文档库 最新最全的文档下载
当前位置:文档库 › 光纤光缆技术

光纤光缆技术

光纤光缆技术
光纤光缆技术

光纤光缆技术

摘要:综述了近期光纤光缆在制造、施工及维护技术上的发展特点,分析了其发展趋势,并就我国光纤光缆及通信电缆技术与产业的发展提出了一些值得思考的问题。

关键词:光纤光缆 ITU-T建议技术发展

1 光纤技术发展的特点

1.1 网络的发展对光纤提出新的要求下一代网络(ngn)引发了许多的观点和争论。有的专家预言,不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的ip世界、传送层面上的光的世界和接入层面上的无线世界。下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨干传输的发展也对光纤提出了新的要求。

1.1.1 扩大单一波长的传输容量目前,单一波长的传输容量已达到40 gbit/s,并已开始进行160 gbit/s的研究。40gbit/s以上传输对光纤的PMD(物理介质关联层接口)将提出一定的要求,2002年的ITU-T sg15会议上,美国已提出对40gbit/s系统引入一个新的光纤类别(g.655.c)的提议,并建议对其PMD传输中的一些问题进行深入探讨,也许不久的将来就会出现一种专门的40gbit/s光纤类型。

1.1.2 实现超长距离传输中继传输是骨干传输网的理想,目前有的公司已能够采用色散齐理技术,实现2000~5000km的无电中继传输。

有的公司正进一步改善光纤指标,采用拉曼光放大技术,可以更大地延长光传输的距离。

1.1.3 适应DWDM(密集型光波复用)技术的运用目前32×

2.5gbit/s DWDM系统已经运用,64×2.5gbit/s及32×10gbit/s系统已在开发并取得很好的进展。DWDM系统的大量使用,对光纤的非线性指标提出了更高的要求。ITU-T对光纤的非线性属性及测试方法的标准(g.650.2)最近也已完成,当光纤的非线性测试指标明确之后,对光纤的有效面积将会提出相应指标,特别是对g.655光纤的非线性特性会有进一步改善的要求。

1.2 光纤标准的细分促进了光纤的准确应用 2000年世界电信标准大会批准将原g.652光纤重新分为g.65

2.a、g.652.8和g.652.c 3类光纤;将g.655光纤重新分为g.655.a和g.655.b两类光纤。这种光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求(如有些光纤几何参数的容差变小),明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD 值的规定),并提出了一些新的指标概念(如“色散纵向均匀性”等),对合理使用光纤取得了很好的作用。所有这些建议的修改、子建议的出现及新子建议的起草,都意味着光纤分类及指标、测试方法有某些改进,或有重要的提升;都标志着要求光纤质量的提高或运用方向上的调整,是值得注意的光纤技术新动向。

1.3 新型光纤在不断出现为了适应市场的需要,光纤的技术指标在不断改进,各种新型光纤在不断涌现,同时各大公司正加紧开发新品种。

1.3.1 用于长途通信的新型大容量长距离光纤主要是一些大有效面积、低色散维护的新型g.655光纤,其PMD值极低,可以使现有传输系统的容量方便地升级至10~40gbit/s,并便于在光纤上采用分布式拉曼效应放大,使光信号的传输距离大大延长。如康宁公司推出的pure mode pm系列新型光纤利用了偏振传输和复合包层,用于10 gbit/s以上的DWDM系统中,据称很适合于拉曼放大器的开发与应用。alcatel cable推出的teralight ultra光纤,据介绍已有传输100km 长度以上单信道40gbit/s、总容量10.2 tbit/s的记录。还有一些公司开发负色散大有效面积的光纤,提高了非线性指标的要求,并简化了色散补偿的方案,在长距离无再生的传输中表现出很好的性能,在海底光缆的长距离通信中效果也很好。

1.3.2 用于城域网通信的新型低水峰光纤城域网设计中需要考虑简化设备和降低成本,还需要考虑非波分复用技术(cwdm)应用的可能性。低水峰光纤在1360~1460nm的延伸波段使带宽被大大扩展,使cwdm系统被极大地优化,增大了传输信道、增长了传输距离。一些城域网的设计可能不仅要求光纤的水峰低,还要求光纤具有负色散值,一方面可以抵消光源光器件的正色散,另一方面可以组合运用这种负色散光纤与g.652光纤或g.655标准光纤,利用它来做色散补偿,

从而避免复杂的色散补偿设计,节约成本。如果将来在城域网光纤中采用拉曼放大技术,这种网络也将具有明显的优势。但是毕竟城域网的规范还不是很成熟,所以城域网光纤的规格将会随着城域网模式的变化而不断变化。

1.3.3 用于局域网的新型多模光纤由于局域网和用户驻地网的高速发展,大量的综合布线系统也采用了多模光纤来代替数字电缆,因此多模光纤的市场份额会逐渐加大。之所以选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%~100%,但是它所配套的光器件可选用发光二极管,价格则比激光管便宜很多,而且多模光纤有较大的芯径与数值孔径,容易连接与耦合,相应的连接器、耦合器等元器件价格也低得多。ITU-T至今未接受6

2.5/125μm 型多模光纤标准,但由于局域网发展的需要,它仍然得到了广泛使用。而ITU-T推荐的g.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接相应困难一些,虽然在部分欧洲国家和日本有一些应用,但在北美及欧洲大多数国家很少采用。针对这些问题,目前有的公司已进行了改进,研制出新型的5o/125μm光纤渐变型(g1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,它将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用,这种改进可能会为50/125pm光纤在局域网运用找到新的市场。

1.3.4 前途未卜的空芯光纤据报道,美国一些公司及大学研究所正在开发一种新的空芯光纤,即光是在光纤的空气够传输。从理论上讲,

这种光纤没有纤芯,减小了衰耗,增长了通信距离,防止了色散导致的干扰现象,可以支持更多的波段,并且它允许较强的光功率注入,预计其通信能力可达到目前光纤的100倍。欧洲和日本的一些业界人士也十分关注这一技术的发展,越来越多的研究证明空芯光纤似有可能。如果真能实用,就能解决现有光纤系统长距离传输的问题,并大大降低光通信的成本。但是,这种光纤使用起来还会遇到许多棘手的问题,比如光纤的稳定性、侧压性能及弯曲损耗的增大等。因此,对于这种光纤的现场使用还需做进一步的探讨。

