文档库 最新最全的文档下载
当前位置:文档库 › 化工原理实验报告

化工原理实验报告

化工原理实验报告
化工原理实验报告

化工原理实验报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验一 伯努利实验

一、实验目的

1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。

2、观察各项能量(或压头)随流速的变化规律。 二、实验原理

1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。

2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。

3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。

4、柏努利方程式

式中:

1Z 、2Z ——各截面间距基准面的距离 (m )

1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得)

(m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可

知) (Pa )

对于没有能量损失且无外加功的理想流体,上式可简化为

ρ

ρ2

222121122p u gz p u gz +

+=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22

ν,从而可得到各截面测管水头和总水头。

三、实验流程图

泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项

1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。

3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。

5、实验完毕停泵,将原始数据整理。

实验二 离心泵性能曲线测定

一、实验目的

1. 了解离心泵的构造和操作方法

2. 学习和掌握离心泵特性曲线的测定方法

二、实验原理

离心泵的主要性能参数有流量Q(也叫送液能力)、扬程H(也叫压头)、轴功率 N 和效率η。离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线。

泵的扬程用下式计算:

He=H压力表+H真空表+H0+(u出2-u入2)/2g

式中:H压力表——泵出口处压力

H真空表——泵入口处真空度

H0——压力表和真空表测压口之间的垂直距离

泵的总效率为:

其中,Ne为泵的有效功率:

Ne=ρ●g●Q●He

式中:ρ——液体密度

g——重力加速度常数

Q——泵的流量

Na为输入离心泵的功率:

Na=K●N电●η电●η转

式中:K——用标准功率表校正功率表的校正系数,一般取1

N

电——电机的输入功率

η

电——电机的效率

η转——传动装置的传动效率

三、实验设备及流程:

设备参数:

泵的转速:2900转/分额定扬程:20m

水温:25℃泵进口管内径:41mm

泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m

四、实验操作

1.灌泵

因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵。

2.开泵

注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故。

3.建立流动

4.读取数据

等涡轮流量计的示数稳定后,即可读数。注意:务必要等到流量稳定时再读数,否则会引起数据不准。

五、作业

以一组数据计算Q、He、Ne、η

实验三过滤实验

一、实验目的

1.了解板框过滤机的构造和操作方法。

2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时

间。

二、基本原理

对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:

(V+Ve)2=KS2(t+te)

上式也可写成:

(q+q e)2=K(t+t e)

微分后得到:

dt / dq= 2q / K+2q e / K

该微分式为一直线方程,其斜率为2/K,截距为2q e/K。实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K,虚拟滤液体积q e。

只考虑介质阻力时:qe2=Kte

将q e代入上式可求出虚拟过滤时间t e。

三、实验设备

板框过滤机的过滤面积为0.12m2。由空压机提供压力,并恒压可调。以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验。孔板孔口径:8mm,文丘里管喉径:8mm,φ20×2不锈钢管。

四、实验步骤

1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净。

2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通。

3、安装时应从左至右进行,装好一块,用手压紧一块。请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板(带奇数点),3块框(带偶数点),以确保流道的畅通。

4、装完以后即可紧固手柄至人力转不动为止。

5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌。

6、约5min后,检查所有阀门看是否已关紧确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在~范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节。

(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作。

(2)、注意看看板框是否泄漏(大量液体冲出,少量漏液无妨)确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据。

(3)、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要。读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验。

(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀。然后关闭进水阀,打开进气阀,恒压在~范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验。

(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验。

实验四传热实验

测定对流传热系数的准数关联式。

二、实验原理

对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:

对于强制湍流而言,Gr准数可以忽略,故

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验简化上式,即取n=(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程:

在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即:

对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:

牛顿冷却定律:

传热量Q可由下式求得:

三、实验设备流程

设备参数:

孔板流量计:流量计算关联式:V=●

式中:R——孔板压差,[mmH2O]

V——水流量,[m3 /h]

换热套管:

