的协同作用才能实现。 (4)λ噬菌体DNA的转录与转译 在溶菌周期,λ噬菌体DN A的转录是在三个时期,即早期、中期和晚期发生的。大体的情况是,早期基因转录确立起溶菌周期;中期基因转录的结果导致DNA进行复制和重组;晚期基因的转录最终使DNA被包装为成熟的噬菌体颗粒。 二.λ噬菌体载体的构建及其主要类型 (1)构建λ噬菌体载体的基本原理 构建λ噬菌体载体的基本原理是多余限制位点的删除。 按照这一基本原理构建的λ噬菌体的派生载体,可以归纳成两种不同的类型: 一种是插入型载体(insertion vectors),只具有一个可供外源DNA插入的克隆位点(如图)。 另一种是替换型载体(rePlacement vectors),具有成对的克隆位点,在这两个位点之间的人 DNA区段可以被外源插入的 DNA片段所取代。

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.

第四节 单链丝状噬菌体载体

第四节单链丝状噬菌体载体 一、M13 噬菌体的生物学 1.M13 噬菌体的组成和结构 M13 噬菌体颗粒是丝状的,只感染雄性大肠杆菌。感染宿主后不裂解宿主细胞,而是从感染的细胞中分泌出噬菌体颗粒,宿主细胞仍能继续生长和分裂。 M13 噬菌体的基因组为单链 DNA ,由 6407 的碱基组成(GenBank 注册号为 V00604)。基因组 90% 以上的序列可编码蛋白质,共有 11 个编码基因,基因之间的间隔区多为几个碱基。较大的间隔位于基因Ⅷ 和基因Ⅲ 以及基因Ⅱ 和基因Ⅳ 之间,其间有调节基因表达和 DNA 合成的元件。 M13 噬菌体基因组可编码 3 类蛋白质,包括复制蛋白(基因Ⅱ,Ⅴ 和Ⅹ),形态发生蛋白(基因Ⅰ,Ⅳ 和Ⅺ),结构蛋白(基因Ⅲ 、Ⅵ、Ⅶ、Ⅷ 和Ⅸ)。所有结构蛋白在形态发生之前都插入在宿主细胞的质膜中。基因组 DNA 为正链,按基因Ⅱ 至基因Ⅳ 方向合成,与噬菌体的 mRNA 序列同义。图 3-20 是 M13 噬菌体的遗传图谱。 M13 噬菌体颗粒为丝状长管状结构,长 880nm ,直径 6-7nm 。噬菌体颗粒的核心由 2700 个基因Ⅷ 编码的结构蛋白呈管状排列而成(图 5-32),成熟的基因Ⅷ 的产物为由 50 个氨基酸残基组成的α螺旋蛋白。顶端由 5 个基因Ⅶ 和 5 个基因Ⅸ 产物组成,作用于间隔区中的包装信号。 5 个基因Ⅲ 蛋白和5 个基因Ⅵ 蛋白位于丝杆的末端,参与对性纤毛的吸咐。图 3-21 是 M13 噬菌体结构模型。 2.M13 噬菌体的增殖 吸附是噬菌体感染的第一步, M13 噬菌体只感染具有性纤毛的菌株,携带 F 质粒的菌株可产生性纤毛。在吸附过程中,噬菌体的基因Ⅲ 蛋白与性纤毛发生作用。随后丝状噬菌体穿入到性纤毛,基因Ⅲ 蛋白与宿主的 TolQ 、TolR 和 TolA 蛋白发生作用,去除外壳蛋白,致使病毒 DNA 及附着于其上的基因Ⅲ 蛋白进入宿主菌体内。

第2章 基因克隆的载体——质粒和噬菌体

第2章基因克隆的载体——质粒和 噬菌体 载体:携带外源DNA进入宿主细胞的工具。 一、载体的功能: 1.运送外源基因高效转入受体细胞 2.为外源基因提供复制能力或整合能力 3.为外源基因的扩增或表达提供条件 二、载体应具备的条件: 1.具有对受体细胞的可转移性 2.具有与特定受体细胞相适应的复制位点或整合位点 3.长度尽可能小,以提高其载装能力 4.具有多种单一的酶切位点 5.具有合适的选择性标记 附图: 图 3-1 自主复制型载体和附加载体的扩增方式 2.1 质粒 质粒是存在于细菌细胞质中独立于染色体而自主复制的共价、封闭、环状双链DNA分子(Covalently closed Circular DNA, ccc DNA),并不是细菌生长所必需的,但可以赋予细菌某些抵御外界环境因素不利影响的能力。分子量在1-200kb之间。