2 光缆技术的发展特点

2.1 光网络的发展使得光缆的新结构不断涌现光缆的结构总是随着光网络的发展、使用环境的要求而发展的。新一代的全光网络要求光缆提供更宽的带宽、容纳更多的波长、传送更高的速率、便于安装维护、使用寿命更长等。近年来,光缆结构的发展可归纳为以下一些特点。

2.1.1光缆结构根据使用的网络环境有了明确的光纤类型的选择,如干线网光纤、城域网光纤、接入网光纤、局域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件还有可依据的细分的标准及指标;

2.1.2 光缆结构除考虑光缆使用环境条件以外,越来越多的与其施工方法、维护方法有关,必须统一考虑,配套设计;

2.1.3 光缆新材料的出现,促进了光缆结构的改进,如干式阻水料、纳米材料、阻燃材料等的采用,使光缆性能有明显改进。不同的场合和不同的要求造成了光缆的多结构的发展趋势,新的光缆结构以及在现有结构上不断改进的各种结构也在不断涌现,出现了如下一些类型。·“干缆芯”式光缆:所谓“干缆芯”即区别于常用的填充管型的光缆缆芯。这种缆的阻水功能主要靠阻水带、阻水纱和涂层组合来完成,其防水性能、渗水性能都与传统的光缆相同,但它具有生产、运输、施工和维护上的一些优点。首先是方便,因为阻水材料不含粘性脂类,操作使用比较方便安全;其次,干式光缆重量轻、易接续、易搬运,设备投资小、成本低,生产使用中也显得干净卫生,在长期使用中还可减少缆芯中各种元件之间的相对移动。特别是在接入网室内缆和用户缆中,好处更加明显。·生态光缆:一些公司从环境保护及阻燃性能的要求出发,开发了生态光缆,应用于室内、楼房及家庭。现有光缆中使用的一些材料已不符合环保的要求,如pvc燃烧时会放出有毒性气体,光缆稳定剂中有时含铅,都是对人体及环境有害的。2001年ITU-T已通过了一项l45建议——“使电信网外部设备对环境的影响最小化”建议,通过对光缆、电缆光器件及电杆等基于寿命周期怦估(life cycleanalysis,lca)的方法来确定产品对环境的影响。由于环境因素正日益受到重视,对通信外部设备,特别是光缆产品规定这样的指标已提到日程上来,如果不在材料和工艺上下功夫就难以达到环保的要求。因此已有不少公司针对此类问题开发了一些新材料,如对室内用缆,开发了含有阻燃添加剂的聚酞胺化合物,

以及无卤性阻燃塑料等。·海底光缆:海底光缆近年来有根快的发展,它要求长距离、低衰减的传输,而且要适应海底的环境,对抗水压、抗气损、抗拉伸、抗冲击的要求都特别严格。·浅水光缆(marinized terrestrail cable,mtc):浅水光缆是区别于海底光缆而提出来的另一类结构的水下光缆,适合于在海岸边上、浅水中安装,无需中继、通信距离比较短的水下(如岛屿间、沿海岸边上的城市)敷设使用。这种光缆区别于海底光缆的环境,需要的光纤数不多(中等),但要求结构简单、成本较低,易于安装和运输,便于修复和维护。ITU-T在2001年提出了ITU-T g.972定义下的浅水光缆建议,为建设类似的水下光缆提供了一组规范,随后也有可能形成相应的国际标准。·微型光缆:为了配合气压安装(或水压安装)施工系统的运用,各种微型的光缆结构已在设计和使用中。对于气压安装的微型光缆,要求光缆与管道之间有一定的系数,光缆重量要准确,具有一定的硬度等。这种微型光缆和自动安装的方式是未来接入网,特别是用户驻地网络中综合布线系统很有潜力的一种方式,如在智能建筑中运用的智能管道中就非常适合这种安装。·采用了纳米材料的光缆:近来,一些厂商已开发出纳米光纤涂料、纳米光纤油膏、纳米护套用聚乙烯(pe)及光纤护套管用纳米pbt等材料。采用纳米材料的光缆,利用了纳米材料所具有的许多优异性能,对光缆的抗机械冲击性能、阻水、阻气性都有一定的改善,并可延长光缆的使用寿命。目前此类材料尚处于试用阶段。·全介质自承式光缆(adss):全介质光缆对防止电磁影响及防雷电都有优良的特性,而且重量轻、外

径小,架空使用非常方便,在电力通信网中已得到大量的应用。预计2000~2005年,每年电力部门对adss光缆需求约15000km。adss同时也是电信部门在对抗电磁干扰及雷暴日高的敷设环境中一种很好的光缆类型的选择。在今后一段时间内,如何在满足要求的前提下,尽量减小adss光缆的外径,减轻光缆的重量,提高其耐电压性能是adss光缆研究改进的课题。·架空地线光缆(opgw):opgw已出现了很长一段时间,近年来一直在改进和提高之中。opgw的光纤单元中采用pbt,于套管外面再加上一层不锈钢管,有的还在塑料套管与不锈钢管之间加上一层热塑胶,不锈钢管用激光焊接长度可达数十公里,光纤在这样的多层保护管中得到了充分的机械保护。预计从现在到2005年,opgw光缆的需求将会逐年上升,每年增加约2500km,到2005年预计可达到20000km。当然对opgw光纤的防雷问题一直是业界十分关注的问题,也应配合具体环境和使用条件加以考虑,使之得到充分保护。

2.2 光缆的自动维护、适时监测系统已逐渐完善,可保证大容量高速率的光缆不中断传输光缆的维护对于保证网络的可靠性是十分重要。在已开通的光网络中,光缆的维护和监测应该是在不中断通信的前提下进行的,一般通过监测空闲光纤(暗光纤)的方式来检测在用光纤的状态,更有效的方式是直接监测正在通信的光纤。虽然ITU-T 长时间收集和讨论了国际上的最新资料,于1996年发布了l.25光缆网络维护的建议书,对光缆的预防性维护和故障后维护规定了详细的维护范围和功能,但已经不能满足当前的需要,目前最新的建议是