套管外管为玻璃管,内管为黄铜管。

套管有效长度:1.25m,内管内径:0.022m

1.启动水泵

2.打开进水阀

3.打开蒸汽发生器

4.打开放汽阀

5.读取水的流量

6.读取温度

7.实验结束后,先停蒸汽发生器,再关进水阀。

五、数据处理

以一组数据计算传热量、传热系数。

实验五精馏实验

一、试验目的

1.掌握精馏塔的结构

2.测定精馏塔的理论板数及塔效率

二、实验原理

1.理论板

2.作图法求理论板数

3.精馏塔的全塔效率E

t

为理论塔板数与实际塔板数N之比,即:

E t =N

t

/ N

精馏塔的单板效率E m可以根据气相(或液相)通过测定塔板的浓度变化进行计算。

若以液相浓度变化计算,则为:

E

ml =(X

n-1

-X

n

) / (X

n-1

- X

n

*)

若以气相浓度变化计算,则为:

E

mv =(Y

n

-Y

n+1

) / ( Y

n

*-Y

n+1

)

式中:

X

n-1

-----第n-1块板下降的液体组成,摩尔分率;

X

n

-------第n块板下降的液体组成,摩尔分率;

X

n *------第n块板上与升蒸汽Y

n

相平衡的液相组成,摩尔分率;

Y

n+1

-----第n+1块板上升蒸汽组成,摩尔分率;

Y

n

-------第n块板上升蒸汽组成,摩尔分率;

Y

n *------第n块板上与下降液体X

n

相平衡的气相组成,摩尔分率。

三、实验设备及流程简介

本实验进料的溶液为乙醇—水体系,其中乙醇占20%(摩尔百分比)。

精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是

10mm。

四、实验步骤

1.全回流进料

打开泵开关,再打开进料的管线。

2.塔釜加热升温

全回流进料完成后,开始加热。

3.建立全回流

注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果。

4.读取全回流数据

5.逐步进料,开始部分回流

逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物料平衡、塔釜液位和回流比。

6.记录部分回流数据 五、作业

写出精馏段操作线方程、提馏段操作线方程、加料线方程。

实验六、吸收实验

一、实验原理

本实验是用水吸收空气-氨混合气体中的氨。混合气体中氨的浓度很低。吸收所得的溶液浓度也不高。气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:

所以 )/(m p A a Y Y V G K ??= 其中 式中

G A —单位时间内氨的吸收量[kmol/h]。 K Ya —总体积传质系数[kmol/m 3·h]。 V p —填料层体积[m 3]。 △Y m —气相对数平均浓度差。 Y 1—气体进塔时的摩尔比。

Y e1—与出塔液体相平衡的气相摩尔比。 Y 2—气体出塔时的摩尔比。

Y e2—与进塔液体相平衡的气相摩尔比。 3、计算方法、公式:

(1)氨液相浓度小于5%时气液两相的平衡关系: 温度 [℃]: 0 10 20 25 30 40 亨利系数E[atm]:

(2)总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤 a 、标准状态下的空气流量V 0:

2

1210010T T P

P P T V V ????

= [m 3/h] 式中:

V 1——空气转子流量计示值 [m 3/h] T 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强

b 、标准状态下的氨气流量V 0’

2

10221010010''T T P P P T V V ??????

=ρρ [m 3/h] 式中:

V 1’——氨气转子流量计示值 [m 3 / h] ρ01——标准状态下氨气的密度 [kg / m 3] ρ02——标定状态下氨气的密度 [kg / m 3]

如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:

V 0’’=●V 0’

c 、惰性气体的摩尔流量G :

G=V0 /

d、单位时间氨的吸收量G A:

G A=G●(Y1-Y2)

e、进气浓度Y1:

f、尾气浓度Y2:

式中:

N s——加入分析盒中的硫酸当量浓度 [N]

V s——加入分析盒中的硫酸溶液体积 [ml]

V——湿式气体流量计所测得的空气体积 [ml]

T0——标准状态下的空气温度 [K]

T——空气流经湿式气体流量计时的温度 [K] g、对数平均浓度差(ΔY)m:

