文档库 最新最全的文档下载
当前位置:文档库 › 四配位化合物

四配位化合物

四配位化合物
四配位化合物

Effects of the nuclear disaster on marine products in Fukushima Toshihiro Wada a,*,Yoshiharu Nemoto b,Shinya Shimamura b,Tsuneo Fujita b, Takuji Mizuno b,Tadahiro Sohtome b,Kyoichi Kamiyama a,Takami Morita c, Satoshi Igarashi b

a Soma Branch,Fukushima Prefectural Fisheries Experimental Station,Soma,Fukshima9760022,Japan

b Fukushima Prefectural Fisheries Experimental Station,Iwaki,Fukushima9700316,Japan

c Fisheries Agency of Japan,Kasumigaseki,Chiyoda-ku,Tokyo1008950,Japan

a r t i c l e i n f o

Article history:

Received10January2013 Received in revised form

22May2013

Accepted23May2013 Available online3July2013

Keywords:

Fukushima

Nuclear accident

Marine products

131I

134Cs and137Cs

Ecological half-life a b s t r a c t

After the release of huge amounts of radionuclides into the ocean from the devastated Fukushima Dai-ichi Nuclear Power Plant(FDNPP),safety concerns have arisen for marine products in Fukushima Pre-fecture.As of October2012,we had inspected the radionuclide(131I,134Cs and137Cs)concentrations in 6462specimens within169marine species collected off the coast of Fukushima Prefecture from April 2011.Only two species exceeded the Japanese provisional regulatory limit for131I(2000Bq/kg-wet) immediately after the FDNPP accident.In2011and2012,63and41species respectively exceeded the Japanese regulatory limit for radioactive Cs(100Bq/kg-wet).The overall radioactive Cs concentrations of the total marine products have decreased signi?cantly.However,the time-series trends of radioactive Cs concentrations have differed greatly among taxa,habitats(pelagic/demersal),and spatial distributions. Higher concentrations were observed in shallower waters south of the FDNPP.Radioactive Cs concen-trations decreased quickly or were below detection limits in pelagic?shes and some invertebrates,and decreased constantly in seaweed,surf clams,and other organisms.However,in some coastal demersal ?shes,the declining trend was much more gradual,and concentrations above the regulatory limit have been detected frequently,indicating continued uptake of radioactive Cs through the benthic food web. The main continuing source of radioactive Cs to the benthic food web is expected to be the radioactive Cs-containing detritus in sediment.Trial?shing operations for several selected species without radio-active Cs contamination were commenced in Soma area,50km north of the FDNPP,from June2012. Long-term and careful monitoring of marine products in the waters off Fukushima Prefecture,especially around the FDNPP,is necessary to restart the coastal?shery reliably and to prevent harmful rumors in the future.

ó2013Elsevier Ltd.All rights reserved.

1.Introduction

After the Great East Japan Earthquake and tsunami,and subse-quent Fukushima Dai-ichi Nuclear Power Plant(FDNPP)accident that occurred on and after11March2011,huge amounts of radio-nuclides were released into the air and ocean.In addition to at-mospheric fallout(Akahane et al.,2012),the leaking of extremely contaminated water from a cracked sidewall of the power plant in early April,as well as other discharges and continuing leaks of less contaminated water from the plant(Wakeford,2011;Bailly du Bois et al.,2012),caused the radioactive contamination of surrounding coastal and offshore waters(Buesseler et al.,2011,2012;Aoyama et al.,2013).Experts have assessed this incident as being the largest accidental release of radioactive materials into the oceans (Buesseler et al.,2011;Bailly du Bois et al.,2012).Consequently, some radionuclides,especially radioactive cesium(134Cs and137Cs, hereinafter radioactive Cs),have been detected in marine products taken from the waters off the Tohoku area(literal translation: northeastern Japan)(Buesseler,2012).The radioactive Cs contam-ination of marine products in Fukushima Prefecture was particu-larly severe.During April2011e April2012,more than40%of?sh species were found to have exceeded the Japanese regulatory limit of100Bq/kg-wet(Buesseler,2012),which was enforced in April 2012and which applies to all foodstuffs produced after January 2012,other than drinking water(regulatory limit:10Bq/L)and milk (50Bq/L)(Kimura,2012).This situation shows that spatiotemporal analyses of contaminated marine products in the waters off Fukushima Prefecture are necessary to safeguard consumers of

*Corresponding author.Tel.:t81246543153;fax:t81246549099.

E-mail address:wada385@yahoo.co.jp(T.

Wada).Contents lists available at SciVerse ScienceDirect

Journal of Environmental Radioactivity journal homepage:w https://www.wendangku.net/doc/436273024.html,/locate

/jenvrad

0265-931X/$e see front matteró2013Elsevier Ltd.All rights reserved.

https://www.wendangku.net/doc/436273024.html,/10.1016/j.jenvrad.2013.05.008

Journal of Environmental Radioactivity124(2013)246e254

?shery products and to restart the coastal?shery of Fukushima Prefecture reliably.

The waters off Fukushima Prefecture,where the warm Kuroshio current meets the cold Oyashio current(Shimizu et al.,2001),are fertile?shing grounds where various?shing methods are used, such as trawling,gillnet,boat seine,purse seine,and stick-held dip net.In particular,the broad continental shelf off Fukushima Pre-fecture provides important?shing grounds for coastal?sheries, especially for trawling and gillnet?shing(Wada et al.,2012),which accounted for31%of total landings in Fukushima Prefecture in2010 (39thousand metric tons).Fukushima Prefecture had been releasing seedlings of about one million Japanese?ounder Para-lichthys olivaceus(Tomiyama et al.,2008),50thousand spotted halibut Verasper variegatus(Wada et al.,2012),and600thousand Ezo abalone Haliotis discus hannai(Hirose,2008)annually,which were being produced at the Fukushima Prefecture Fish Farming Station using warm water ef?uent from the FDNPP.As one might expect,these circumstances have changed drastically since the tsunami and the FDNPP accident.

Since7April2011,our research station,Fukushima Prefec-tural Fisheries Experimental Station,began monitoring radioac-tive iodine(131I)and radioactive Cs concentrations in Fukushima’s marine products at the instruction of the Fukushima Prefectural Government.The data were of?cially released by the Japan Ministry of Agriculture,Forestry,and Fisheries(MAFF, 2012).As of October2012,we had inspected radionuclide con-centrations in6462specimens of169marine species.This report presents a detailed description of the contamination of marine products in Fukushima Prefecture and the spatiotemporal trends of radioactive Cs in marine products.Our results identify areas in which highly contaminated marine products exist and clearly elucidate declining trends in various marine products from different habitats.Finally,we introduce the trial?shing opera-tions resumed at Soma area,northern Fukushima Prefecture, from June2012.

2.Materials and methods

2.1.Sampling and measurement of radionuclides in marine products

Marine products were caught weekly by?shery workers in Fukushima Prefecture using various?shing methods over a wide depth range(Table1and Table S1in supplemental data).The ?shing operations for marine product monitoring were?nancially supported by the Fukushima Prefectural Federation of Fisheries Co-operative https://www.wendangku.net/doc/436273024.html,rmation about sampling sites(latitude, longitude,and depth)was provided by?shery workers immedi-ately after sampling.Samples were identi?ed and processed at the Fukushima Prefectural Fisheries Experimental Station.Primarily, muscle tissues were used for the measurement of radionuclides, but in some cases,whole bodies or other parts(gonads,muscle with skin without scales,and bodies without head and internal organs)were used(Table1and Table S1).The processed samples were wrapped in plastic bags and transported to the Fukushima Agricultural Technology Centre(total of6321samples during April 2011e October2012).They were minced,packed tightly into plastic cylindrical containers(55mm diameter,64mm height),weighed, measured for height,calculated for density,and wrapped in poly-ethylene bags(180?270mm).

Gamma rays from134Cs,137Cs,and131I were analyzed using a closed-end coaxial high-purity germanium(HPGe)detector (Model GC3020with Multi Channel Analyzer Lynx system;Can-berra,Meriden,U.S.A.).The counting ef?ciency of the HPGe semiconductor detector was calibrated by using volume standard sources(MX033U8PP,the Japan Radioisotope Association,Tokyo, Japan).The counting time for a sample was2000s.Genie2000 software was used to analyze the respective peaks in the energy spectrum for134Cs(605keV and796keV),137Cs(662keV),and131I (364keV).The concentration of three times of standard deviation from counting statistics was de?ned as the detection limit con-centration,resulting in respective detection limits of134Cs,137Cs, and131I of 4.70e19.0Bq/kg-wet, 4.40e19.0Bq/kg-wet,and 7.70Bq/kg-wet,depending on the quantity and density of the specimen.When we use the decay-corrected data of134Cs and 137Cs(see2.2.1),the concentrations were corrected for decay from the initial date of the nuclear accident of12March2011,when the ?rst hydrogen explosion occurred in Unit1of the FDNPP (Wakeford,2011).

Some specimens(133specimens in April e June2011,and eight specimens in June2011)were measured at the Environmental Radioactivity Monitoring Center of Fukushima Prefecture(HPGe detector:Model GEM30185;Ortec,Tennessee,U.S.A.)and the Japan Chemical Analysis Center(Model GX2518;Canberra,Meriden, U.S.A.)using the procedures described above.The counting ef?-ciency of the detectors was calibrated by using volume standard sources(MX033U8PP,the Japan Radioisotope Association,Tokyo, Japan).

The measurement results were of?cially released within a week by the Fukushima Prefectural Government and by the Ministry of Agriculture,Forestry and Fisheries of Japan(MAFF,2012).

2.2.Data analyses

2.2.1.Statistical tests for declining trend of radioactive Cs

Results were compiled for demersal species and pelagic species. In this report,demersal species include bottom-dwellers and spe-cies feeding mainly on benthic prey items(Table1and Table S1).To detect whether the habitat-speci?c(demersal/pelagic),area-speci?c(see below),and species-speci?c declining trends were statistically signi?cant,exponential decay trends for the radioactive Cs data in each category were analyzed using statistical software (Ekuseru e Toukei;Social Survey Research Information Co.,Ltd.). The simple linear regression between the natural log-transformed radioactive Cs data and the number of days since the nuclear ac-cidents was tested.We set the initial date of the nuclear accident as 12March2011(Wakeford,2011).Radioactive Cs data for demersal species caught within10areas(Fig.1),which were divided arbi-trarily to determine the area-speci?c contamination trend(Nemoto et al.,2013),were examined statistically.The10areas were demarcated by six horizontal lines of latitude(37 540N,37 440, 37 370,37 150,37 020,and36 500)and the intersection points of the six lines with a50-m depth isoline(Fig.1).The decay-corrected data within the10areas were also analyzed to evaluate the trend of concentration change by eliminating the physical decay bias.The not-detected(ND)data were excluded from all regression analyses to ensure a conservative statistical test.Furthermore,the effective ecological half-life(Morita and Yoshida,2005)and ecological half-life(Takeda and Misonou,1991)for each category(habitats,areas, and species)were calculated using the?tted exponential function for the surveyed and decay-corrected concentration of radioactive Cs,respectively.

2.2.2.Spatial distribution of radioactive Cs in marine products

The radioactive Cs concentration for demersal species were averaged every5min of longitude and latitude in2011and2012. Contour maps for both years were drawn using statistical software (Umiel;NDS System Technology Co.,Niigata,Japan)to clarify the spatiotemporal distribution change of radioactive Cs concentra-tions of marine biota.