2001年12月iut-t sg16会议通过的“光缆网络的维护监测系统”(l.40建议)。为了进一步缩短检测及修复时间,美国朗讯公司曾提出了新一代光纤测试及监控系统,能在1s内发出故障告警,3min 内找到故障点,且工作人员可以遥控操作,据称该系统还将开发有故障预测及对断纤(缆)的快速反应能力。日本、意大利等国电信企业也提出了一些系统方案。·日本ntt方案:在局内运用光纤选择器与系统的测试设备和传输设备相连形成了一种可对光纤状况进行实

时监测的系统,保证有用信号在通过光纤选择器测试证明良好的光纤上传输,对有故障的光纤可以预选监测出来及时传送到维护中心进行适当处理,避免不良状况进入有用的光传输信道,从而起到在运行中对整个光通信系统的支撑作用;在局外通过水敏传感器装置可监测外部设备光缆线路接头盒浸水的位置,水敏传感器安装在空闲的光纤上,水敏传感器中装有吸水性膨胀物,当水渗人接头盒时,吸水性物质会膨胀使得接头盒中的光纤受力,也就是使得这一空闲光纤弯曲,从而使光纤的损耗增加,在监测中心的otdr上就会反映出来。

·意大利的方案:此方案是一种综合处理的新型连续光缆监测系统。主要特点是将光缆网络、光纤及光缆护套的监测综合在一起,既利用了otdr系统周期性地对光纤的衰减进行监测,发现有衰减变化即发出警报,并进行故障定位,同时也能连续监测光缆护套的完整性,包括护套对地绝缘电阻的监测,发现问题(如护套进水等)即马上告警,达到更全面地预告故障发生的目的。比较日本和意大利电信部门提出的光缆维护支撑系统的方案可见:日本方案在otdr自动适时测试

光纤的基础上,加入了光纤选择器,在外线上装设水敏传感器并进行护套监测,形成了一套较完整的自动维护、支撑系统,真正做到不中断光通信的维护。意大利的方案中除监测光纤性能以外,还考虑了护套绝缘电阻的自动监测。由此两例可以看出全自动的光缆维护应是一种发展方向。

光纤光缆产业发展趋势探讨

光纤光缆产业发展趋势 探讨 Revised by Chen Zhen in 2021

中国光纤光缆产业发展趋势探讨 2009年,国际金融危机虽然使国内光纤光缆企业的发展蒙上了一层阴影,但在国内大力拉动内需以及3G建设、FTTH建设等多重因素的影响下,中国的光纤光缆行业走过了“爆炸性”增长的一年,与此同时,新一轮的行业整合和投资高潮也拉开了序幕。回眸过去,展望未来,中国光纤光缆产业如何发展值得每一位业界同仁思考。 一、光纤光缆产业的构成及发展现状 1.关键技术和产业构成 自光纤通信实用化应用30余年来,光纤光缆的制造技术突飞猛进、产品品种不断丰富,并且由于规模化应用、生产效率的提升,使得光纤光缆产品在性能指标不断提高的同时,成本在不断降低,从而带动了光纤应用领域的不断扩展。目前国内的光纤光缆产业已形成了完整的产业链体系,包括以光棒制造、光纤拉丝和光缆制造为主要构成的主产业链,以及扩展外延形成的光纤光缆材料等各种分产业链,这个产业链随着光纤应用领域的扩展还在快速延伸。 在光纤光缆产业链体系上我们认为,国内有两个方面的关键技术与国际先进水平有相当差距,那就是“一头一尾”。“一头”是大家都清楚的光棒制造技术,近几年在国家的大力扶持及企业的持续投入下,国内的光棒制造技术得到了较快发展,技术突破和大规模制造近在咫尺,相信2~3年内,国内的光棒制造能力基本能满足市场需求。那么,另外“一尾”很多人并没有意识到,那就是应用领域的扩展研究,光纤光缆技术发展到现在,其应用已不是传统意义上的通信领域,现在看来,在医学、传感、电网安全保护等很多方面都得到了应用,当然还包括我们目前还未用到的更多领域,这方面的研究,我们有实力的大公司参与还不多。国内的光纤光缆产业基础不能仅仅建立在传统意义的通信领域,那样在不久的将来会基本饱和,我们应该不断创新,持续进行研发投入,加强与各行业合作,不断拓展光纤新的应用领域。只有这样,我们的产业才能持续健康发展。

1 通信用光纤的发展历史

1 通信用光纤的发展历史 自从20世纪70年代光纤衰减降到实用化水平以来,光纤从多模光纤开始,其工作波长随着激光器技术的发展从0.85μm波长发展到衰减更低带宽更宽的1.3μm波长。这种光纤被当时的CCITT(现(ITU-T)列为G.651光纤。20世纪80年代初,单模光纤开始实用,且零色散波长设计在1.31μm。这种光纤被CCITT列为G.652单模光纤(SMF)。20世纪90年代初,1.55μm的激光器进入商用,这一波长上的光纤衰减最低,而且波长窗口较宽,对波分复用的使用较为有利。但是,G.652光纤在该波长下约+17ps/(nm·km)的色散,对使用有较大的限制。采用零色散位于1550nm的色散位移光纤(DSF)是较早的一个解决方法,此种光纤被CCITT列为G.653光纤。这种光纤主要用于海底光缆系统,它把单一波长传送几千公里。有些国家也一度广泛地用于陆上干线中。 随着光纤放大器和波分复用技术的迅速发展,人们发现DSF在1550nm附近的零色散会由于光纤的非线性效应而影响信号的传输。 为了克服色散位移光纤的非线性效应,出现了非零色散位移光纤(NZ-DSF)。这种光纤在1550nm波长上有一定范围的小色散。色散的下限保证足以抑制四波混频,色散的上限保证允许10Gb/s的单通道能传输250km以上,而无需色散补偿。这些N Z-DSF于1996年被ITU-T列为G.655光纤。这些初期的NZ-DSF在不同场合使用后发现,单一规格的NZ-DSF难以满足各种不同的使用场合,于是各个光纤制造厂相继开发了具有不同色散性能的NZ-DSF。其中色散范围已越出G.655建议书的规定,工作波长也超出了G.655建议书的范围,达到1600nm以上。为此,ITU-T于2000年4月的1997年~2000年研究期末期会议上把G.655类光纤分为G.655A和G.655B两个子类。 在非色散位移光纤方面的一个进展是对长波长宏弯损耗的改善,使得传输波长可以延伸到L波段。另外一个重大进展是朗讯公司通过采用新的制棒技术,成功地消除了13 85nm附近的OH-引起的衰减峰,使得1310nm波长窗口(约1280~1325nm)和15 50nm波长窗口(约1530~1565nm)之间的波段都能利用。为此,ITU-T于2000年