Y e2=0

Y e1=m x1*

P=大气压+塔顶表压+(填料层压差)/2

m=E / P

x1=G A / Ls

式中:

E——亨利常数

Ls——单位时间喷淋水量 [kmol / h]

P——系统总压强

h、气相总传质单元高度:

式中:

G’——混合体气通过塔截面的摩尔流速二、实验设备及流程

设备参数:

基本数据:塔径Φ0.10m,填料层高0.75m

填料参数:12×12×[mm]瓷拉西环,a1—403[m-1],ε—,a1/ε3—903[m-1]

尾气分析所用硫酸体积:1ml,浓度:

上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂(水)从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质。

从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成。稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色。

三、实验步骤

建议的实验条件:

水流量:80 l/h 空气流量:20 m3/h 氨气流量:0.5 m3/h

注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离。

1、通入氨气

打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量(实验建议流量: 0.5 m3/h)。

2、进行尾气分析

通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积。当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度。

3、读取数据

实验七干燥实验

一、实验目的

1.了解气流干燥设备基本流程和工作原理

2.测定物料在一定干燥条件下的干燥速率曲线及传质系数

二、实验原理

1.干燥特性曲线

干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段。

式中:x平—某干燥速率下湿物料的平均含水量 [kg]

Gs i,Gs i+1—分别为△τ时间间隔内开始和终了时湿物料重量 [kg]。

G c—湿物料中绝对干物料的重量 [kg]。

2.传质系数

恒速阶段:恒速阶段的干燥速率u仅由外部干燥条件决定,物料表面温度近于空气湿球温度t w。在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:

降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含水量(x-x*)成正比时干燥速率曲线可简化为直线。

即为:u=k x(x-x*)

k x=u / (x-x*)

式中:k x—以含水量差△x为推动力的比例系数 [kg/m2·s·△x];u—物料含水量为x时的干燥速率 [kg/m2·s];

x—在τ时的物料含水量 [kg/kg绝干物料];

x*—物料的平衡含水量 [kg/kg绝干物料];

三、实验装置及流程简介

主要设备规格:

孔板流量计:管径D=106mm,孔径d=68.46mm

孔流系数 C0=

干燥室尺寸:[m]×[m]

四、实验步骤

1.启动风机

注意:禁止在启动风机以前加热,这样会烧坏加热器。

2.开始加热

3.进行干燥实验

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验思考题答案

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这 一现象说明了什么?这一高度的物理意义是什么? 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流 体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。

2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回答以下问题: (1) 各H /值的物理意义是什么? 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。 (2) 对同一测压点比较H 与H /各值之差,并分析 其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大, 就直管阻力公式可以看出2 2 u d l H f ? ?=λ与管长l 呈 正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H //并回答以下问题: (1) 与阀门半开时相比,为什么各测压管内的液

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1.关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测压管中的液柱高度H并回答以下问题: (1)各测压管旋转时,液柱高度H有无变化?这一现象说明了什么?这一高 =, ( 。2 (1)各H/值的物理意义是什么? 答:当测压管小孔转到正对流向时H/值指该测压点的冲压头H/冲;当测压管小孔转到垂直流向时H/值指该测压点的静压头H/静;两者之间的差值为动压头H/ 动=H / 冲-H / 静。 (2)对同一测压点比较H与H/各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出 2 ( (能ρcd p <ρab p 。此外从2 2 u d l H f ??=λ直管阻力公式可以看出, l 、d 产生的阻力 损失Σh f 对C 、D 两点的静压能也有一定的影响。 4. 计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=0.0145(m) ;C 点处的管径d=0.012(m) A 点半开时的流速:

135.00145 .036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145.036004 16.0360042 2=???=???= ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???=ππd Vs u c 半 (m/s ) 3600s 流速: )/(29269.00145 .04 1083.42 5s m A V u s =???==-π 雷诺准数: 381510111.173 .99829269.00145.0Re 3 =???= = -μ ρ du 同理,根据雷诺实验测定的读数计算其余各点的流量、流速和雷诺准数如原始数据表所述。