一、质粒的基本特性: (一)自主复制性 质粒DNA携带有自己的复制起始区(ori)以及一个控制质粒拷贝数的基因,因此它能独立于宿主细胞的染色体DNA而自主复制。不同的质粒在宿主细胞内的拷贝数也不同,少则几个多则几百个不等,当然由于质粒上并没有复制酶的基因,所以其复制需要使用宿主细胞复制染色体DNA的多种酶群。 (二)不相容性 利用同一复制系统的不同质粒(RNAI RNAII Rop因子)如果被导入同一细胞中,它们在复制及随后分配到子细胞的过程中,就会彼此竞争,它们在单细胞中的拷贝数也会有差异,拷贝多的复制更快,结果在细菌繁殖几代之后,细菌的子细胞中绝大多数都含有占优势的质粒,因而这两种质粒中只能有一种长期稳定地留在细胞中,这就是所谓的质粒不相容性。 (三)可扩增性 质粒就其复制方式而言分为两类:松弛型复制及严谨型复制。pMB1或ColEI 类质粒复制子的复制完全依靠宿主细胞提供的半衰期较长的复制酶及蛋白因子(DNA聚合酶I,III,RNA聚合酶以及dnaB、dnaC、dnaD、dnaZ的产物),因此在蛋白质合成中断时,质粒复制能持续合成,这样当用氯霉素抑制蛋白质合成并阻断细菌染色体复制时,带有pMB1或ColEI复制子的质粒将利用丰富的原料大量复制,最后每个细胞可以积聚2000-3000个拷贝,这叫做氯霉素扩增。 但另外两种质粒(psc101和p15A)和的复制子的复制受质粒上编码的蛋白因子的正调节。氯霉素抑制蛋白质合成后,这类质粒便不能持续复制。 (四)可转移性 在天然条件下,很多天然质粒都可以通过细菌接合作用从一种宿主细胞内转移到另外一种宿主内,这种转移依赖于质粒上的tra基因产物。 二、质粒的构建 (一)天然存在的两种质粒 (1)colE1宿主细菌大肠杆菌6.5kb松弛型复制20-30/cell。 (2)pSC101宿主细菌沙门氏菌8.8kb严谨型复制5copy/cell标记基因为Tcr质粒的命名 p小写代表质粒;后面有两至三个大写字母代表发现者或构建者的姓名。

λDNA+噬菌体载体

λDNA λDNA,就是λ噬菌体中的DNA,但是λDNA也分很多种情况的,有正常的,有突变的,还有整合了宿主染色体的。 λDNA是一种溶原性的染色体序列,可以整合到宿主的染色体组上,也可以脱离下来,他的整合和脱离所产生的失误可产生宿主的基因重组现象,所以可以用于局限转导,是一种基因转化的载体。 柯斯质粒载体 目录 一.柯斯质粒载体的来源 二.柯斯质粒载体的特点 三.柯斯克隆 四.柯斯克隆的优点 一.柯斯质粒载体的来源 1978年由collins和hohn改建的一种新型大肠杆菌克隆载体,用正常的质粒与噬菌体λ的cos位点构成。“cosmld”一词是由英文“cos site-carrying plasmid”缩写而成的,其原意是指带有粘性末端位点(cos)的质粒。 所谓柯斯质粒,乃是一类由人工构建的含有λ DNA的cos序列和质粒复制子的特殊类型的质粒载体。诸如右图所示的柯斯质粒载体pHC79,就是由λ DNΑ片段和pBR322质粒DNA联合组成的。一般长度4~6kb。含有Amp和Tet选择标记基因。其上的cos位点可识别噬菌体外壳蛋白。凡具有cos位点的任何DNA分子只要在长度上相当于噬菌体的基因组,就可以同外壳蛋白结合而被包装成类似噬菌体λ的颗粒。因此,插入柯斯质粒载体的外源DNA片段的长度可大于40kb,从而大大增加了载体的携带能力。