现代光纤通信技术

第一章通信网技术概述 1.1概述 1.2通信设备 构成通信网的最基本的设备是用户端设备、传输链路设备和转接交换设备。 1.3广域网分类 1.4通信协议 1.4.1 协议 通常将网络分层结构以及各层协议的集合称为网络体系结构。比较著名的网络体系结构有国际标准化组织ISO(International for Standardization)提出的开放系统体系结构OSI(Open System Interconnection);美国国防部提出的传输控制协议TCP/IP;国际电信联盟提出的公共数据网X系列协议;IBM公司提出的系统网络体系结构SNA等。 1.4.2 标准化组织 1. 国际标准化组织ISO 2. 国际电信联盟-电信标准化部ITU-T(International Telecommunication Union) 一直负责制定电信网的标准系列。 3. 因特网工程任务组IETF(Internet Engineering Task Force) 负责研究因特网的体系结构以及新一代因特网标准规范的研究和制定 第二章数字通信技术 第三章光纤通信技术 3.1 光纤通信 3.1.1光纤通信的发展 3.1.2 光纤通信的特点 1. 传输频带宽,通信容量大。由信息理论知道,载波频率越高,通信容量就越大。 2. 损耗低。目前实用的光纤均为石英系光纤,要减小损耗,主要是靠提高玻璃纤维的纯度。 3. 在运用频带内,光线对每一频率成分的损耗几乎一样。因此,系统中才去的均衡措施比传统的电信系统简单,甚至可以不必采用。 4. 光纤内传播的光能几乎不辐射,因此很难被窃听,也不会造成统一光缆中各光纤之间串扰 5. 不受电磁干扰。因为光纤是非金属的介质材料。 6. 线径细、重量轻,便于敷设。 7. 资源丰富。制作玻璃光纤的原料是适应,其来源十分丰富。 3.1.3 通信系统中主要技术指标 1.分贝dB 分贝dB 是以常用对数表示的两个电压或两个功率之比的一种计量单位。

国内外光纤光缆现状及发展趋势分析doc11

国内外光纤光缆现状及发展趋势分析 光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤光缆在我国的发展可以分为这样几个阶段:对光缆可用性的探讨;取代市内局间中继线的市话电缆和PCM电缆;取代有线通信干线上的高频对称电缆和同轴电缆。这两个取代应该说是完成了;现正在取代接入网的主干线和配线的市话主干电缆和配线电缆,并正在进入局域网和室内综合布线系统。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。 1光纤 符合ITU-TG.652.A规定的普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550nm区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITU-T G.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 G.653光纤虽然可以使光纤容量有所增加,但是,原本期望得到的零色散因为不能抑制四波混频,反而变成了采用波分复用技术的障碍。 为了取得更大的中继距离和通信容量,采用了增大传输光功率和波分复用、密集波分复用技术,此时,传输容量已经相当大的G.652普通单模光纤显得有些性能不足,表现在偏振模色散(PMD)和非线性效应对这些技术应用的限制。在10Gb/s及更高速率的系统中,偏振模色散可能成为限制系统性能的因素之一。光纤的PMD通过改善光纤的圆整度和/或采用“旋转”光纤的方法得到了改善,

符合ITU-T G.652.B规定的普通单模光纤的PMDQ通常能低于0.5ps/km1/2,这意味着STM-64系统的传输距离可以达到大约400km。G.652.B光纤的工作波长还可延伸到1600nm区。G.652.A和G.652.B光纤习惯统称为G.652光纤。 光纤的非线性效应包括受激布里渊散射、受激拉曼散射、自相位调制、互相位调制、四波混频、光孤子传输等。为了增大系统的中继距离而提高发送光功率,当光纤中传输的光强密度超过光纤的阈值时则会表现出非线性效应,从而限制系统容量和中继距离的进一步增大。通过色散和光纤有效芯面积对非线性效应影响的研究,国际上开发出满足ITU-TG.655规定的非零色散位移单模光纤。利用低色散对四波混频的抑制作用,使波分复用和密集波分复用技术得以应用,并且使光纤有可能在第四传输窗口1600nm区(1565nm-1620nm)工作。目前,G.655光纤还在发展完善,已有TrueWave、LEAF、大保实、TeraLight、PureGuide、MetroCor等品牌问世,它们都力图通过对光纤结构和性能的细微调整,达到与传输设备的最佳组合,取得最好的经济效益。 为了在一根光纤上开放更多的波分复用信道,国外开发出一种称为“全波光纤”的单模光纤,它属于ITU-T 652.C规定的低水吸收峰单模光纤。在二氧化硅系光纤的谱损曲线上,在第二传输窗口1310nm区(1280nm-1325nm)和第三传输窗口1550nm区(1380nm-1565nm)之间的1383nm波长附近,通常有一个水吸收峰。通过新的工艺技术突破,全波光纤消除了这个水吸收峰,与普通单模光纤相比,在水峰处的衰减降低了2/3,使有用波长范围增加了100nm,即打开了第五