T.Wada et al./Journal of Environmental Radioactivity124(2013)246e254247

3.Results and discussion

3.1.Overall status of 131I,and 134Cs,and 137Cs in marine products off Fukushima Prefecture

Fig.2presents comprehensive results of the monitoring.Iodine-131,which has a short half-life (t 1/2?8.02d),was detected in 31specimens from 10species during April e July 2011.All specimens collected after August 2011showed levels that were below the detection limit (mean <16.2Bq/kg-wet).Only three specimens from two species (two from larvae of the sand lance,Ammodytes personatus ,and one from Hijiki seaweed,Sargassum fusiforme )had concentrations exceeding the Japanese provisional regulatory limit of 2000Bq/kg-wet for 131I in April and May 2011(Fig.2a).In Arame seaweed,Eisenia bicyclis ,the 131I concentration did not exceed the limit,but it did exceed over 640Bq/kg-wet in June (mean 810Bq/kg-wet),and showed 40.0Bq/kg-wet even in mid-July.The decay trend of the 131I/137Cs ratio from three brown algae (S.fusiforme ,

Table 1

Summary of radioactive Cs concentration (134Cs t137Cs)in 40species (upper 40rows)of which the Japanese government banned shipments since April 2012,and 10target species (lower 10rows)for trial ?shing operations in northern Fukushima as of September 2012.Shipment Class

Scienti ?c name a

2011

2012

Body parts b

Habitat Fishing c

Depth (m)

Radioactive Cs (Bq/kg-wet)ND%n

Radioactive Cs (Bq/kg-wet)ND%n

Max.

Min.Max.

Min.Max.Min.Average Banned

Osteichthyes

Sebastes cheni

3200

360323100ND

1.281MWS Demersal G,BF,T 60325Pleuronectes yokohamae 1380ND 2982600ND 4176MWS Demersal G,B,BF,T 139347Lateolabrax japonicus 67046032211020065M Demersal G,B,BF,T 195346Hexagrammos otakii 3000ND

2.61141740ND 6.8222M Demersal C,G,B,BF,T

195352Sebastes thompsoni 1630700151500ND 15.426MWS Demersal G,BF,T 1502351Microstomus achne 1140ND 12.5801460ND 32.1218MWS Demersal C,G,BF,T 330691Occella iburia

5454011440ND 13.315M Demersal B,T

226781Sebastes schlegelii 2190134061340ND 15.426MWS Demersal C,G,B,BF,T

160738Sebastes vulpes

910ND 2541310ND 37.135MWS Demersal G,BF,T 2001054Platichthys bicoloratus 1220250611200ND 2.289MWS Demersal G,B,BF,T 105942Physiculus maximowiczi 1770ND 13.7511150ND 22.3121MWS Demersal C,G,B,BF,T 5103145Paralichthys olivaceus 4500ND 0.61761000ND 5.4280M Demersal C,G,B,BF,T

228551Hemitripterus villosus 260ND 7.713710ND 7.692MWS Demersal G,T 2207.597Platycephalus indicus 2905101565011025M Demersal G,T 59618Eopsetta grigorjewi 183********ND 35.576MWS Demersal G,T 2101176Verasper variegatus 34043045701009M Demersal G,T 1521760Sebastes pachycephalus 8701420456079021MWS Demersal C,G,BF 23311Platichthys stellatus 148270255012303MWS Demersal G,B 26718Paraplagusia japonica 330260939020013MWS Demersal G,T

331019Conger myriaster 176ND 16.343360ND 27.890WB Demersal C,G,B,BF,T

480386Stichaeus grigorjewi ND ND 100132032001M Demersal T

330138234Gadus macrocephalus 30011023260ND 18.3180M Demersal G,B,BF,T 51016163Nibea mitsukurii

3906802321715052MWS Demersal C,G,B,T 83621Acanthopagrus schlegelii 2401307210ND 12.516MWS Demersal G,BF 27313Pleuronichtys cornutus 4708.201819010023MWS Demersal G,T 811147Cynoglossus joyneri 25018011185ND 7.713MWS Demersal G,T 591023Takifugu snyderi

23025014180ND 28.614M Demersal G,T 1051047Pleuronectes herzensteini 420ND 1.664150

ND 14.3147MWS Demersal G,BF,T 2101171Verasper moseri 0140

ND 58.312M Demersal G,T 420692Takifugu pardalis 37011203137

ND 9.111M Demersal G,T 681029Oncorhynchus masou 0130

ND 754GO Pelagic G,T 105634Ditrema temmincki 2242240112415010MWS Demersal C,G,BF 23312Ammodytes personatus 1440082023122ND 67.956WB Pelagic B,T 72322Hippoglossoides dubius 79ND 42.97121ND 65.982MWS Demersal G,T 51023183Chelidonichthys spinosus 44028042120ND 39.543MWS Demersal G,BF,T 1251051Theragra chalcogramma

97ND 506110ND 57.454MWS Demersal G,BF,T 42018186Chondrichthyes Okamejei kenojei

15605101031050290137MWS Demersal G,B,BF,T 85.5633Mustelus manazo

1079.7017180

3606M Demersal G,T 1001042Bivalvia Mercenaria stimpsoni 0109

10901M Demersal T 404040Echinoidea Strongylocentrotus nudus 166042021270ND 1040GO Demersal D 623Target

Osteichthyes Sebastolobus macrochir ND ND 1002ND ND 10012MWS Demersal T 510420480Cephalopoda Octopus conispadiceus

40ND 8520 6.6ND 99.1112MWS Demersal T

51048166Enteroctopus do ?eini 360ND 69.226ND ND 10095MWS Demersal C,G,T 5106130Todarodes paci ?cus 49ND 88.918ND ND 10049WB Pelagic T 24062156Loligo bleekeri

ND ND 1006ND ND 10020WB Pelagic T 20242106Gastropoda Neptunea intersculpta

ND ND 1001ND ND 10023M Demersal T 240167205Buccinum isaotakii ND ND 1003ND ND 10037M Demersal T 330150216Neptunea constricta ND ND 1002ND ND 1008M Demersal T 500315429Beringius polynematicus

ND ND 1001ND ND 1005M Demersal T 410315369Malacostraca Erimacrus isenbeckii ND

ND

1004ND

ND

100

58

WB

Demersal

T

300

95

195

Data are summarized for 2011(April e December)and 2012(January e October).

ND%and n represent percentage of specimens with radioactive Cs under the detection limit and number of specimens,respectively.a

Species in each category (banned or target)are listed by taxonomic class and in descending order of maximum concentration of radioactive Cs in 2012.b

Capital letters denote the following:M,muscle;MWS,muscle with skin without scales;WB,whole body;GO,gonads.c

Capital letters denote the following:B,boat seine;BF,bait ?shing;C,cage;D,diving;G,gillnet;T,trawling.

T.Wada et al./Journal of Environmental Radioactivity 124(2013)246e 254

248

E.bicyclis,and Undaria pinnati?da,number of specimens(n)?10) (Fig.2c)was signi?cantly higher than that of?sh species(n?16, analysis of covariance,p?0.0018)or contaminated seawater around the FDNPP during late March e early May2011(Buesseler et al.,2011),which probably re?ects the active uptake of iodine by brown macroalgae(Gutknecht,1965).

For radioactive Cs concentrations,804specimens(40.8%)from 63species(140species measured)and804specimens(17.9%)from 41species(146species measured)exceeded the regulatory limit of 100Bq/kg-wet in2011and2012,respectively(Fig.2b).Conse-quently,the Japanese government banned shipments of products from40marine species caught in the waters off Fukushima Pre-fecture(Table1)except for the Sakhalin surf clam,Pseudocardium sachalinense,which showed a clear declining tendency of radioac-tive Cs concentration(Fig.3e).The exponential decay function of the134Cs/137Cs ratio(Fig.2d)was signi?cant(n?3731,coef?cient of determination(R2)?0.27,p<0.0001).The fact that the leading coef?cient(0.985Bq/Bq)of the exponential decay function(Fig.2d) was comparable to that observed in seawater around the FDNPP in late March e April2011(initial134Cs/137Cs ratio of1.0)(Buesseler et al.,2011)directly indicates that radioactive Cs detected in ma-rine products originated from the FDNPP accident.Accordingly,it closely resembles the physical attenuation model,into which the initial134Cs/137Cs ratio of1.0and the physical half-lives of134Cs(t1/ 2?2.07y)and137Cs(t1/2?30.1y)are incorporated(Fig.2d).

3.2.Species-speci?c and habitat-speci?c declining trends of radioactive Cs

The overall concentration of radioactive Cs in marine products off Fukushima Prefecture has decreased signi?cantly(Table2).The effective ecological half-life and ecological half-life of the total marine products were calculated as293and334d,respectively. These calculated half-lives were much shorter than the 6.1y required by physical decay down to50%from the initial concen-tration of radioactive Cs after the nuclear accident when the initial 134Cs/137Cs ratio of1.0was incorporated,but were longer than the biological half-lives of several marine species in Japan(19e84d, Kasamatsu,1999).The balance of both elimination(e.g.,metabolic activity,and alteration of generations)and uptake

(contaminated

https://www.wendangku.net/doc/436273024.html,prehensive results of monitoring.(a)131I(Bq/kg-wet)in pelagic(blue diamond)and demersal(red circle)species.ND(not detected)data were placed on the x-axis.

(b)Radioactive Cs concentration(134Cst137Cs in Bq/kg-wet).(c)Ratio of131I/137Cs(Bq/Bq)for131I-detected10species.Blue and green lines respectively represent the?tted negative exponential functions for three?sh species and three seaweed species.(d)Ratio of134Cs/137Cs(Bq/Bq).ND data were excluded.Red and black dotted lines respectively show the?tted and physical formulae for the decay

trend.

Fig.1.Map of the study area showing10areas(A e J),which are divided to determine

the area-speci?c contamination trend.

T.Wada et al./Journal of Environmental Radioactivity124(2013)246e254249

seawater and/or foods)processes occurring simultaneously (Fowler and Fisher,2004)engender the species-speci ?c and habitat-speci ?c declining trends of radioactive Cs as discussed below.

Radioactive Cs concentrations in octopuses (Enteroctopus do ?eini and Octopus conispadiceus )were lower than the provisional regulatory limit (500Bq/kg-wet)after the accident,and quickly dropped below detection limit levels (<12.0Bq/kg-wet)(Fig.3a,b).No radioactive Cs has been detected in the whelk,Buccinum isao-takii ,living in offshore waters deeper than 150m (Fig.3c).These results probably re ?ect the empirical fact that radioactive Cs is only slightly incorporated into invertebrates (Kasamatsu,1999).Para-doxically,the detection of radioactive Cs in octopuses suggests a strong effect of highly contaminated seawater,which ?owed mainly southward in early April 2011(Bailly du Bois et al.,2012)and affected marine biota living over a broad range of depths immediately following the accidents.