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验—超全思考题答案

实验6 填料吸收塔流体力学特性实验 ⑴ 流体通过干填料压降与式填料压降有什么异同? 答:当气体自下而上通过填料时产生的压降主要用来克服流经填料层的形状阻力。当填料层上有液体喷淋时, 填料层内的部分空隙为液体所充满,减少了气流通道截面,在相同的条件下,随液体喷淋量的增加,填料层所持有的液量亦增加,气流通道随液量的增加而减少,通过填料层的压降将随之增加。 ⑵ 填料塔的液泛和哪些因素有关? 答:填料塔的液泛和填料的形状、大小以及气液两相的流量、性质等因素有关。 ⑶ 填料塔的气液两相的流动特点是什么? 答:填料塔操作时。气体由下而上呈连续相通过填料层孔隙,液体则沿填料表面 流下,形成相际接触界面并进行传质。 ⑷ 填料的作用是什么? 答:填料的作用是给通过的气液两相提供足够大的接触面积,保证两相充分接触。 ⑸ 从传质推动力和传质阻力两方面分析吸收剂流量和吸收剂温度对吸收过程的影响? 答:改变吸收剂用量是对吸收过程进行调节的最常用的方法,当气体流率G 不变时,增加吸收剂流率,吸收速率A N 增加,溶质吸收量增加,则出口气体的组成2y 减小,回收率增大。当液相阻力较小时,增加液体的流量,传质总系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力m y ?的增大引起,此时吸收过程的调节主要靠传质推动力的变化。当液相阻力较大时,增加液体的流量,传质系数大幅度增加,而平均推动力可能减小,但总的结果使传质速率增大,溶质吸收量增加。对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力a k m a K y y = 1将随之减小,结果使吸收效果变好,2y 降低,而平均推动力m y ?或许会减小。对于气膜控制的过程,降低操作温度,过程阻力a k m a K y y = 1不变,但平均推动力增大,吸收效果同样将变好 ⑹ 从实验数据分析水吸收氨气是气膜控制还是液膜控制、还是兼而有之? 答:水吸收氨气是气膜控制。 ⑺ 填料吸收塔塔底为什么要有液封装置? 答:液封的目的是保证塔内的操作压强。 ⑻ 在实验过程中,什么情况下认为是积液现象,能观察到何现象? 答:当气相流量增大,使下降液体在塔内累积,液面高度持续上升,称之为积液。 ⑼ 取样分析塔底吸收液浓度时,应该注意的事项是什么? 答:取样时,注意瓶口要密封,避免由于氨的挥发带来的误差。 ⑽ 为什么在进行数据处理时,要校正流量计的读数(氨和空气转子流量计)? 答:流量计的刻度是以20℃,1atm 的空气为标准来标定。只要介质不是20℃,