光纤光缆和通信电缆技术发展及思考

光纤光缆和通信电缆技术发展及思考 发表时间:2019-10-14T13:24:34.053Z 来源:《河南电力》2019年2期作者:郑铭 [导读] 伴随着现代信息产业的快速发展,光纤光缆技术已经在通信行业中得到了广泛的运用,并且对于通信行业发展起到了很大的促进作用。 郑铭 (特恩驰(南京)光纤有限公司 210061) 摘要:伴随着现代信息产业的快速发展,光纤光缆技术已经在通信行业中得到了广泛的运用,并且对于通信行业发展起到了很大的促进作用。本文对通信光缆传输现状进行了分析,然后及其发展进行了思考。 关键词:光纤光缆;通信电缆;发展分析 一、通信光缆的传输现状 (一)通信光缆出现微弯损耗的问题 可以从相关分析中得出,有效传播信号过程中,对于通信传输的线路进行布置时,具有很多弯曲现象,继而对周围信号的传播方向以及实际路径造成改变,使得损耗问题出现。当通信传输的线路弯曲程度非常严重时,就会导致信号传输期间形成透出现象,还有一种情况就是对传输方向进行改变,在一定程度上对损耗有所增加。一般而言,这两者之间属于正比例的关系,也就是说弯曲程度越大气时,其所导致的损耗就会更加大,当弯曲程度比较小的时候,生成的损耗就会逐渐减小。 (二)光缆出现连续影响的问题 对于通信光缆铺设的工作来说,因为不能有效地控制工作质量,加之备受断面不整齐等多种因素所带来的影响,还有就是在通信线路的接点位置有不连续或者是不均匀信息的传输问题出现,最终导致通信光缆传输效果非常不好,也就是出现了光纤散射的问题,严重影响了光缆信号,形成一定的损耗,不利于信号传输质量的提升。一般光缆铺设的时候,断线技术的水平高低总是会对光缆信号传输的整体质量造成严重影响。具体应用过程中,不管是选择哪一种类型的断面技术,势必会出现倾斜问题,产生严重的连续影响方面的问题。 (三)产生外部影响的问题 光缆的外部影响是利用间接方式对光缆的信息传输进行影响,该问题发生的主要原因在于光缆直接影响了输送线路的周围环境和大气效应以及地面磁场等,在一定程度上对光缆传输的数据质量和准确性造成严重影响。当传输线路中出现尘埃物质时,通信传输的整体效果就会备受直接影响,还会使得传输线路出现损耗。与此同时,在时间逐渐增加的背景下,损耗越来越大,严重干扰了通信传输的过程,不利于通信传播工作顺利地开展,对于该领域的发展来说非常不利。 二、通信光缆在传输过程中的技术要点分析 (一)加强接续技术以及断面技术的改进 想要促进传输缆线断面技术的应用效果,就需要促进相关技术人员自身的综合素质以及专业技能,当在具体的施工过程中,技术人员能够比较全面深入地掌握通信光缆的线路构造以及传输原理,势必会通过自身所掌握的连续测试方法开展工作。与此同时,还必须结合多见的一些问题,展开科学预测,制定针对性地应急预案。这样一来,就算在实际施工中有很多问题出现时,也是可以在第一时间进行有效处理的,防止增加损耗影响的程度。除此之外,在通信缆线的接续施工过程中,因为会产生比较多的影响因素,诸如直径和尺寸与形状等,都会使得不均匀和不规范的现象出现,直接影响连续质量。通过针对性地应用先进的仪器设备以及技术,就可以很好地处理直径和尺寸与形状方面的问题,同时在后期养护工作的开展中,必须重视缆线清洁,防止因为环境杂质长时间地在缆线连接位置附着,导致损耗问题出现,对传播的质量造成严重影响。 (二)加强产品质量的有效控制 产品质量对于光缆的传输来说是非常重要的,产生直接影响,相关人员要加强这一问题的重视程度,加强研究力度。现阶段,铺设通信光缆的时候,因为质量缺陷或者是损耗过度使得多种问题连续出现,例如缆线的缆芯出现失圆问题和折射率失去均匀的问题,都对连接点实际传输的质量造成影响,还会导致吸收与色散损耗问题出现,在此基础上,使得传输波形有严重的变形出现。所以,有关部门必须对施工单位的整体缆线质量进行更严格的控制。 (三)对缆线的弯曲程度进行减小 因为缆线的弯曲程度以及所导致的损耗间属于正比例关系,所以必须在一定程度上对缆线的严重弯曲进行降低,如果弯曲程度非常小,那么所产生的损耗问题就可以忽略不计。然而在实际施工期间,导致的缆线弯曲因素还是有一定的随机性,因此,必须加强施工中的监管力度,与此同时,必须对接头工艺进行一定的优化,很好地控制缆线弯曲的程度,在此基础上,减小损耗的程度,只有这样,才能对相关技术的应用进行很好地保障,并且为该领域的发展做好基础准备。 (四)对通信光缆的材料原始属性进行最大化优化 敷设线路的时候,施工人员能够凭借比较先进的检测仪器与技术手段对线路质量进行一定的检测,确保线路质量可以与传输标准的要求之间相互符合,当在检测的时候出现问题时,就要采取针对性地措施,防止影响通信光缆的传输质量。与此同时,还要在配盘的时候,有效地匹配缆线信息,确保所有信息和要求之间相互符合。如此来说,连接缆线的时候出现的问题就可以进行一定的缓解,并对传输损耗进行有效地控制,促进通信的整体质量提高。 三、通信工程中光纤接入网技术的应用对策 (一)加强拓扑结构设计 对于通信工程中光纤接入网技术而言,拓扑结构设计是比较核心的组成部分。光纤接入网的操作过程中,拓扑结构的选用比较多元化,其中包括总线结构、环型结构、星型结构等等。例如,环型结构在应用的过程中,能够对铁路类型的通信工程,提供较多的保障,在安全性、稳定性方面表现较高。星型结构的操作,则可以在有交换功能、控制能力的集线器,或者是交换机等设备上,开展有效的利用,促使星型耦合器作为网络中央的节点,开展通信工程中光纤接入网技术的操作,而且在移动的传输速度上是非常快的,同时在维修方面相

光纤、光缆的基本知识(非常实用)