Some species showed a clearly declining tendency from the higher radioactive Cs concentrations (Fig.3d e f).The concentration in larval anchovy,Engraulis japonica (Fig.3d),was higher than 500Bq/kg-wet in May e June https://www.wendangku.net/doc/436273024.html,ter,after August 2011,it decreased quickly to <100Bq/kg-wet.A possible scenario is that highly contaminated seawater (Bailly du Bois et al.,2012)affected larval anchovy directly along with subsequent intake of contami-nated prey organisms (mainly copepods)immediately after the accident.However,these effects can be expected to weaken quickly,probably by the dilution of contaminated seawater (Buesseler et al.,2011)and because of multiple cohort changes through successive reproduction during the long spawning seasons (Funamoto and Aoki,2002).Because Cs t(radioactive or not)is a biochemical analog of K t,Cs tshows similar behavior to that of K tduring the osmoregulation of marine teleosts:it is taken into the body by seawater drinking,and is excreted actively through the K ttrans-port pathway (Kaneko et al.,2013).These mechanisms can partly explain the rapid increase and decrease of radioactive Cs concen-tration in pelagic ?shes (Fig.3d,Fig.S1)in association with the drastic change of radioactive Cs concentration in seawater after the FDNPP accident (Buesseler et al.,2011).In perennial Sakhalin surf clam and the Arame seaweed,the radioactive Cs concentrations have decreased constantly (Fig.3e,f),probably because of the dilution of contaminated seawater and consistent excretion through the Cs metabolism.The higher coef ?cients of determina-tion of ?tted exponential function (R 2?0.74and 0.75,respectively,Table 3)re ?ect the constant excretion.The same tendency was found in Ezo abalone (R 2?0.86,Table S2).These species were presumably contaminated mainly by the extremely contaminated seawater that ?owed around the coastal waters directly after the FDNPP accident (Bailly du Bois et al.,2012).

In contrast,the declining trends of radioactive Cs in some demersal ?sh species (e.g.,the slime ?ounder,Microstomus achne ,black rock ?sh,Sebastes cheni ,and common skate,Okamejei kenojei )were much slower,and concentrations above the regulatory limit were found frequently (Fig.3g e i).The ecological half-lives of these species (367e 826d,Table 3)were much longer than the reported biological half-lives of marine ?sh species (19e 55d,

Kasamatsu,

Fig.3.Radioactive Cs concentration (134Cs t137Cs in Bq/kg-wet)in nine representative marine products with different taxa and habitats.Not detected (ND)data were placed on the x -axis.Solid and dotted lines respectively show signi ?cant and non-signi ?cant ?tted exponential functions for the radioactive Cs concentration of each species.(a e c)Three invertebrate species showing little or no radioactive Cs concentration after the accident.(d e f)Three representative species showing a gradual decrease in radioactive Cs con-centration.(g e i)Three demersal ?sh species showing no clear declining tendency in radioactive Cs concentration.Data for all 169species are provided in Fig.S1and Table S2.

T.Wada et al./Journal of Environmental Radioactivity 124(2013)246e 254

250

1999),and were longer than those of pelagic ?sh species,seaweeds,and bivalves (Table 3,Table S2).The longer ecological half-lives for demersal ?sh species indicate that demersal ?sh species continue to uptake the radioactive Cs through the benthic food web.Radioactive Cs concentration in the open ocean seawater after the FDNPP accident has dropped much faster than it has in ?sh (Buesseler et al.,2011).The concentration in the surface water off the coast of Fukushima Prefecture has been quite low in 2012(<0.10Bq/L),except for that in the port of FDNPP (Aoyama et al.,2013)where intake gates of units 1to 6are installed.A previous report described that radionuclide bioavailability from contami-nated sediment is typically low with the transfer factor being generally less than 1.0(Fowler and Fisher,2004)because Cs in-teracts strongly with clay minerals,especially by vermiculite and illite minerals (Comans and Hockley,1992).On the other hand,the radioactive Cs input into seawater was rapidly removed by the adsorption on plankton and their particulate detrital products,and sank to the sediment (Fowler et al.,1987;Honda et al.,2013).Recently,Otosaka and Kobayashi (2012)reported that organically bound 137Cs (bioavailable 137Cs-containing detritus)in sediment (0e 3cm layer)collected from the coastal area off Ibaraki Prefec-ture,70km south of the FDNPP,contributed to about 20%of sedi-mentary 137Cs,irrespective of the lower proportion of organic matter content (4e 6%)in the sediment.Additionally,they showed that most of the radioactive Cs in the coastal sediments was incorporated into lithogenic fractions and that this incorporation was almost irreversible.These results suggest that the continued source of radioactive Cs to the benthic food web is radioactive Cs-

Table 2

Results of statistical tests for habitat-speci ?c (total,pelagic,and demersal species)and area-speci ?c (demersal species in 10areas,A e J)regression slopes of surveyed (upper low)and decay-corrected (lower rows for each category)radioactive Cs (134Cs t137Cs in Bq/kg wet)of marine products collected off Fukushima Prefecture.Species type

Area

Total n

n without ND a

Coef ?cient of determination p -value b

Coef ?cients c T eff ,T eco d (d)

A 0(Bq/kg-wet)

l (d à1)Total species All 646243350.078<0.001161 2.37?10à32930.059<0.001167 2.07?10à3334Pelagic All 6622150.31<0.001164 5.52?10à31260.30<0.001172 5.34?10à3130Demersal All 580041200.082<0.001171 2.45?10à32830.062<0.001178 2.15?10à3322Demersal A 6835610.20<0.001132 2.76?10à32510.16<0.001137 2.48?10à3280Demersal B 2021840.087<0.001209 2.01?10à33450.059<0.001214 1.64?10à3422Demersal C 1331170.0520.014188 1.72?10à34020.0320.053194 1.39?10à3499Demersal D 7086510.078<0.001512 2.68?10à32590.057<0.001522 2.29?10à3302Demersal E 5724860.17<0.001336 3.03?10à32290.14<0.001349 2.70?10à3257Demersal F 7183150.18<0.001104 3.04?10à32280.16<0.001112 2.89?10à3240Demersal G 5353360.0240.00557 1.03?10à36760.0130.039607.67?10à4904Demersal H 7773480.12<0.001123 2.97?10à32330.10<0.001131 2.78?10à3249Demersal I 6805050.12<0.001215 2.81?10à32470.093<0.001221 2.49?10à3278Demersal

J

792

617

0.13<0.001126 2.55?10à32720.12

<0.001

215

2.81

?10à3

247

Total n represents total number of specimens analyzed.a

Number of specimens with radioactive Cs above the detection limit.Data of these specimens were used for statistical tests.b

Boldface denotes statistical signi ?cance (signi ?cant level:p ?0.05).c

Coef ?cients for the following exponential equation:A ?A 0exp (àlt).A is radioactive Cs concentration at time t .A 0is the radioactive Cs concentration at 12March 2011.d

Effective ecological half-life (T eff ,upper rows)and ecological half-life (T eco ,lower rows for each category)using the following:log e 2/l.

Table 3

Results of statistical tests for regression slopes of radioactive Cs concentrations (134Cs t137Cs in Bq/kg wet),and effective ecological half-life (T eff )and ecological half-life (T eco )of nine species (see Fig.3).Species

Total n

n without ND a

Coef ?cient of determination p -value b

Coef ?cients c T eff (d)

T eco (d)

A0(Bq/kg-wet)

l (d à1)Enteroctopus do ?eini 121100.360.0671229.70?10à37176Octopus conispadiceus 13250.890.01648.9 5.65?10à3123124Buccinum isaotakii

400Engraulis japonica larvae 151490.53<0.001346 1.18?10à25960Pseudocardium sachalinense 68520.74<0.0017277.63?10à39197Eisenia bicyclis

26190.75<0.0012480 1.41?10à24970Microstomus achne 2982190.0150.075110 1.17?10à3593826Sebastes cheni 1131120.0640.007715 2.25?10à3308367Okamejei kenojei 240240

0.061

<0.001

377

1.66

?10à3

418

560

Total n represents total number of specimens analyzed.a

Number of specimens with radioactive Cs above the detection limit.These Data were used for statistical tests.b

Boldface denotes statistical signi ?cance (signi ?cant level:p ?0.05)for the declining trend of surveyed data.c

Coef ?cients for the following exponential equation for surveyed data:A ?A 0exp (àlt).A is radioactive Cs concentration at time t .A 0is the radioactive Cs concentration at 12March 2011.

T.Wada et al./Journal of Environmental Radioactivity 124(2013)246e 254251

containing detritus in sediment.Indeed,the fact that more than 50Bq/kg-wet radioactive Cs was detected in offshore polychaetes (100-m depth)one year after the accidents (FPFES,2012)strongly suggests that contamination of prey organisms via radioactive Cs-containing detritus in sediment is the main cause of radioactive Cs accumulation in demersal ?shes.Furthermore,the similar spatial distribution patterns of radioactive Cs concentration observed between the marine products (Fig.4)and sediments off the coast of Fukushima Prefecture (Fig.S2)support the continuing contamination process described above.The radioactive Cs con-centration in demersal ?sh species will decrease gradually along with its decrease in prey items (FPFES,2012)that live on and within the contaminated sediment (Fig.S2),in which the biologically available radioactive Cs will translocate gradually to lithogenic fractions.

3.3.Spatiotemporal trends of radioactive Cs

Marine products were not contaminated uniformly throughout the waters off Fukushima (Nemoto et al.,2012).Radioactive Cs concentrations in marine products were higher in shallower areas and in areas closer to the FDNPP (Figs.4and 5).Particularly,the concentration in demersal species in shallow coastal areas south of

the FDNPP is still higher (Fig.4).This result probably re ?ects the fact that extremely contaminated seawater from the FDNPP in early April ?owed mainly along the southern coastline (Bailly du Bois et al.,2012)and contaminated the marine biota directly.

Fig.5shows changes in the radioactive Cs concentrations over time for demersal species caught in 10areas.In all areas other than area C,not only the survey data but also decay-corrected data for radioactive Cs have decreased signi ?cantly (Table 2).These results demonstrate that,in general,the amounts of radioactive Cs excreted from the bodies of marine organisms have been greater than those of uptake through the benthic food web.However,special attention must be devoted to the marine species around the FDNPP (area C),where the reduction seen in the decay-corrected data was not statistically signi ?cant (p ?0.0534),and where the ecological half-life of demersal species was the longest (499d)among the ?ve coastal areas (A e E)(Table 2).Additionally,on 1August 2012,drastically higher radioactive Cs concentration (25.8kBq/kg-wet)was detected in muscles of greenling,Hexagrammos otakii ,about 20km north from the FDNPP in area C (TEPCO,2013).No marine species with similarly high concentration has been collected around the sampling point.Therefore,this greenling is thought to migrate from highly contaminated areas,which could be the port of FDNPP.In fact,higher concentrations of radioactive Cs are still observed in the seawater (>100Bq/L)and extremely higher radioactive Cs concentrations (maximum 740kBq/kg-wet from greenling on 21February 2013)were detected from marine prod-ucts in the port of FDNPP during October 2012e March 2013(Table S3).These results suggest that,in addition to the contami-nated sediment,the contaminated seawater is also a continuing source for radioactive Cs contamination for marine species in the port of FDNPP.