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验答案

(一)流体流动阻力测定 1.是否要关闭流程尾部的流量调节 不能关闭流体阻力的测定主要是根据压头来确定的;尾部的流量调解阀;起的作用是调解出流量;由于测试管道管径恒定;根据出流量可以确定管道内流体流速;而流速不同所测得的阻力值是不同的;这个在水力计算速查表中也有反映出的。你在实际测试的时候是要打开流量调解阀的;肯定在尾部会有一个流量计;当出溜一段时间后; 管内流体流态稳定后;即可测试。在测试前;校核设备和仪表时;流量调解阀是关闭的; 当测试时肯定是打开的 2.怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 3.本实验用水为工作介质做出的λ-Re曲线,对其它流体能否使用?为什么? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化。 4.在不同设备上 ( 包括不同管径 ) ,不同水温下测定的λ~ Re 数据能否关联同一条曲 答:一次改变一个变量,是可以关联出曲线的,一次改变多个变量时不可以的。 5.如果测压口,孔边缘有毛刺或安装不垂直,对静压的测量有何影响? 没有影响.静压是流体内部分子运动造成的.表现的形式是流体的位能.是上液面和下液面的垂直高度差.只要静压一定.高度差就一定.如果用弹簧压力表测量压力是一样的.所以没有影响. (二)离心泵特性曲线的测定 1.为什么离心泵启动时要关闭出口阀门? 答:防止电机过载。因为电动机的输出功率等于泵的轴功率N。根据离心泵特性曲线,当Q=0时N最小,电动机输出功率也最小,不易被烧坏。 2.为什么启动离心泵前要向泵内注水?如果注水排气后泵仍启动不起来,你认为可能是什 么原因? 答:为了防止打不上水、即气缚现象发生。如果注水排完空气后还启动不起来。①可能是泵入口处的止逆阀坏了,水从管子又漏回水箱。②电机坏了,无法正常工作。 3.为什么调节离心泵的出口阀门可调节其流量?这种方法有什么优缺点?是否还有其它 方法调节泵的流量? 答:调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,可以调节其流量。这种方法优点是方便、快捷、流量可以连续变化,缺点是阀门关小时,增大流动阻力,多消耗一部分能量、不很经济。也可以改变泵的转速、减少叶轮直径,生产上很少采用。还可以用双泵并联操作。 4.离心泵启动后,如果不开出口阀门,压力表读数是否会逐渐上升?为什么? 答:不会,也就能升到额定扬程的1.1至1.3倍。二力平衡 5.正常工作的离心泵,在其进口管上设置阀门是否合理,为什么? 答:不合理,因为水从水池或水箱输送到水泵靠的是液面上的大气压与泵入口处真空度产生的压强差,将水从水箱压入泵体,由于进口管,安装阀门,无疑增大这一段管路的阻力而使流体无足够的压强差实现这一流动过程。

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

化工原理实验思考题及答案汇总

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

化工原理实验讲

1流体阻力测定实验 实验目的 1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2 )测定直管摩擦系数入与雷诺准数Re的关系,将所得的入~Re方程与经验公式比较。 3 )测定流体流经阀门时的局部阻力系数E。 4 )学会倒U形差压计、差压传感器、涡轮流量计的使用方法。 5 )观察组成管路的各种管件、阀门,并了解其作用。 基本原理 流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力 流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 h f 仏上厘(1 —1) 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通 过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度P、粘度卩; (2)管路的几何尺寸:管径d、管长I、管壁粗糙度£; (3)流动条件:流速卩。 可表示为: p f (d,l,,,u,)(1—2)组合成如下的无因次式: p 2 (du I J d ,—)(1—3) u d p du I u2 (,—)? d d 2 du 令( , d )/ (1 — 4) 则式(1 —1)变为: 2 h f P 1u(1 - 5) d2 式中,入称为摩擦系数。层流(滞流)时,入=64/R e;湍流时入是雷诺准数R e和相对粗糙度的函数,须由实验确定。

2) 局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径 长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。这样,就可以用直管 阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为I,各种局部阻力的当量长度之和为le,则流体在管路中流动时的总阻力损失h f为 I leu2 h f(1 —6) d 2 (2)阻力系数法\ 流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。 即 2 . u h f (1 —7) 2 式中,E――局部阻力系数,无因次;u 在小截面管中流体的平均流速,m/ s。 由于管件两侧距测压孔间的直管长度很短?引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f'直可应用柏努利方程由压差计读数求取。 实验装置与流程 1)实验装置 实验装置如图1 —1所示。主要由水箱、管道泵,不同管径、材质的管子,各种阀门和管件,转子流量计等组成。第一根为粗糙管,第二根为光滑管。第三根不锈钢管,装有待测闸阀,用于局部阻力的测定。 1、水箱 2、管道泵 3、5、6、球阀 4、均压环7、系统排水阀8闸阀9、流量调节阀 10、排污水阀11倒U形差压计12、不锈钢管13、粗糙管14、光滑管15、转子流量计16、导压管17、温度计18、进水阀

化工原理实验习题答案

化工原理实验习题答案 Prepared on 22 November 2020

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量 为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一

(4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。在外管 最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故 (ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

相关文档