光纤、光缆的基本知识(非常实用) 1.简述光纤的组成。 答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。2.描述光纤线路传输特性的基本参数有哪些? 答:包括损耗、色散、带宽、截止波长、模场直径等。 3. 产生光纤衰减的原因有什么? 答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。 4.光纤衰减系数是如何定义的? 答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。 5.插入损耗是什么? 答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。 6.光纤的带宽与什么有关? 答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。 7.光纤的色散有几种?与什么有关? 答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。 8.信号在光纤中传播的色散特性怎样描述? 答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。 9.什么是截止波长? 答:是指光纤中只能传导基模的最短波长。对于单模光纤,其截止波长必须短于传导光的波长。 10.光纤的色散对光纤通信系统的性能会产生什么影响? 答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。 11.什么是背向散射法? 答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。

现代光纤通讯传输技术的应用分析 林小平

现代光纤通讯传输技术的应用分析林小平 发表时间:2019-05-06T10:27:05.483Z 来源:《电力设备》2018年第31期作者:林小平[导读] 摘要:光纤通信技术自问世以来,因为其特殊的物理特点,而具有较大的通信容量并且传输距离长、资源丰富并且抗干扰能力强等特点,而广泛应用于各种通信网络,包括电话、广播、电视及计算机网络等领域,以满足人们日益增加的广泛的生活和业务需要。 (国网漳州供电公司福建漳州 363000)摘要:光纤通信技术自问世以来,因为其特殊的物理特点,而具有较大的通信容量并且传输距离长、资源丰富并且抗干扰能力强等特点,而广泛应用于各种通信网络,包括电话、广播、电视及计算机网络等领域,以满足人们日益增加的广泛的生活和业务需要。本文主要就现代光纤通讯传输技术的应用情况展开了分析,以供参阅。 关键词:光纤通讯传输技术;应用引言 现阶段互联网信息量呈爆炸式增长态势,所以对互联网信息传递技术提出更高要求,如何运用先进的信息传递技术以满足现阶段互联网发展趋势,已成为当前电信企业与各领域之间共同关注的话题。现代光纤通讯传输技术的出现很好解决了这一问题,部分地区已完成光纤通讯技术代替传统信息传递技术,使日益膨胀的互联网信息量得到有效传递。但现代光纤通讯传输技术在我国起步相对较晚,而且在技术上也相对不够。 1现代光纤通讯传输技术基本概念简述现代光纤通讯传输技术就是将光作为数据信息传递载体,利用光纤自身具有的光传导性进行数据信息传递,从而塑造出的一种数据传输新技术,同时也是有线通信技术中的一种新技术。光通过调变后可以携带数据信息,然后通过光纤自身光传导性进行数据信息传递。光纤通讯传输技术在进行数据信息传递过程中,数据信息传递量十分庞大,而且数据信息传递过程中的安全性得到很大保障,同时数据信息传递速度受到光传递速度影响,在传输过程中的速度十分快捷。光纤通讯传输技术在当前有线通信技术领域中发展最为迅速,同时也是有线通信技术领域中的主流信息传递方式。在现代光纤通讯传输技术应用过程中,电子计算机将所要传输的数据发输入到发送机中,发送机将数据信息调制处理后负载到载波上,然后通过光纤将载波传递到远程接收端,由接收机将载波上的信息重新还原成数据信息。我国光纤通讯传输技术最早起源于1980年,它的出现为我国通信技术领域造成很大影响,同时对促进我国通信技术领域发展有着特殊意义。 2现代光纤通讯传输技术的应用 2.1光复用技术的应用 现代光纤通讯传输技术具有非常好的容量和速度,将其应用到人们生活生产中,可以发挥最大的输送优势,从而提高通讯效率。在光纤通讯传输技术中,光电复用是发展非常完善的技术,它实现了在同一光纤中,将不同波长通过多条线路传输。因此,在光纤通讯技术应用中,要结合光电复用技术对不同的传输信息构建通道,也可以通过辅助器处理波长信息,然后将处理信息传递给每一个客户端,以保证传输的质量。在整个传输作业过程中,技术人员需要通过光电复用技术,实现一根光纤、多路传输,从而满足高速率信号传输的需求。常见光电复用技术主要包括波分复用技术、频分复用技术等,不同技术根据实际情况选择。例如:近期,光网络研讨会暨FITIH论坛在京召开,此次论坛主要讨论电信运营商面临着前所未有流量暴增压力,网络效率跟不上用户需求,如何做到保障基础网络的大带宽、低时延。在会议上,高通技术公司提出了5G波分复用技术何D啕将进一步下沉到城域网和接入网,从而实现低成本带宽扩容,并且指出光纤光缆以及波分复用设备(及其上下游,芯片,模块,板卡等)成为增速最快的领域,通过Dc互联和网络虚拟化将保证云资源的充分利用和快速调度。 2.2光纤接入技术 在现代光纤通讯技术中非常重要的部分是光纤,通常情况下有主干传输网络和用户接人两部分组成宽带。接人网用户终端包括计算机、电话机、传真机等,在整个过程中不断转换光信号与电信号,从而传输局端与客户端信息。光通讯系统的组成主要有以下几个部分,即光纤、光检测器、光源等,彼此之间是相互联系的,当发出电信号之后而发端光源紧接着发出相应的光信号,从而能够达到转换的目的。 2.3光弧子通信技术 “损耗”和“色散”是限制传输距离和传输容量的主要原因,光信号在传输时能量不断减弱是因为“损耗”,使光脉冲在传输中逐渐展宽是“色散”。光纤的色散使得不同频率的光波以不同的速度传播,随时出发的光脉冲,由于频率不同,引起不同传输速度,终点的到达时间也就不同形成脉冲展宽,使得信号畸变失真。实际上,光孤子在光纤的传播过程中,不可避免地存在着损耗,损耗降低孤子的脉冲幅度,不改变孤子的形状。减少“损耗”和“色散”的影响,可采用分布式的光放大器或集总的光放大器的方法,用激光二极管泵浦的掺铒光纤放大器补偿了损耗。采用预加重技术,用色散位移光纤传输,扩大了中继距离。使长距离的传输过程中信号的传输速度和波形保持不变,传输距离可以保持在13000~20000km的水平。光弧子通信非常适应海底光缆通信中应用。结合同波分复用系统使得光弧子通信兼具了大容量、超高速的特点。 3现代光纤传输技术的发展方向当前,光纤通讯传输技术已经在社会生活与社会生产中得到了广泛运用而且随着技术的发展,未来发展前景更具广阔性。就光纤传输技术发展趋势而言,超高速系统、光弧子通讯技术、全光网络等是主要研究方向,是推动光纤传输技术快速发展和提升服务质量的重要推动力。目前,西方发达国家基于技术上的优势,在超高速光纤系统研究上取得了重大进展而且已将研究成果付诸实践,同时逐步转向了光弧子通讯技术的研究,由于光弧子在传输过程中无错误码,为进一步提升信息传送容量以及延长传输距离起到了巨大的推动作用。 3.1向全光网技术方向发展 全光网络技术是指光纤内部光信号在全程传输过程中,数据信息都以光负载形态存在,只有在到达网络客户端的时候才还原成数据信息。光纤通讯传输技术向全光网技术发展的优势在于,可以有效提高信号传递过程中的速度,降低因网络节点处理问题造成的数据信息负载量有限问题发生,同时也可以有效提高光纤通讯传输网络的总体利用率。我国现阶段在全光网技术研究上还有很大空白,需要不断引进国外先进研究成果,使我国光纤通讯传输技术进入一个新的时代。 3.2向超高速信息传递时代发展