Concerns persist about the migration of contaminated ?sh around the FDNPP beyond the provisional 20km evacuation zone.Actually some ?sh species (e.g.,Japanese ?ounder,Paci ?c cod,Gadus macrocephalus ,and Japanese seabass,Lateolabrax japonicus )with radioactive Cs concentrations exceeding the regulatory limit (100Bq/kg-wet)have been collected in prefectures other than Fukushima Prefecture,although the proportion of the specimens above the regulatory limit in the neighboring prefectures was low in 2012(2.4%in Japanese ?ounder,2.5%in Paci ?c cod,and 10.3%in Japanese seabass)(MAFF,2012).Consequently,estimation of the migration origin/scale of coastal species using radioactive Cs as a tracer is necessary,as has been shown for a highly migratory ?sh,Paci ?c blue ?n tuna,Thunnus orientalis (Madigan et al.,2012).3.4.Trial ?shing operations and future prospects

Since the FDNPP accident,all ?shing in Fukushima Prefecture was banned except for offshore purse seine (target:skipjack tuna,Katsuwonus pelamis )and stick-held dip net ?shing (target:Paci ?c saury,Cololabis saira ).Since June 2012,trial ?shing operations have resumed at Soma area,50km north of the nuclear plant.Some ?shing vessels in Soma area started catching two kinds of octopus species and a whelk from offshore waters (>150m depth)in areas F and G (Figs.1and 4).These three species were selected because radioactive Cs has not been detected in them recently (Table 1,Fig.3a e c).From September 2012,the hair crab,Erimacrus isen-beckii ,Japanese common squid,Todarodes paci ?cus ,and ?ve other species were added as targets for trial ?shing operations (Table 1).Since October 2012,?shing areas have been expanding southward in part of the northern area H (>37 27.80N)at depths greater than 150m (Figs.1and 4).The addition of target species and expansion of areas for trial ?shing operations are decided according to the monitoring data of marine products.The trial ?shing operations have encouraged some distressed ?shery workers in

northern

Fig.4.Contour maps of radioactive Cs concentration (134Cs t137

Cs in Bq/kg-wet)in

demersal species in 2011(upper)and 2012(lower).

T.Wada et al./Journal of Environmental Radioactivity 124(2013)246e 254

252

Fukushima Prefecture.However,?shery cooperatives in southern Fukushima Prefecture have refrained from starting even trial ?sh-ing operations because higher radioactive Cs concentrations continue to be detected in demersal ?shes (Figs.4and 5).Because the Japan Atomic Energy Commission estimated that it would take over 30y to decommission the devastated FDNPP reactors (JAEC,2011),the complete restoration of Fukushima ’s ?sheries,espe-cially around the FDNPP,will be extremely dif ?cult.Long-term and careful monitoring of marine products off Fukushima Prefecture,especially around the FDNPP,will be necessary to restart the coastal ?shery off Fukushima Prefecture reliably and to prevent harmful rumors in the future.4.Conclusions

The overall radioactive Cs concentrations in the total marine products have decreased signi ?cantly.However,the time-series trends of radioactive Cs concentrations differ greatly among taxa,habitats,and spatial distributions.Higher concentrations have been observed in shallower waters south of the FDNPP.Radioactive Cs concentrations decreased quickly or were below detection limits in pelagic ?shes and some invertebrates,and decreased constantly in seaweed,surf clams,and other organisms.However,in some

demersal ?shes,the declining trend was much more gradual,and concentrations above the regulatory limit (100Bq/kg-wet)were frequently found,indicating continued uptake of radioactive Cs through the benthic food web.The main continuing source of radioactive Cs to the food web is expected to be the radioactive Cs-containing detritus in sediment.Long-term and careful monitoring of marine products off Fukushima,especially around the FDNPP,will be necessary to restart the coastal ?shery reliably and to pre-vent harmful rumors in the future.Acknowledgments

We are grateful to T.Ishimaru,A.Nishimune,and the staff of the Fishery Research Agency of Japan,who provided invaluable advice and who helped us analyze the marine samples off Fukushima Prefecture.We thank all ?shery workers in Fukushima Prefecture who caught the marine products.Appendix A.Supplementary data

Supplementary data related to this article can be found at https://www.wendangku.net/doc/436273024.html,/10.1016/j.jenvrad.2013.05.008

.

Fig.5.Radioactive Cs concentration (134Cs t137Cs in Bq/kg-wet)in demersal species caught within 10areas off Fukushima Prefecture (see Fig.1).Left and right panels respectively portray data for ?ve coastal (A e E)and ?ve offshore (F e J)areas.ND (not detected)data for each area were placed on the x -axis.Black and dotted lines respectively show the ?tted exponential function for the surveyed and decay-corrected data for each area.See details in Table 2showing results of statistical tests for regression slopes.

T.Wada et al./Journal of Environmental Radioactivity 124(2013)246e 254253

References

Akahane,K.,Yonai,S.,Fukuda,S.,Miyahara,N.,Yasuda,H.,Iwaoka,K., Matsumoto,M.,Fukumura, A.,Akashi,M.,2012.The Fukushima Nuclear Power Plant accident and exposures in the environment.Environmentalist 32,136e143.

Aoyama,M.,Uematsu,M.,Tsumune,D.,Hamajima,Y.,2013.Surface pathway of radioactive plume of TEPCO Fukushima NPP1released134Cs and137Cs.Bio-geosciences Discuss.10,265e283.

Bailly du Bois,P.,Laguionie,P.,Korsakissok,I.,Didier,D.,Fiévet,B.,2012.Estimation of marine source-term following Fukushima Dai-ichi accident.J.Environ.

Radioact.114,2e9.

Buesseler,K.O.,2012.Fishing for answers off Fukushima.Science338,480e482. Buesseler,K.O.,Aoyama,M.,Fukasawa,M.,2011.Impacts of the Fukushima nuclear power plants on marine radioactivity.Environ.Sci.Technol.45,9931e9935. Buesseler,K.O.,Jayne,S.R.,Fisher,N.S.,Rypina,I.I.,Baumann,H.,Baumann,Z., Breier, C.F.,Douglass, E.M.,George,J.,Macdonald, A.M.,Miyamoto,H., Nishikawa,J.,Pike,S.M.,Yoshida,S.,2012.Fukushima-derived radionuclides in the ocean and biota off Japan.Proc.Natl.Acad.Sci.U S A109,5984e5988. Comans,R.N.J.,Hockley,D.,1992.Kinetics of cesium sorption on illite.Geochimica et Cosmochimica Acta56,1157e1164.

Fowler,S.W.,Fisher,N.S.,2004.Radionuclides in the biosphere.In:Livingston,H.D.

(Ed.),Marine Radioactivity.Elsevier,Amsterdam,pp.167e203.

Fowler,S.W.,Buat-Menard,P.,Yokoyama,Y.,Ballestra,S.,Holm,E.,Nguyen,H.V., 1987.Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity.Nature329,56e58.

FPFES(Fukushima Prefectural Fisheries Experimental Station),2012.Results of the Inspection on Prey Items of Fishery Products.http://wwwcms.pref.fukushima.

jp/download/1/20121228bait.pdf(accessed28.12.12.).

Funamoto,T.,Aoki,I.,2002.Reproductive ecology of Japanese anchovy off the Pa-ci?c coast of eastern Honshu,Japan.J.Fish Biol60,154e169.

Gutknecht,J.,1965.Uptake and retention of cesium137and zinc65by seaweeds.

Limnol.Oceanogr.10,58e66.

Hirose,M.,2008.Stock enhancement and stocking effectiveness of abalone in Fukushima prefecture.Kaiyo Monthly40,507e511(in Japanese).

Honda,M.C.,Kawakami,H.,Watanabe,S.,Saino,T.,2013.Fukushima-derived radiocesium in western North Paci?c sediment traps.Biogeosciences Discuss.

10,2455e2477.

JAEC(Japan Atomic Energy Commission),2011.On the Results of Deliberation to Formulate a Mid-and Long-term Strategy for Cleaning Up the Fukushima Dai-ichi Nuclear Power Plant.http://www.aec.go.jp/jicst/NC/tyoki/sochi/pdf/ 20111213.pdf(accessed30.11.12.).Kaneko,T.,Furukawa,F.,Watanabe,S.,2013.Excretion of cesium through potassium transport pathway in the gills of a marine teleost.In:Agricultural Implications of the Fukushima nuclear accident,Springer Japan,Tokyo,pp.105e118. Kasamatsu,F.,1999.Marine organisms and radionuclides with special reference to the factors affecting concentrations of137Cs in marine?sh.Radioisotopes48, 266e282(in Japanese).

Kimura,M.,2012.Post Fukushima food security in Japan.UMB Student J.Int.En-viron.Dev.Stud.2,45e55.

Madigan, D.J.,Baumann,Z.,Fisher,N.S.,2012.Paci?c blue?n tuna transport Fukushima-derived radionuclides from Japan to California.Proc.Natl.Acad.Sci.

U S A109,9483e9486.

MAFF(Japan Ministry of Agriculture,Forestry and Fisheries),2012.Results of the Inspection on Radioactivity Materials in Fisheries Products.http://www.jfa.

maff.go.jp/e/inspection/index.html(accessed31.12.12.).

Morita,T.,Yoshida,K.,2005.Effective ecological half-lives of Cs-137for?shes controlled by their surrounding sea-waters.Radioprotection40(Suppl.1), s640e s645.

Nemoto,Y.,Shimamura,S.,Igarashi,S.,2012.In?uence of radioactive substances on the marine organisms and?shing areas off Fukushima Prefecture.Nippon Suisan Gakkaishi78,514e519(in Japanese).

Nemoto,Y.,Sohtome,T.,Sato,M.,Fujita,T.,Kamiyama,K.,Shimamura,S.,2013.

Radioactive substance effects on marine products in Fukushima Prefecture.Bull.

Fukushima Prefectural Fish.Exp.Stn.16,63e71(in Japanese).

Otosaka,S.,Kobayashi,T.,2012.Sedimentation and remobilization of radiocesium in the coastal area of Ibaraki,70km south of the Fukushima Dai-ichi Nuclear Power Plant.Environ.Monit.Assess..https://www.wendangku.net/doc/436273024.html,/10.1007/s10661-012-2956-7.

Shimizu,Y.,Yasuda,I.,Ito,S.I.,2001.Distribution and circulation of the Coastal Oyashio intrusion.J.Phys.Oceanogr.31,1561e1578.

Takeda,Y.,Misonou,J.,1991.The ecological half-life of Cs-137in Japanese Coastal Marine Biota.In:Kershaw,P.J.,Woodhead,D.S.(Eds.),Radionuclides in the Study of Marine Processes.Elsevier Science Publishers Ltd.,London, pp.340e349.

TEPCO(Tokyo Electric Power Co.),2013.TEPCO News Press Releases.http://www.

tepco.co.jp/nu/fukushima-np/(accessed06.04.13.).

Tomiyama,T.,Watanabe,M.,Fujita,T.,https://www.wendangku.net/doc/436273024.html,munity-based stock enhancement and?sheries management of the Japanese?ounder in Fukushima.Japan.Rev.

Fish.Sci.16,146e153.

Wada,T.,Kamiyama,K.,Shimamura,S.,Mizuno,T.,Nemoto,Y.,2012.Effectiveness of stock enhancement of a rare species,spotted halibut Verasper variegatus,in Fukushima,Japan.Aquaculture364e365,230e239.

Wakeford,R.,2011.And now,Fukushima.J.Radiol.Prot.31,167e176.