二.柯斯质粒载体的特点 柯斯载体的特点大体上可归纳成如下四个方面: 第一,具有λ噬菌体的特性。柯斯质粒载体在克隆了合适长度的外源DNA,并在体外被包装成噬菌体颗粒之后,可以高效地转导对λ噬菌体敏感的大肠杆菌寄主细胞。 第二,具有质粒载体的持性。柯斯质粒载体具有质粒复制子,因此在寄主细胞内能够像质粒DNA一样进行复制,并且在氯霉素作用下,同样也会获得进一步的扩增。此外,柯斯质粒载体通常也都具有抗菌素抗性基因,可供作重组体分子表型选择标记。 第三,具有高容量的克隆能力。柯斯质粒载体的分子仅具有一个复制起点,一两个选择记号和COS位点等三个组成部分,其分子量较小,一般只有5~7kb左右。因此,柯斯质粒载体的克隆极限可达45kb左右。 第四,具有与同源序列的质粒进行重组的能力。一旦柯斯质粒与一种带有同源序列的质粒共存在同一个寄主细胞当中时,它们之间便会形成共合体。 三.柯斯克隆 应用柯斯质粒载体,在大肠杆菌细胞中克隆大片段的真核基因组DNA技术,叫做“柯斯克隆”(cosmid cloning)。 这种技术的理论依据是,在线性λ噬菌体DNΑ分子的每一端,都具有一段彼此互补的单链突出序列,即所谓的粘性末端(cos位点)。在λ噬菌体的正常生命周期中,会产生出由数百个λDNA拷贝组成的多连体分子。在此种分子中,前后两个λDNA基因组之间都是通过cos位点连接起来的。λ噬菌体具有的一种位点特异的切割体系(site-specific cutting system),叫做末端酶(terminase)或Ter体系,能识别两个相距适宜的cos位点,将多连体分子切割成λ单位长度的片段,并将它们包装到λ噬菌体头部中去。只有在被作用的λDNA分子具有两个cos位点,而且它们之间的距离保持在38~54kb的条件下,Ter体系才能对它们发生作用。 应用柯斯质粒作载体进行基因克隆的一般程序是:将外源DNA片段与柯斯质粒线性DNA分子进行体外连接反应。由此形成的连接产物群体中,有一定比例的分子是两端各有一个cos位点的长度为40kb左右的真核DNA片段,而且这两个cos位点在取向上是一样的,可作为λ噬菌体Ter功能的一种适用底物。当加入λ噬菌体的包装连接物时,它能把这些分子包装进λ噬菌体的头部,可以用来感染大肠杆菌四.柯斯克隆的优点 柯斯克隆技术的优点主要有两方面: 首先,由于柯斯载体兼具了质粒和λ噬菌体两方面的特性,提高了克隆外源DNA 片段的能力,可达45kb左右,因此对于构建真核生物基因文库是一种特别有用的克隆载体; 其次,应用柯斯质粒作克隆载体,所形成的非重组体的克隆本底比较低,从而提高了筛选具外源DNA的重组体质粒的几率。

噬菌体展示载体的构建

噬菌体展示载体的构建 中国药科大学 JournalofChinaPharmaceuticalUniversity2002,33(6):529,532529 噬菌体展示载体的构建 吴国球,沈子龙. (中国药科大学生物技术中心,南京210009) 摘要目的构建适宜噬菌体展示的载体系统.方法利用pCOMB3的LacZ强启动子,Pelb引导序列,包 膜蛋白?基因,用NHeI—XbaI双酶切,切除一个克隆位点;同时设计一对引物,用PET一28(a)作模板扩增550bp片 段,插入XhoI—SpcI位点之间,扩增质粒后用限制性内切酶,PCR,DNA测序等方法作鉴定.结果切除了272bp NHeI—XbaI片段,插入片段后酶切鉴定显示:XhoI,SpcI单酶切,XbaI,NheI无酶切;所构质粒用Xhol+SpcI双酶切 及PCR扩增均可见550bp片段;测序结果正确.结论成功构建了一种高拷贝,稳定,多用途,易于操作的噬菌体 展示载体. 关键词噬菌体展示;构建;载体 中图分类号:Q78文献标识码:A文章编号:1000—5048(2002)06—0529—04 噬菌体展示文库在新药开发领域,尤其在全人 源化单克隆抗体方面为扩展生物多样性提供了强 大的研究工具[】].它能容纳超过上百万个单个分子 的克隆,因此又称全套基因库,可以通过受体与配