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

光纤跳线基础知识

光纤跳线是指光纤两端都装上连接器插头,用来实现光路活动连接(一端装有插头的称为尾纤)。光纤跳线用于长途及本地光传输网络、数据传输及专用网络,以及各种测试和自控系统。光纤跳线是通过精密设备经过多道工序精磨而成的,具有插入损耗低、回波损耗高、重复性好等优点,可广泛应用于各种光纤器件和各种光纤通信系统中。 光纤跳线的种类有很多,根据连接器形状可分为:FC、SC、ST、LC、MT-RJ、MU等;根据连接器插头从插针体的类型可分为:PC、UPC、APC等;根据光纤种类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900μm、2mm、3mm等。在根据连接器形状划分中,单模光纤可使用的连接器类型有FC,SC,ST,FDDI,SNA,LC,MT-RJ等,多模光纤可使用的连接器类型有FC,SC,ST,FDDI,SMA,LC,MT-RJ,MU 及VF45等。单模跳线包括SC/PC,SC/APC,FC/PC,FC/APC,ST/PC,LC/PC, LC/APC,MU/PC、MU/APC、MT-RJ;多模跳线包括:SC/PC,FC/PC,ST/PC,LC/PC,MU/PC,MT- RJ。光纤跳线所用光纤一般为G.652光纤,直径一般为Φ3mm,长度一般为 5~100m,插入损耗一般小于0.1dB;反射损耗一般要大于45dB。 下面我们简单介绍根据光纤连接器形状常使用的FC,SC,ST,LC,MT-RJ和MU 6种光纤跳线。注意,光纤跳线的两端连接器插头根据使用情况可以是不相同,如我们常使用的FC/APC-LC/APC,就是一项连接ODF,另一端连接设备的光纤跳线。 1、FC-FC光纤跳线:FC (Ferrule Connector,意为金属连接件)光纤连接器通常是圆形的金属套,紧固方式为螺纹式,主要应用于配线架上。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器作了改进,采用对接端面呈球面的插针,连接器一般是圆形带螺纹的,而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。如图1所示的就是一条两端都带FC连接器接头的FC-FC光纤跳线。 图1:FC-FC光纤跳线示例

光纤动态检测技术的研究与进展

光纤动态检测技术的研究与进展 摘要 首先,在论述光纤传感器基木理论和技术的基础上,重点以两类典型的传光型光纤传感器—反射式光纤位移传感器及透射式光纤传感带为对象,讨论了其检测原理和关键技术,以及在大型旋转机械支承—滑动轴承的润滑膜状态信息和转子振动信息、航空发动机涡轮叶尖间隙、燃油流量及人体位姿信息等重要工程参数检测中的应用;其次,分析了两种典型的传感型光纤传感器—光强调制型光纤曲率传感器和Yragg光纤光栅传感器的检测原理和关键技术,并介绍了它们分别在机匣变形动态测量和齿轮应力应变动态测量中的应用;最后,基于这两类臾型光纤传感器的特点及工程应用,对光纤动态检测技术进行了总结和展望。 1国内外光纤传感检测技术的发展 对光纤动态检测技术的研究起步于20世纪60年代中后期,科技工作者利用光纤不仅能够传导光波,而且能在传播光波的过程中表征出光波特征参量随外界作用的变化规律这一特点,将待测量与光纤内的光信号传输特性联系起来。Frank}l}和Kis-singe产〕先后提出了反射式强度调制型光纤位移传感器,并利用其实现了非接触情况下的位移测量。Reynold、等}3}利用反射式光纤传感器研究了血液漫反射系数,实现了光纤传感器在医学领域的应用。Cook 等川对反射式光强调制型光纤传感器进行了系统的研究,并将该传感器用于冲击量的测量,使传光型光纤传感器得到了进一步发展。 1977年,美国海军研究所开展了光纤传感器系统研究计划(FOSS)}'},标志着对光纤传感器研究的全而开展。1978年,Hill等困在掺锗石英光纤中发现光纤光敏效应,并用驻波写入法制成世界上第1只光纤光栅。同年,Butter 等川利用光纤微弯损耗效应研制出了光纤应变仪,传感型光纤传感器的研究开始兴起。Meltz等川利用紫外激光干涉法制成Bragg光纤光栅,为光纤光栅制造技术带来了重大突破。从此,以光纤光栅等为典型的传感型光纤传感器逐步走向实用化。 随着对光纤动态检测技术的深入研究,可对光信号的强度、相位、频率、偏振态、波长等参数进行调制的光纤传感器达到了近百种。欧美发达国家先后开展了一系列光纤传感研究计划,有NASA的光纤陀螺仪研究计划(FOU)}`'}和数字光纤控制系统研究计划(AD()SS户。〕、飞机发动机监控研究计划(AEM户1〕等,光纤传感技术开始进入航空航天等高科技尖端领域。与此同时,一系列民用光纤研究计划也得到大力发展。 在20世纪70年代,我国开始大力研究光纤动态检测技术,钻研并攻克其中的各种关键问题,取得诸多突破性进展。自21世纪起,我国将光纤传感技术列入“八六三”及“九七三”计划的重点课题项目,使得我国自主光纤动态检测技术的研究得到了重点关注和快速发展,并在国内逐步形成了一定规模的技术实力和应用领域,从而使光纤传感器开始在智能结构、工业生产、生物医疗、自然保护以及人们日常生活诸领域获得广泛应用。相应地,对光纤动态检测技术的研究,己逐步成为传感检测领域的前沿课题。 2光纤传感器的检测原理及基本类型 2. 1光纤传感器的检测原理 光信号是光纤传感器的主要信号载体。早在1985年,科学家Maxwell就证实了光是一种电磁波,将光信号记作矢量E,可表示为如下形式 光纤传感器的工作主要是检测被待测量调制后的光信号特征,对其研究主要集中在以下5种光波参数随待测物理量变化的动态变化规律。 1)光强1:光强信息可由光探测器直接检测,其与矢量B的大小有关。 2)相位犷:一般通过干涉法将相位信息转换成光强来测量。 3)偏振态:主要利用光学中的旋光现象和双折射现象等进行检测,其与矢量B的方向有关。 4)频率f.:主要利用光纤的受激Brillion散射、Ra-man散射等非线性效应或Doppler光学效应,检测光信号频率的变化规律,其与角频率、有关(C f =cu}2n) o 5)波长几:主要通过检测光谱或F-P干涉滤光方式来检测光信号波长的变化规律。 2. 2光纤传感器的基本类型 根据光纤在传感器中的作用,可将光纤传感器分为传光型和传感型两类光纤传感器。 传光型光纤传感器是一种非功能型光纤传感器,其中光纤只作为传导介质,光信号是在光纤外部被待测量调制的,它的结构简单易实现。例如反射式光强调制型光纤位移传感器、透射式光强调制型光纤位姿传感带、利用黑