T.Wada et al./Journal of Environmental Radioactivity124(2013)246e254 254

配位化合物知识点讲解(教师版)

1、配位化合物 (1)概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。 作为电子对接受体的金属离子或原子称为中心离子(原子),又称配合物的形成体,作为电子对给予体的分子或离子称为配体。 [Cu(H2O)4]2+的空间结构为平面正方形。 (2)配合物的结构 [Cu(NH3)4]SO4为例说明。 注意:离子型配合物是由内界和外界组成,内界由中心离子和配体组成。 (3)配合物的命名: 例如:[Cu(NH3)4]SO4硫酸四氨合铜 练习:对下列配合物进行命名 [Cu(NH3)4]Cl2K3[Fe(SCN)6] Na3[AlF6] 3、几种常见的配合物 实验:硫酸四氨合铜的制备。 现象:向CuSO4溶液中加入氨水,生成蓝色沉淀,继续加入氨水,沉淀溶解,得到深蓝色溶液。再加入乙醇,析出深蓝色的晶体。 有关反应的离子方程式为:Cu2++2NH3·H2O=Cu(OH)2↓+2OH- Cu(OH)2+4NH3=[Cu(NH3)4]2++2OH- 蓝色沉淀深蓝色溶液 在[Cu(NH3)4]2+里,中心离子是Cu2+,配体是NH3,NH3分子的氮原子给出孤电子对,以配位键形成了[Cu(NH3)4]2+: [Cu(NH3)4]2+的空间结构为平面正方形。 实验:硫氰化铁的制备。向氯化铁溶液中滴加硫氰化钾溶液。 现象:形成血红色溶液。有关反应的化学方程式为:FeCl3+3KSCN=Fe(SCN)3+3KCl

Fe(SCN)3呈血红色,它是一种配合物。上述实验可用于鉴定溶液中存在Fe3+。 呈血红色的是一系列配合物:Fe(SCN)2+、Fe(SCN)2+、Fe(SCN)3、Fe(SCN)4-、Fe(SCN)52-、Fe(SCN)63-,配位数从1~6。 注意:配位键的强度有大有小,因而有的配合物很稳定,有的不很稳定。许多过渡金属离子对多种配体具有很强的结合力,因而,过渡金属配合物远比主族金属配合物多。 [随堂练习] 1.铵根离子中存在的化学键类型按离子键、共价键和配位键分类,应含有() A.离子键和共价键B.离子键和配位键 C.配位键和共价键D.离子键答案:C 2.下列属于配合物的是() A.NH4Cl B.Na2CO3·10H2O C.CuSO4·5H2O D.Co(NH3)6Cl3 答案:CD 3.下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是() ①H2O ②NH3③F-④CN-⑤CO A.①②B.①②③ C.①②④D.①②③④⑤答案:D 4.配合物在许多方面有着广泛的应用。下列叙述不正确的是() A.以Mg2+为中心的大环配合物叶绿素能催化光合作用 B.Fe2+的卟啉配合物是输送O2的血红素 C.[Ag(NH3)2]+是化学镀银的有效成分 D.向溶液中逐滴加入氨水,可除去硫酸锌溶液中的Cu2+ 答案:D 5.下列微粒:①H3O+②NH4+③CH3COO-④NH3⑤CH4中含有配位键的是() A.①②B.①③ C.④⑤D.②④答案:A 6.下列不属于配位化合物的是() A.六氟和铝酸钠B.氢氧化二氨合银(银氨溶液)C.六氰合铁酸钾D.十二水硫酸铝钾答案:D 7.指出配合物K2[Cu(CN)4]的配离子、中心离子、配位体、配位数及配位原子。 8.亚硝酸根NO2-作为配体,有两种方式。其一是氮原子提供孤对电子与中心原子配位;另一是氧原子提供孤对电子与中心原子配位。前者称为硝基,后者称为亚硝酸根。 [Co(NH3)5NO2]Cl2就有两种存在形式,试画出这两种形式的配离子的结构式。

【答案】无机及分析化学 王国仁版(上海海洋大学教材)第10章 配位化合物习题答案

第10章 配位化合物习题答案 5. 解:2334 2 ZnCl +4NH [Zn(NH )]Cl 由于3NH 过量,则2+Zn 几乎全部生成了234[Zn(NH )]+。 设配位平衡时2+r [Zn ]=x, 则 2+2334Zn + 4NH [Zn(NH )]+ 平衡时: x 0.50-4(0.05- x )≈0.30 0.05- x ≈0.05 2+ 34r f 2+4r 3r [Zn(NH )]= [Zn ][NH ]K ?θ 940.053.010(0.30)x ?= 92.110x -=? 故溶液中:234[Zn(NH )]+=0.05mol·L -1 2+-9-1[Zn ]=2.110mol L ?? -13[NH ]=0.30mol L ? 7. 解:设刚有白色沉淀产生时,+r [Ag ]x =(此时为Ag +离子的最低浓度) +-sp r r [Ag ][Cl ]K =θ 101.7710(0.050)x -?=? 所得 9 3.510 x -=?, +-9-[A g ]=3.510m o l L ?? 设当+-9-1[Ag ]=3.510mol L ??时,氨水的浓度3r [NH ]y =,则 ++ 332Ag + 2NH [Ag(NH )] 平衡时 3.5×10-9 y 0.050-3.5×10-9≈0.050 32r f +2 r 3r [Ag(NH )][Ag ][NH ]K + =?θ 7 920.0501.110 3.510y -?=?? 所得 y =1.1 即: -13[NH ] 1.1mol L =? 由于在混合液中加入了HNO 3,此时+432NH -NH H O ?组成缓冲溶液,则由缓

第三章习题-配位场理论

第三章 配合物 一、填空题 1、晶体场稳定化能 将d 电子从未分裂的d 轨道Es 能级进入分裂的d 轨道时,所产生的总能量下降值。 2、分裂能 一个电子由低能的d 轨道进入高能的d 轨道所需的能量。 3、成对能 迫使本来是自旋平行的分占两个轨道的两电子挤到同一轨道上去, 则能量升高,增高的能量值。 4、AgNO 3处理C 2H 4,C 2H 2,C 2H 6混合物,可分离出化合物是 C 2H 6 5、当配位体π轨道是高能空轨道时,形成络合物时分裂能会 增大 ,常形成 低自旋 络合物。 6、四面体场中,分裂后能量较低的两da 轨道是 。 7、由于配合物d-d 跃迁频率在 近紫外和可见光区光区,故通常具有颜色。 二、选择题 1、八面体配合物中哪个电子结构不发生畸变?(D ) (A )522()()g g t e (B )632()()g g t e (C )422()()g g t e (D )322()()g g t e 2、CO 与过渡金属形成羰基配合物时,CO 键会( C ) (A )不变 (B )加强 (C ) 削弱 (D )断裂 3、配合物的光谱(d-d 跃迁)一般发生在什么区域?( C ) (A )远紫外 (B ) 红外 (C )可见-近紫外 (D )微波 4、配合物中心离子的d 轨道在Oh 场下,分裂为几个能级?( A ) (A )2 (B ) 3(C ) 4(D )5 5、下列哪个络合物的磁矩最大?( D ) (A )六氰合钴(Ⅲ)离子 (B )六氰合铁(Ⅲ)离子 (C )六氨合钴(Ⅲ)离子 (D )六水合锰(Ⅱ)离子 6、下列络合物的几何构型哪个偏离正八面体最大?( A ) (A ) 六水合铜(Ⅱ) (B ) 六水合钴(Ⅱ) (C ) 六氰合铁(Ⅲ) (D )六氰合镍(Ⅱ) 7、下列络合离子中,哪个构型会发生畸变( D ) (A )326()Cr H O + (B )226()Mn H O + (C )326()Fe H O + (D )226()Cr H O + 8、下列络离子中会发生小畸变的是( B ) (A )46[CuCl ]- (B )36[CoF ]- (C ) 24[CoCl ]- (D )46[Fe(CN)]- 9、下列配合物可发生较大发生畸变( B ) (A )226[Co(H O)] + (B ) 226[Cu(H O)]+(C ) 326[Fe(H O)]+ (D )46[Ni(CN)]-

配位化合物知识题

第四章配位化合物 1、举例说明什么叫配合物,什么叫中心离子(或原子)。 答:配合物的定义是:由一个中心离子(或原子)和几个配位体(阴离子或原子)以配位键相结合形成一个复杂离子(或分子)通常称这种复杂离子为结构单元,凡是由结构单元组成的化合物叫配合物,例如中心离子Co3+和6个NH3分子以配位键相结合形成 [Co(NH3)6]3+复杂离子,由[Co(NH3)6]3+配离子组成的相应化合物[Co(NH3)6]Cl3是配合物。同理,K2[HgI4]、[Cu(NH3)4]SO4等都是配合物。 每一个配位离子或配位分子中都有一个处于中心位置的离子,这个离子称为中心离子或称配合物的形成体。 2、什么叫中心离子的配位数,它同哪些因素有关。 答:直接同中心离子(或原子)结合的配位原子数,称为中心离子(或原子)的配位数。影响中心离子配位数的因素比较复杂,但主要是由中心离子和配位体的性质(半径、电荷)来决定。 (1)中心离子的电荷越高,吸引配位体的能力越强,因此配位数就越大,如Pt4+形成PtCl62-,而Pt2+易形成PtCl42-,是因为Pt4+电荷高于后者Pt2+。 (2)中心离子半径越大,其周围可容纳的配位体就越多,配位数就越大,例如Al3+的半径大于B3+的半径。它们的氟配合物分别是AlF63-和BF4-。但是中心离子半径太大又削弱了它对配位体的吸引力,反而配位数减少。 (3)配位体的负电荷增加时,配位体之间的斥力增大,使配位数降低。例如:[Co(H2O)6]2+和CoCl42-。 (4)配位体的半径越大,则中心离子周围容纳的配位体就越小,配位数也越小。例如

AlF63-和AlCl4-因为F-半径小于Cl-半径。 2、命名下述配合物,并指出配离子的电荷数和中心离子的氧化数? 根据配合物分子为电中性的原则,由配合物外界离子的电荷总数确定配离子的电荷数、 中心离子氧化数。 解:配合物命名配离子电荷数中心离子氧化数[Co(NH3)6]Cl3三氯化六氨合钴(Ⅲ)+3 +3 K2[Co(NCS)4] 四异硫氰合钴(Ⅱ)酸钾-2 +2 Na2[SiF6] 六氟合硅(Ⅳ)酸钠-2 +4 [Co(NH3)5Cl]Cl2二氯化一氯·五氨合钴(Ⅲ)+2 +3 K2[Zn(OH)4] 四羟基合锌(Ⅱ)酸钾-2 +2 [Co(N3)(NH3)5]SO4 硫酸一叠氮·五氨合钴(Ⅲ)+2 +3 [Co(ONO)(NH3)3(H2O)2]Cl2二氯化亚硝酸根·三氨·二水合钴(Ⅲ)+2 +3 3、指出下列配离子中中心离子的氧化数和配位数: 配离子中心离子氧化数配位数 (1)[Zn(NH3)4]2++2 4 (2)[Cr(en)3]3+ +3 6 (3)[Fe(CN)6]3-+3 6 (4)[Pt(CN)4(NO2)I]2-+4 6 (5)[Fe(CN)5(CO)]3-+2 6 (6)[Pt(NH3)4(NO2)Cl]2+ +4 6 4、指出下列化合物中的配离子、中心离子及其配位数。

第四章 双原子分子的结构.