体,抗原与抗体相结合的特性,从中筛选出目的基 因克隆,使目的基因能在很短的时间内(数周)高效 克隆,筛选和表达[2].文库的大小是决定生物多样 性的关键.因此构建一种高拷贝,稳定,多用途,易于操作的载体具有十分重要的意义. l材料和方法 1.1材料 pCOMBs质粒,XL1一blue菌株(东南大学基础医学院张建琼博士惠赠),PET一28(a)质粒,JM109菌株(本实验室保存),限制性内切酶NheI,XbaI, SacI,SpeI,XhoI(Mm),T4连接酶,琼脂糖,EDTA, DNA回收试剂盒等(上海生 工),LB,SOC按常规方法配制,PCR仪(AmpGene4800),电泳仪(北京六一仪器厂). 引物: P1:5'-GGGCCAACTCTAGTATGGCCC一3' 下划线为XhoI酶切位点 P2:5'-GG垒!垒!CTAACCAGCAC'ITCAGTGGGAA一3' 下划线为SpcI酶切位点Ck 连宝生物工程公司合成) 1.2方法 收稿日期2002—04—17通讯作者Tel:025—3271389 1.2.1pCOMB3的扩增含pCOMB3的XL1一blue 接种于四环素(50mg/L),氨苄青(100mg/L)双抗平板,37?过夜培养,挑单个菌落,接种l0ml的LB 液体增菌培养液,37~C6h,摇至ODeoo为0.36,按常规方法抽提质粒:按每毫升菌液l00lI液(50 mmol/LGlucose,25retool/LTris—HC1,l0retool/L EDTA),200l?液 (0.24mmol/LNaOHl00l, 5SDSl001),l50l?液(3mmol/LK.Ac,2.5 mmol/LHAc)混 匀,12000r/min5min,吸取上清 液,等体积酚:氯仿抽提一次,上清液加两倍体积的无水乙醇,4?放置 10min,12000r/min离心5min,

基因工程 考试 重点 噬菌体载体

第二章 DNA重组克隆的单元操作 练习题 噬菌体载体(练习题) 一、填空题 1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。2.第一个报道的全测序的单链DNA 噬菌体是φX174,DNA 长5386 个碱基对,共个基因,为一环状DNA 分子,基因组的最大特点是。 3.λ噬菌体的基因组DNA 为kb,有多个基因。在体内,它有两种复制方式,扩增时(早期复制)按复制,成熟包装(晚期复制)则是按复制。它有一个复制起点,进行向复制。λ噬菌体的DNA 既可以以线性存在又可以环状形式存在,并且能够自然成环。其原因主要是在λ噬菌体线性DNA 分子的两端各有一个个碱基组成的天然黏性末端。这种黏性末端可以自然成环。成环后的黏性末端部位就叫做位点。4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA 改造成插入型载体,该载体的最小分子大小约为kb,插入的外源片段最大不超过kb。 5.野生型的M13 不适合用作基因工程载体,主要原因是和。 6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS 位点序列来 自,最大的克隆片段达到kb。 7.有两类改造型的λ噬菌体载体,即插入型和取代型。从酶切点看,插入型为个,取代型为个。 8.野生型的丸噬菌体DNA 不宜作为基因工程载体,原因是:(1) (2) (3) 。9.M13 单链噬菌体的复制分为三个阶段:(1) (2) (3) 。10.噬菌粒是由质粒和噬菌体DNA 共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 11 .M13 单链噬菌体基因2 和基因4 之间的IG 区有三个最重要的功能,即(1) (2) (3) 。 12.野生型的M13 有10 个基因,分为三个功能集团,其中与复制有关的两个基因是:和。 13.以λ噬菌体载体和黏粒载体构建文库时,起始DNA 的长度是不同的,前者为 kb,后者为kb。 14.λ噬菌体载体由于受到包装的限制,插入外源DNA 片段后,总的长度应在噬菌体基因组的的范围内。 二、判断题 1. 取代型载体(replacement vector)是指同一种限制性内切核酸酶在),DNA 中具有两个切 点,外源DNA 通过取代这两个切点间的片段被克隆。 2. 现在最常用的pUC 载体是pUCl8,它的分子量小,具有多克隆位点和易于选择的分子标记,并且是松弛型复制。另外,这种载体可在辅助质粒的帮助下合成单链DNA。 3. 噬菌粒(phagemid)pUCll8/pUCll9 载体是集质粒和丝状噬菌体有利特征于一身的载体,既能合成单链DNA,又能合成双链DNA。 4. λ噬菌体DNA 和M13 单链噬菌体DNA 在成熟前的DNA 复制都是用滚环模型。 5. M13 噬菌体每个世代裂解宿主后,可释放100 个子代噬菌体。 6. 以黏粒为载体的重组体虽然在平板上生长的速度不同,但是转化子中插入片段的扩增量