第四章双原子分子的结构 Chapter 4. Diatomic molecules 前言:两个原子相互靠近,它们之间存在什么样的作用力,怎样才能形成稳定的分子结构?这是化学键理论讨论的主要问题。两个原子相距较长距离时,它们倾向于相互吸引,而在短距离内它们会互相排斥。某一对原子间相互吸引力很弱,而另一对原子间吸引力强到足以形成稳定分子。为什么有这么大的差别? 这正是本章要讨论的内容。 §4.1化学键理论简介(Brief introduction to chemical bond theory) 一、原子间相互作用力 原子是由带电粒子组成的,我们预计原子间相互作用力大多是静电相互作用,主要取决于两个方面,一是原子的带电状态(中性原子或离子),二是原子的电子结构,按原子最外价电子层全满状态(闭壳层)或未满状态(开壳层)来分类。 闭壳层包括中性原子,如稀有气体He、Ne、Kr……,及具有稀有气体闭壳层结构的离子如Li+、Na+、Mg2+、F-、Cl-等。开壳层则包括大多数中性原子,如H、Na、Mg、C、F等。显然,闭壳层原子(或离子)与开壳层原子之间相互作用很不相同。 原子间相互作用大致可分为以下几类: (1)两个闭壳层的中性原子,例如 He-He,它们之间是van der Waals(范德华)引力作用。 (2)两个开壳层的中性原子,例如H-H,它们之间靠共用电子对结合称为“共价键”。 (3)一个闭壳层的正离子与一个闭壳层的负离子,例如Na+-Cl-,它们之间是静电相互作用,称之为“离子键”。 (4)一个开壳层离子(一般是正离子)与多个闭壳层离子(或分子),例如过渡金属配合物

第七章 配位化合物

第七章 配位化合物 一、单项选择题 1. 下列物质中不能作为配体的是 ( B ) A. NH 3 B. NH 4+ C. OH - D. NO 2- 2. 下列离子或化合物中,具有顺磁性的是 ( B ) A. Ni(CN)- 24 B. CoCl - 24 C. Co(NH 3)+ 36 D. Fe(CO)5 3.在配合物[Co(NH 3)4(H 2O)]2(SO 4)3中,中心离子的配位数为 ( B ) A. 4 B. 5 C. 9 D. 12 4. 配离子[Co(NH 3)6]2+的空间构型为 ( A ) A. 八面体 B. 四方锥形 C. 四面体 D. 三角双锥 5. EDTA 是四元弱酸,当其水溶液pH ≥ 12时,EDTA 的主要存在形式为 ( C ) A. H 4Y ; B. H 3Y -; C. Y 4-; D. HY 3- 6.下列关于价键理论对配合物的说法正确的是 ( C ) A. 任何中心离子与任何配体都可形成外轨型化合物; B. 任何中心离子与任何配体都可形成内轨型化合物; C. 中心离子用于形成配位键的原子轨道是经过杂化的等价轨道; D. 以sp 3d 2和d 2sp 3杂化轨道成键的配合物具有不同的空间构型。 7.下列物质中能被氨水溶解的是 ( B ) A. Al(OH)3 B. AgCl C. Fe(OH)3 D. AgI 8. 下面哪一个不属于EDTA 与金属离子形成螯合物的特点 ( B ) A. 具有环状结构 B . 稳定性差 C. 配位比一般为1:1 D. 易溶于水 9. 下列说法欠妥的是: ( C ) A. 配合物的形成体(中心原子)大多是中性原子或带正电荷的离子。 B. 螯合物以六员环、五员环较稳定。 C. 配位数就是配位体的个数。 D. 二乙二胺合铜(Ⅱ)离子比四氨合铜(Ⅱ)离子稳定。 10. AgCl 在11mol L -?氨水中比在纯水中的溶解度大,其原因是 ( B ) A. 盐效应 B. 配位效应 C. 酸效应 D. 同离子效应 11. 离子以dsp 2杂化轨道成键而形成的配合物,其空间构型是 ( A ) A. 平面正方形 B. 四面体形 C. 直线形 D. 八面体形 12. 22Cu(en)+的稳定性比234Cu(NH )+ 大得多,主要原因是前者 ( B ) A. 配体比后者大; B. 具有螯合效应; C. 配位数比后者小; D. en 的分子量比NH 3大。 13. Al 3+与EDTA 形成 ( A ) A. 鳌合物 B. 聚合物 C. 非计量化合物 D. 夹心化合物 14.下列说法中错误的是 ( D ) A. 配体的配位原子必须具有孤电子对。 B. 配离子的配位键愈稳定,其稳定常数愈大。 C. 配合物的颜色最好用晶体场或配位场理论解释。 D. 配合物的颜色最好用价键理论来解释。 15. 下列几种物质中最稳定的是 ( A ) A. [Co(en)3]Cl 3 B. [Co(NH 3)6] (NO 3)3 C. [Co(NH 3)6]Cl 2 D. Co(NO 3)3

第十一章配位化合物

第十一章 配位化合物 一. 是非题: 1. 因[Ni(NH3)6]2+ 的K s=5.5×108, [Ag(NH3)2]+ 的K s=1.1×107, 前者大于后者,故溶液中 [Ni(NH3)6]2+比[Ag(NH3)2]+稳定() 2. H[Ag(CN)2]- 为酸,它的酸性比HCN强() 3. 因CN-为强场配体,故[30Zn(CN)4]2-为内轨型化合物() 二. 选择题: 1. 在[Co(en)(C2O4)2]-中,Co3+的配位数是() A.3 B.4 C.5 D.6 E.8 2. 下列配离子中属于高自旋(单电子数多)的是() A. [24Cr(NH3)6]3+ B. [26FeF6]3- C. [26Fe(CN)6]3- D. [30Zn(NH3)4]2+ E. [47Ag(NH3)2]+ 3. 下列分子或离子能做螯合剂的是() A.H2N-NH2 B.CH3COO- C.HO-OH D.H2N-CH2-NH2 E.H2NCH2CH2NH2 4. 已知[25Mn(SCN)6]4-的μ=6.1×AJ?T-1,该配离子属于() A.外轨 B.外轨 C.内轨 D.内轨 E.无法判断 5. 已知H2O和Cl-作配体时,Ni2+的八面体配合物水溶液难导电,则该配合物的化学式为 () A. [NiCl2(H2O)4] B. [Ni (H2O)6] Cl2 C. [NiCl(H2O)5]Cl D. K[NiCl3(H2O)3] E. H4[NiCl6] 三. 填充题: 1. 配合物[Cr(H2O)(en)(C2O4)(OH)]的名称为,配位数为。 2. 配合物“硝酸氯?硝基?二(乙二胺)合钴(III)”的化学,它的 外层是。 3. 价键理论认为,中心原子与配体间的结合力是。 四. 问答题:

第十一章 配位化合物习题解答

第十一章 配位化合物习题解答 1.指出下列配合物(或配离子)的中心原子、配体、配位原子及中心原子的配位数。 (1) H 2[PtCl 6] (2) NH 4[Cr(NCS)4(NH 3)2] (3) [Co(NH 3)6](ClO 4)2 (4) Na 2[Fe(CN)5(CO)] (5) [Cr(OH)(C 2O 4) (H 2O)(en)] 7.计算下列反应的平衡常数,并判断下列反应进行的方向。已知:lg K s θ([Hg(NH 3)4]2+ ) = 19.28;lg K s θ(HgY 2-) = 21.8;lg K s θ([Cu(NH 3)4]2+) = 13.32;lg K s θ([Zn(NH 3)4]2+) = 9.46 ;lg K s θ([Fe(C 2O 4)3]3-) = 20.2;lg K s θ([Fe(CN)6]3-) = 42 (1)[Hg(NH 3)4]2+ + Y 4- HgY 2- + 4NH 3 (2)[Cu(NH 3)4]2+ + Zn [Zn(NH 3)4]2+ + Cu 2+ (3)[Fe(C 2O 4)3]3- + 6CN - [Fe(CN)6]3- + 3C 2O 42- 解:反应均为配离子相互转化,配离子之间的转化方向是由稳定常数小的转化为稳定常数大的,通过两个配离子的稳定常数的组合形成新的平衡常数的大小来判断。 (1)] Hg ][Y ][)NH (Hg []Hg []NH ][HgY [] ][Y )[Hg(NH ] NH ][[HgY 2424 32432- 424 343- 2+ - ++ - + = = K 2 19 2124 3s 210 3.310 90.110 3.6} ])Hg(NH {[} [HgY]{?=??= = + - θθ K K s 该反应进行的方向是 [Hg(NH 3)4]2+ +Y 4- =[HgY]2- +4NH 3 ,即:反应正向进行。

第四讲分子的性质及分子间作用力

第四讲分子的性质及分子间作用力 【考点归纳】 【考点一:键的极性和分子极性】 1.极性共价键与非极性共价键 2.分子的极性 类型非极性分子极性分子 形成原因正电中心和负电中心重合的分子正电中心和负电中心不重合的分子 存在的共价键非极性键或极性键非极性键或极性键 分子内原子排列对称不对称 实例H2、N2、CO2HCl、NO、H2O 【方法引领】多原子分子(化合物)极性判断常用方法 ①化合价法:若中心原子的化合价绝对值等于其所在主族序数,是非极性分子。反之则是极性分子。 ②孤电子对法:若中心原子有孤电子对时,是极性分子,反之则是非极性分子。 【例1】1994年度诺贝尔化学奖授予为研究臭氧做出特殊贡献的化学家。O3能吸收有害紫外线,保护人类赖以生存的空间。臭氧分子的结构如图,呈V型,两个O-O键的夹角为116.5o,三个原子以一个O原子为中心,与另外两个氧原子分别构成共价键;中间O原子提供2个电子,旁边两个O原子各提供一个电子,构成一个特殊的化学健―三个O原子均等地享有这三个电子。请回答: (1)臭氧与氧气的关系是______________。 (2)写出下列分子与O3分子的结构最相似的是( ) A.H2O B.CO2C.SO2D.BeCl2 (3)O3是分子(极性或非极性) 【针对训练】用一带静电的玻璃棒靠近A、B两种纯液体流,现象如下图所示,据此分析,A、B 两种液体分子的极性正确的是 A.A是极性分子,B是非极性分子 B.A是非极性分子,B是极性分子 C.A、B都是极性分子 D.A、B都是非极性分子 【考点二:范德华力】 1.范德华力含义:分子间普遍存在的相互作用力(把分子聚集在一起),称为分子间作用力,又称为范德华力。 2.影响范德华力的因素:其大小主要由分子的相对分子质量的大小和分子极性的强弱决定。一般,相对分子质量越大,范德华力越大;分子的极性越大,范德华力越大。 3.范德华力对物质性质的影响 (1)熔沸点:范德华力越大,由分子构成的物质熔沸点就越高。 (2)溶解性:溶质分子与溶剂分子之间的范德华力越大其溶解度越大 【考点三:氢键】 1.氢键是除范德华力外的另一种分子间作用力,它是由已经与电负性很强的原子(N、O、F)形成强极性共价键的氢原子与另一个分子中电负性很强的原子之间产生的作用力。 2.氢键的表示方法及形成条件

第十一章 配位化合物习题解答

第十一章配位化合物习题解答 第十一章配位化合物习题解答 1.指出下列配合物的中心原子、配体、配位原子及中心原子的配位数。 配合物或配离子H2[PtCl6] [Co(ONO)(NH3)5]SO4 NH4[Co(NO2)4(NH3)2] [Ni(CO)4] Na3[Ag(S2O3)2] [PtCl5(NH3)]- [Al (OH)4]- 中心原子 Pt4+ Co3+ Co3+ Ni Ag+ Pt4+ Al3+ 配体 Cl- ONO-、NH3 NO2、 NH3 CO S2O32- Cl- 、NH3 OH- 配位原子 Cl O、N N、N C S Cl、N O 配位数 6 6 6 4 2 6 4 2.命名下列配离子和配合物,并指出配离子的电荷数和中心原子氧化值。配合物或配离子[Co(NO2)3(NH3)3] [Co(en)3]2(SO4)3 Na2[SiF6] [Pt Cl (NO2) (NH3)4] [CoCl2(NH3)3(H2O)]Cl [PtCl4]2- [Pt Cl2 (en)] K3[Fe(CN)6] 名称三硝基·三氨合钴硫酸三(乙二胺)合钴(Ⅲ) 六氟合硅(Ⅳ)酸钠氯·硝基·二氨合铂氯化二氯·三氨·水合钴(Ⅲ) 四氯合铂(Ⅱ)配离子二氯·(乙二胺)合铂六氰合铁(Ⅲ)酸钾配离子的电荷数 0 +3 -2 0 +1 -2 0 -3 中心原子的氧化值ⅢⅢⅣⅡⅢⅡⅡⅢ 3.写出下列配合物的化学式: (1) H2[PtCl6] (2) NH4[Cr(NCS)4(NH3)2] (3) [Co(NH3)6](ClO4)2 (4) Na2[Fe(CN)5(CO)](5) [Cr(OH)(C2O4)

第四讲配位滴定法

配位滴定法 大纲要求: 1.了解配位滴定法的特点及应用; 2.掌握条件稳定常数的概念及其应用; 3.了解金属指示剂的变色原理,常用指示剂及指示剂使用条件; 4.掌握单一金属离子能被准确滴定的条件,配位滴定所允许的最低 pH 及提高配位滴定选择性的方法; 5.掌握配位滴定的有关计算。 基本内容: 一.配位滴定法概述 配位滴定法是以形成配位化合物的配位反应为基础的滴定分析方法。 它是用配位剂作标准溶液直接或间接地滴定被测物质,形成配合物,并 选用适当的指示剂来确定滴定终点。 用于配位滴定的配位反应应具备的条件: 1) 形成的配合物(或配离子)要相当稳定; 2) 在一定反应条件下,配位数须固定; 3) 配位反应速度要快; 4) 有适当的方法确定滴定终点。 作为滴定用的配位剂可分为无机配位剂和有机配位剂两类: 无机配位剂:如: Ag + + 2CN - = [Ag(CN) 2]- Ag + + [Ag(CN) 2]- = Ag[Ag(CN)2]↓(白色) 有机配位剂:使用较广泛的为氨羧配位剂 ( 含有氨基二乙酸基团的有机化合物 ―N COOH CH COOH CH 2 2 ) 此配位剂中同时含有氨基氮和羧基氧两种配位能力很强的配位原 子,故它几乎可以和所有的金属离子相配位。 目前研究过的氨羧配位剂有30多种,其中重要的有:氨基乙酸(NTA) 乙二胺四乙酸(EDTA)、 乙二胺四丙酸(EDTP) ………… 其中,乙二胺四乙酸(EDTA)是应用最广的一种,故通常所说的配位 滴定法主要是指以EDTA 为滴定剂的EDTA 滴定法。 二.EDTA 的性质及其配合物 (一).EDTA 的性质

配位化合物

第十六章配位化合物 Chapter 16The Coordination Compounds 最早的配合物是偶然、孤立地发现的,它可以追溯到1693年发现的铜氨配合物,1704年发现的普鲁士蓝以及1760年发现的氯铂酸钾等配合物。 配位化学作为化学学科的一个重要分支是从1793年法国化学家Tassaert无意中发现CoCl·6NH3开始的。B.M.Tassaert是一位分析化学家。他在从事钴的重量分析的研究过程中,偶因NaOH用完而用NH3·H2O代替加入到CoCl2(aq)中。他本想用NH3·H2O沉淀 Co2+,再灼烧得到CoO,恒重后测定钴的含量。但结果发现加入过量氨水后,得不到 Co(OH)2沉淀,因而无法称重,次日又析出了橙黄色晶体。分析其组成为:CoCl3·6NH3。 配位化学的近代研究始于两位精明的化学家?? A. Werner 和 S. M. Jogensen。他们不仅有精湛的实验技术,而且有厚实的理论基础。特别是从1891年开始,时年25岁在瑞士苏黎士大学学习的Werner提出的配合物理论: 1.提出主价(primary valence)和副价(second valence),相当于现代术语的氧化数和配位数;又指出了配合物有内界(inner)和外界(outer)。 2.在任何直接测定分子结构的实验方法发明之前很长一段时间,他指出了一些配合物的正确的几何构型。其方法是沿用有机化学家计算苯取代物的同分异构体数目来推测结构。例:Werner 认为[Co(NH3)4Cl2]+的构型及其异构体的关系如下: 化学式平面六边形三角棱柱八面体实验[Co(NH3)4Cl2]+ 3 3 2 2 Werner合成出[Co(NH3)4Cl2]Cl的异构体只有两种,而仅有八面体才是两种几何异构体,故[Co(NH3)4Cl2]+的几何构型构是八面体。由于Werner在配合物理论方面的贡献,获得1913年诺贝尔化学奖。 近年来配位化学发展非常迅速,四五十年代的高纯物制备和稀土分离技术的发展,六十年代的金属有机化合物的合成,七十年代分子生物学的兴起,目前的分子自组装??超分子化学,都与配合物化学有着密切的关系。配位化学家可以设计出许多高选择性的配位反应来合成有特殊性能的配合物,应用于工业,农业、科技等领域,促进各领域的发展。 §16-1 配合物的基本概念 The Basic Concepts of Complexes 一、配位化合物的定义(Definition of Coordination Compounds) 由提供孤电子对(NH3、H2O、X-)或π电子(H2C=CH2、)的物种与提供物。例如:

第十一章 配位化合物

第十一章配位化合物 一、选择题 1.已知[Ni(CO)4]中,Ni以dsp2杂化轨道与C成键,[Ni(CO)4]的空间构型应为( ) A. 三角锥形 B. 正四面体 C. 直线型 D. 八面体 E. 平面正方形 2.[Co(NH3)6]3+是内轨配离子,则Co3+未成对电子数和杂化轨道类型是() A. 4,sp3d2 B. 0,sp3d2 C. 4,d2sp3 D. 0,d2sp3 E. 6,d2sp3 3.Co3+与[Co(CN)6]3-的氧化能力的关系是() A. Co3+ = [Co(CN)6]3- B. Co3+>[Co(CN)6]3- C. Co3+<[Co(CN)6]3- D. 以上说法都不正确 E. 以上说法都正确 4.下列分子或离子能做螯合剂的是() A. H2N-NH2 B. NH2-OH C. CH3COO- D. HO-OH E. H2NCH2- CH2NH2 5.对K S的正确描述是() A. 配离子的K S值愈大,配离子愈不稳定 B. 可利用K S值直接比较同种类型配离子的稳定性 C. 一般来说,K S值与温度有关,而与配离子的种类、配体的种类无关 D. K S值的倒数值愈大,配离子愈稳定 E. K S值是各级累积稳定常数之和 6.在下列物质中,于6mol·L-1NH3水中,溶解度最大的是() A. AgSCN B. AgCN C. AgCl D. AgBr E. AgI 7. 用EDTA测定水质硬度达终点时溶液所见颜色是() A.金属指示剂与被测金属离子形成的配合物的颜色 B.金属指示剂的颜色 C. MY的颜色 D.上述A和C的颜色 8.下列配合物中,属于弱电解质的是() A. [CrCl(NH3)5]SO4 B. K3[FeCl6] C. H[Ag(CN)2] D. [Cu(NH3)4](OH)2 E. [PtCl2(NH3)2] 9.已知〔PtCl4〕2-中Pt2+以dsp2杂化轨道与Cl-成键,〔PtCl4〕2-的空间构为 A.正八面体 B. 直线型 C. 八面体 D. 平面正方形 E. 平面正方形

12第十章配位化合物温相如

第十章 配位化合物 学习要点 配合物、配合物价键理论、sp 、sp 3、dsp 2、sp3d2、d2sp3杂化轨道、外轨型、内轨型配合物、磁矩、晶体场理论、分裂能、晶体场稳定化能(CFSE )、螯合物、配位平衡 学习指南 配合物是配位化合物的简称。配离子或配位分子是由中心原子提供价层空轨道,配体中的配原子提供孤对电子,以配位键结合而成的难解离的复杂结构单元。它是由中心原子和配体组成的。中心原子往往是过渡金属离子,配体一般分为单齿配体和多齿配体,配体中直接与中心原子配位的原子称为配原子。配离子或配位分子中配原子的数目称为中心原子的配位数。配合物顺、反异构体的理化性质不同。配合物的名称有俗名、商品名和系统命名,系统命名法是配合物内外界之间服从一般无机化学命名原则,内界命名的先后顺序所遵循的一般原则是配体数—配体名称—合—中心原子名称(中心原子氧化数),不同配体按阴离子—中性分子—阳离子顺序排列。 配合物的价键理论认为:中心原子与配体之间以配位键相结合,成键过程中,中心原子提供的价层空轨道首先进行杂化,形成杂化空轨道,配合物的空间构型,取决于中心原子价层空轨道的杂化类型。常见的杂化方式有sp 、sp 2、sp 3、dsp 2、sp 3d 2、d 2sp 3等。配合物的内、外轨型,可通过配合物的磁矩测定,结合中心原子的价层电子结构来判断,进一步可推断中心原子价层空轨道的杂化类型、配合物的空间构型、磁性及定性说明部分配合物的稳定性。 配合物的晶体场理论把中心原子和配体都看成点电荷,中心原子和配体之间靠静电作用力相结合,并不形成共价键。在晶体场的作用下,中心原子d 轨道发生能级分裂,分裂能的大小与配合物的空间构型、配体场强、中心原子所带的电荷数和它所属周期等因素有关。对于d 4~d 7电子构型的中心原子,其配合物有高、低自旋之分。根据晶体场稳定化能的相对大小可以比较相同类型配合物的稳定性。晶体场理论还可以较好地解释配合物的颜色。 配位平衡属溶液的四大平衡之一。对于配位反应 M + n L ? ML n 其稳定常数 K S = βn = n n [M][L] ][ML

无机及分析化学第4章 习题答案

第四章配位化合物习题参考解答 1. 试举例说明复盐与配合物,配位剂与螯合剂的区别。 解复盐(如KCl·MgCl2·6H2O)在晶体或在溶液中均无配离子,在溶液中各种离子均以自由离子存在;配合物K2[HgI4]在晶体与溶液中均存在[HgI4]2-配离子,在溶液中主要以[HgI4]2-存在,独立的自由Hg2+很少。 配位剂有单基配位剂与多基配位剂:单基配位剂只有一个配位原子,如NH3(配位原子是N);多基配位剂(如乙二胺H2N-CH2-CH2-NH2)含有两个或两个以上配位原子,这种多基配位体能和中心原子M形成环状结构的化合物,故称螯合剂。 2. 哪些元素的原子或离子可以作为配合物的形成体?哪些分子和离子常作为配位体?它们形成配合物时需具备什么条件? 解配合物的中心原子一般为带正电的阳离子,也有电中性的原子甚至还有极少数的阴离子,以过渡金属离子最为常见,少数高氧化态的非金属元素原子也能作中心离子,如Si(Ⅳ)、P(Ⅴ)等。 配位体可以是阴离子,如X-、OH-、SCN-、CN-、C2O4-等;也可以是中性分子,如H2O、CO、乙二胺、醚等。 它们形成配合物时需具备的条件是中心离子(或原子)的价层上有空轨道,配体有可提供孤对电子的配位原子。 3. 指出下列配合物中心离子的氧化数、配位数、配体数及配离子电荷。 [CoCl2(NH3)(H2O)(en)]Cl Na3[AlF6] K4[Fe(CN)6] Na2[CaY] [PtCl4(NH3)2]