载体练习题

一、单选题 1.下列关于质粒的叙述正确的是() A.质粒是广泛存在于细菌细胞中的一种细胞器 B.质粒是细菌细胞质中能自主复制的小型环状DNA C.质粒只有侵入宿主细胞中才能复制 D.质粒都可以作为基因工程的载体 2.下列载体中装载量最大的是() A.质粒 B.M13噬菌体 C. 噬菌体 D.考斯质粒 3.不属于质粒被选为基因载体的理由是() A.能复制 B.有多个限制酶切点 C.具有标记基因 D.是环状DNA 4.下列哪项叙述不是载体必须具备的条件() A.具有某些标记基因 B.决定宿主细胞的生存 C.能够在宿主细胞中复制 D.有一个或多个限制酶切点 5.下列哪项不是基因工程中经常使用的用来运载目的基因的载体() A.细菌质粒 B.噬菌体 C.动植物病毒 D.细菌核区的DNA 6.科学家常选用的细菌质粒往往带有一个抗菌素抗性基因,该抗性基因的主要作用是() A.便于与外源基因连接 B.检测目的基因是否导入受体细胞 C.增加质粒分子的相对分子质量 D.提高受体细胞的耐热性 7.在基因工程操作中,载体的本质是双链DNA分子,下列功能不能由载体完成的是( ) A.目的基因的转运 B.目的基因的扩增 C.目的基因的表达 D.目的基因的定位 8.基因工程中常见的载体是 ( )

A.质体 B.染色体 C.质粒 D.线粒体 9.下列说法正确的是() A.DNA连接酶最初是从人体细胞中发现的 B.限制酶的切口一定是GAATTC碱基序列 C.质粒是基因工程中唯一用作运载目的基因的运载体 D.利用载体在宿主细胞内对目的基因进行大量复制的过程称为“克隆” 10.质粒与病毒的主要区别是() ①质粒是很小的环状DNA分子;②质粒可以在大肠杆菌内复制;③质粒的基因能编码蛋白质;④质粒的存在不会影响宿主细胞的生存 A.①② B.①③④ C.①②③④ D.①④ 11.下列关于基因工程的叙述,正确的是() A.基因工程经常以抗菌素抗性基因为目的基因 B.细菌质粒是基因工程常用的载体 C.通常用一种限制性核酸内切酶处理含目的基因的DNA,用另一种处理载体DNA D.为培育成抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为载体 12.在基因工程中,下列特征除哪项外,都是载体必须具备的条件() A.能够在宿主细胞中复制,并稳定地保存 B.具有多个限制酶切点 C.必须是细菌的质粒或噬菌体 D.具有某些标记基因

基因工程载体的分类及其特性

基因工程载体的分类及其特性 田文晓 1343001125 按照来源和性质分类 1、质粒载体 ①复制:通常情况下一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区。 在不同的质粒中,复制起始区的组成方式不同,有的可决定复制的方式,例如滚环复制和θ复制;在大肠杆菌中使用的大多数载体都带有一个来源于 pMB1 质粒或 ColE1 质粒的复制起始位点。 ②拷贝数:质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数大约为1 ~几个; 松驰型质粒拷贝数较多,可达几百。 ③不相容性:两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质 粒导入后,在不涉及 DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放大,从而导致在子细胞中只含有其中一种质粒。 ④转移性:指在自然条件下,很多质粒可以通过称为细菌接合的作用转移到新宿主内。它需 要移动基因 mob ,转移基因 tra ,顺式因子 bom 及其内部的转移缺口位点 nic。 2、噬菌体载体(包括λ噬菌体、M13噬菌体载体) 1)λ噬菌体载体:大的外援插入片段在质粒中不稳定,转导是比转化效率更高的过程,避免出 现无插入片段的空载体。 2)M13噬菌体载体:可以对任意克隆基因进行DNA进行诱变,测序方便,可以制备单链测序模 板;含有噬菌体DNA的噬菌体颗粒从转化细胞中分泌出来后,可以在生长平板上收集。 ①超感染免疫性:溶原性细菌在被噬菌体感染并溶原化后,不会被同种噬菌体再次感染。 ②经过若干世代后,溶原性细菌会开始进入溶菌周期,即溶原性细菌的诱发。此时,原噬菌 体从宿主基因组上切离下来进行增殖。 3、粘粒载体(柯斯质粒) ①具有λ噬菌体的特性。柯斯质粒载体在克隆了合适长度的外源DNA,并在体外被包装成噬菌 体颗粒之后,可以高效地转导对λ噬菌体敏感的大肠杆菌寄主细胞。但该载体不包含λ噬菌体的全部必要基因,因此不能够通过溶菌周期,无法形成子代噬菌体颗粒。

相关文档