K2[PtCl6] [Ag(NH3)2]Cl [Cu(NH3)4]SO4 K2Na[Co(ONO)6] Ni(CO)4 [Co(NH2)(NO2)(NH3)(H2O)(en)]Cl K2[ZnY] K3[Fe(CN)6] 二硫代硫酸合银(I)酸钠四硫氰酸根?二氨合铬(错误!未找到引用源。)酸铵; 四氯合铂(错误!未找到引用源。)酸六氨合铂(错误!未找到引用源。) 二氯?一草酸根?一乙二胺合铁(III)离子 硫酸一氯?一氨?二乙二胺合铬(III) 解Na3[Ag(S2O3)2] NH4[Cr(SCN)4(NH3)2] [Pt(NH3)6][PtCl4] [FeCl2(C2O4)(en)]-[CrCl(NH3)(en)2]SO4

第三讲 配位化合物

第三讲配位化合物 3-1配位化合物的命名 一般服从于无机化合物的命名原则,内界与外界之间叫“某化某”;“某酸某”;“氢氧化某”等。 一、内界命名: 1、次序:配位体数→配位体名称→合→中心离子或原子(氧化数<罗马数字>) 2、配位名称顺序:无机简单离子→复杂离子→有机离子→NH3-H2O→有机分子。如:[Co(NH3)3H2OCl2]+ (1)多类配体如果不只一个时,按配位原子元素符号的英文字母顺序命名,如: [CoClNO2(NH3)4]+:一氯·一硝基·四氯合钴(Ⅲ)离子 [Co(CO)4(NH3)2]+:四羰基·二氨合钴(Ⅲ)离子 (2)配位原子相同,配体中原子数目也相同,则按结构式中与配位原子相连的原子的元素符号字母顺序排列,如:[Pt(NH2)(NO2)(NH3)2]:氨基·硝基·二氨合钵(Ⅱ) (3)多核配合物命名:在桥联基前冠以希腊字母μ-,桥基多于一个时,用二(μ-),三(μ-)。如: [(NH3)5Cr-OH-Cr(NH3)5]Cl5 五氯化·μ-羟·十氨合二铬(Ⅲ) 五氯化·μ-羟·二(五氨合二铬(Ⅲ)) 3、电中性配体:一般保留原来命名,而CO、NO、O2和N2作为配体时,为羰基、亚硝基、双氧、双氮。 4、同一配体若配位原子不同,则名称不同,如-NO2硝基、-ONO亚硝酸根、-SCN硫氰酸根、-NCS异硫氰酸根 5、常见配体缩写: 乙二胺(en)、吡啶(py)、硫脲(tu)、草酸根(ox-)、乙酰丙酮根离子(acac-)、乙二胺四乙酸根离子(EDTA-)3-2 配合物的异构现象 1、构造异构:配合物的实验式相同,但中心原子于配体间连接的方式不同而引起的异构。主要有: (1)离解异构:如[Co(NH3)5Br]SO4和[Co(NH3)5SO4]Br (2)水合异构:如[CrCl(H2O)5]Cl·H2O和[CrCl2(H2O)4]Cl·2H2O (3)配位异构:如[Co(en)3][Cr(CN)6]和[Cr(en)3][Co(CN)6] (4)键合异构:如[Co(ONO)2(NH3)4]Cl和[Co(NO2)2(NH3)4]Cl (5)聚合异构:如[Co(NH3)6][Co(NO2)6]和[Co(NH3)4(NO2)2][Co(NH3)2(NO2)4] 2、立体异构:配合物的实验式和成键原子连结方式都相同,但配体在空间排列方式不同而引起的异构。又分为:(1)几何异构:配体在空间相对位置不同而产生的异构现象。如:[Pt(NH3)2Cl]有两种异构体——顺式和反式橙黄色,μ>0,溶解度大亮黄色,μ<0,溶解度小 [CrCl2(NH3)4]+也有2种异构体,顺式和反式八面体Ma3b3存在面式、径式,如:[Co(CN)3(NH3)3]. 常见化合物类型与几何异构体数关系 (2)旋光异构(手性):若一个与其镜像不能叠合,则该分子与其镜像像互为旋光异构,如[Pt(NH3)2(NO2)2Cl]的旋光异构体为: 例:画出下列配合物可能存在的立体异构体。 (1)[PtClBrNH3Py] (2)[PtCl2(NO2)(NH3)2] 3—3 配合物价键理论 一、基本要点(对于配合物ML n而言)

第四章 配合物

第四章配合物 本章总目标: 1:掌握配合物的基本概念和配位键的本质 2:掌握配合物的价键理论的主要论点,并能用此解释一些实例 3:配离子稳定常数的意义和应用 4:配合物形成时性质的变化。 各小节目标: 第一节:配位化合物的基本概念 1:掌握中心原子、配体、配位原子、配位键、配位数、螯合物等概念, ○1配位单元:由中心原子(或离子)和几个配位分子(或离子)以配位键向结合而形成的复杂分子或离子。 ○2配位化合物:含有配位单元的化合物。 ○3配位原子:配体中给出孤电子对与中心直接形成配位键的原子。 ○4配位数:配位单元中与中心直接成键的配位原子的个数。 2:学会命名部分配合物,重点掌握命名配体的先后顺序:(1)先无机配体后有机配体(2)先阴离子配体,后分子类配体(3)同类配体中,先后顺序按配位原子的元素符号在英文字母表中的次序(4)配位原子相同时,配体中原子个数少的在前(5)配体中原子个数相同,则按和配位原子直接相连的其它原子的元素符号的英文字母表次序; 3:了解配合物的结构异构和立体异构现象 第二节:配位化合物的价键理论 1:熟悉直线形、三角形、正方形、四面体、三角双锥、正八面体构型的中心杂化类型。 2:会分辨内轨型和外轨型配合物。可以通过测定物质的磁矩来计算单电子数 μ=。 3:通过学习羰基配合物、氰配合物以及烯烃配合物的d pπ -配键来熟悉价键理论中的能量问题。

第三节:配合物的晶体场理论 1:掌握配合物的分裂能、稳定化能概念 2:掌握配合物的晶体场理论。 3;了解影响分裂能大小的因素 ○ 1)晶体场的对称性0p t ?>?>? ○ 2中心离子的电荷数,中心离子的电荷高,与配体作用强,?大。 ○ 3中心原子所在的周期数,对于相同的配体,作为中心的过渡元素所在的周期数大,?相对大些。(4)配体的影响,配体中配位原子的电负性越小,给电子能力强,配体的配位能力强,分裂能大。 224232I Br SCN Cl F OH ONO C O H O NCS NH en NO CN CO -----------<<<<<<-<<<<<<<≈ 4:重点掌握(1)配合物颜色的原因之一——d-d 跃迁以及颜色与分裂能大小的关系;(2)高自旋与低自旋以及与磁矩的大小的关系。 第五节:配位化合物的稳定性 1:熟悉影响配位化合物稳定性的因素(1)中心与配体的关系(2)螯合效应(3)中心的影响(4)配体的影响(5)反位效应(6)18电子规则。 2:了解配位平衡及影响的因素。 习题 一 选择题 1.Fe (III )形成的配位数为6的外轨配合物中,Fe 3+接受孤电子对的空轨是( ) A.d 2sp 3 B.sp 3d 2 C.p 3d 3 D.sd 5 2.五水硫酸铜可溶于浓HCl ,关于所得溶液的下列说法中,正确的是( ) A.所得溶液成蓝色 B.将溶液煮沸时释放出Cl 2,留下一种Cu (I )的配合物 C.这种溶液与过量的NaOH 溶液反应,不生成沉淀 D.此溶液与金属铜一起加热,可被还原为一种Cu (I )的氯化物 3.在[Co (C 2O 4)2(en )]-中,中心离子Co 3+的配位数为( )(《无机化学例题与习题》吉大版)

第十一章 配位化合物(大纲)

第十一章
1 基本要求 [TOP]
配位化合物
3 2 3 2 2 3
1.1 掌握配位化合物的组成及命名;配位化合物的价键理论;sp、sp 、dsp 、sp d 、d sp 等杂化轨道, 内轨型和外轨型配位化合物;配位平衡的基本概念和稳定常数的意义及简单应用。 1.2 熟悉晶体场理论;中心离子 d 轨道在八面体场中的分裂;晶体场稳定化能;光谱化学顺序;分裂能 及电子成对能;高自旋与低自旋配位化合物;影响配合物稳定性的因素;螯合物及螯合效应。 1.3 了解 d-d 跃迁和配合物的颜色;影响螯合物稳定性的因素;生物配体及配合物在医学上的意义。 2 重点难点 [TOP]
2.1 重点 2.1.1 配合物的命名原则。 2.1.2 配位平衡的基本计算。 2.1.3 配合物的价键理论。 2.2 难点 晶体场理论。
3
讲授学时 建议 6 学时
[TOP]
4
内容提要
[TOP]
第一节
第二节
第三节
第四节
4.1 第一节 配位化合物的基本概念 4.1.1 什么是配位化合物 配位化合物(简称配合物)是以具有接受电子对的离子或原子(统称中心原子)为中心,与一组可 以给出电子对的离子或分子(统称配体) ,以一定的空间排列方式在中心原子周围所组成的质点(配离 子或配分子)为特征的化合物。 4.1.2 配合物的组成 多数配合物由配离子与带有相反电荷的离子组成。中心原子提供空轨道,配体中的配位原子提供孤
1

对电子,组成配离子。常见配位原子有 N、O、C、S、F、Cl、Br、I 等。只含有一个配位原子的配体称 为单齿配体。含有两个或两个以上配位原子的配体称多齿配体。 4.1.2 配合物的命名 1. 配合物遵守无机化合物的命名原则:阴离子在前、阳离子在后,以二元化合物命名。如“某化 某”、“某酸”、“氢氧化某”和“某酸某”。 2. 配离子及配位分子的命名:配体名称在前,配体数目用二、三、四等数字表示,复杂配体名称 写在圆括号中,以免混淆,不同配体以中圆点“·”分开,配体名称之后以“合”字联接中心原子,其 后加括号以罗马数字表示氧化值。 3. 配体命名按如下顺序确定: (1)无机配体在前,有机配体在后; (2)先列阴离子,后列中性分子; (3)同为阴离子或中性分子时按配位原子元素符号的英文字母顺序列出; (4)化学式相同、配位原子不同的配体,按配位原子元素符号的英文字母顺序排列; (5)同时存在配位原子相同、所含原子的数目也相同的配体时,按与配位原子相连的原子的元素 符号英文字母顺序进行。 4.2 第二节 配合物的化学键理论 4.2.1 配合物的价键理论 (一)价键理论的基本要点 1.中心原子与配体中的配位原子之间以配位键结合。 2.为了增强成键能力,中心原子所提供的空轨道首先进行杂化,形成数目相等、能量相同、具有一 定空间伸展方向的杂化轨道。 3.配合物的空间构型,取决于中心原子所提供的杂化轨道的数目和类型。 (二)杂化轨道类型、配位数及配离子的空间构型 配位数 2 4 杂化轨道 sp sp
3
[TOP]
空间构型 直线 四面体 平面四方形 八面体 八面体
dsp 6
2
sp d d sp
2
3 2
3
2

相关文档