通信工程毕业论文光纤通信技术的现状及发展趋势

光纤通信技术的现状及发展趋势 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它

在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过 的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限, 在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径 和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C 低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。 并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全 介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设 的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生 产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如 大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是

光缆基本知识介绍

光缆基本知识介绍 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、 石英光纤的分类 单模光纤 G.652A(简称B1) (简称B1) G.652C() () G.655A光纤(B4)(长途干线使用) 光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1)

125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。

光纤传输最新技术调研与分析

光纤传输最新技术调研与分析 光纤通信技术已经发展为现代通信的最重要技术之一,其在现代电信网中扮演者及其重要的角色。作为一门高新技术,光纤通信发展迅猛,应用涉及广泛。光纤通信的发展不仅标志着全球新兴技术的革命,而且会成为未来信息时代传达资讯的重要工具。 光纤通信技术主要包含光网络技术、光纤光缆技术及光交换技术传输技术等。光纤通信涉及的应用层面非常广泛,主要可应用在市话中继线,能充分发挥其优势。在传统依靠微波、电缆或者卫星通信等技术的长距离干线通信里,当下已全面应用光纤通信。 光纤通信的发展趋势主要集中在智能化、超大容量传输技术等多方面。如今,得益于互联网高新技术的快速发展,科研工作者得意挖掘出基于光纤通信的多样化新功能,在保障基本的通信质量的基础上,还可以增强通信效率。 1.超大容量传输技术 资讯传递的规模正在日益扩大,因此扩大通信的容量具有非常重要的意义,这是适应信息时代的新需求。在建设光纤通信技术的过程中,其他多种设备及技术也在快速地更新换代,这就要求更为庞大的信息系统来搭载超大容量的光纤通信系统,从而达到提升传输质量的目的。如果新系统与光纤电缆的匹配达不到要求,那就需要对其进行一定程度上的优化处理。在得到改善后,光纤通信的传送速度会得到进一步提升,相应的容量也会进一步扩大。 2.全光网络 全光网络是光纤通信的未来。在全光网络中,信息的交换与传输依赖的是光信号,而网络节点则凭借电器元件实现传输,因此,这会对光纤通信系统的容量和发展的趋势产生一定程度上的制约。随着科学技术的迅猛发展,科研工作者正在尝试通过光转化等新兴技术来搭建全光网络,从而达到同步提升安全性能和传输容量的目的。同时,在此类系统中,维护也会变得更加便捷,有利于一定程度上降低运行成本及费用。 3.光弧子通信技术 针对超大容量的传输,光弧子通信技术展现了强大的潜力。光弧子通信技术可以通过改进色散来实现对信息传播距离和容量上的影响,并达到改善信息传输质量的目的。此外,光弧子通信技术还可以有效地防御外界环境对系统所造成的干扰,通过平衡色散的方式来提升传输距离。这一点在未来的通信系统发展中具有重要作用。 4.光网络智能化 目前,高新技术正在以迅猛的速度发展着,这为人们的社会生活带来了多层次的变革,当然也对信息传输提出了更多样化的要求,一方面,既要实现大容量和高速度,另一方面,又要满足消费者的智能化和个性化。所以,光网络智能化成为了光纤通信技术发展的一个重要趋势。在互联网信息技术的作用下,基于目前的体系,我国原先的通信技术结合了计算机信息技术,从而达到在光网络系统中纳入数据加密技术与远程控制技术的目的,最终得以使光网络智能化实现。比如,在我国的高速公路中,就有效地应用的光网络智能化技术。 光纤通信技术的发展对社会经济的建设起到了一定的推动作用,科技不断发展,光纤通信技术也随之高速进步,逐步走向成熟,给人们的生活带来了巨大的便利。我国的光纤通信技术目前仍与发达国际及地区存在一定差距,需要科研工

光纤光缆技术

光纤光缆技术 摘要:综述了近期光纤光缆在制造、施工及维护技术上的发展特点,分析了其发展趋势,并就我国光纤光缆及通信电缆技术与产业的发展提出了一些值得思考的问题。 关键词:光纤光缆 ITU-T建议技术发展 1 光纤技术发展的特点 1.1 网络的发展对光纤提出新的要求下一代网络(ngn)引发了许多的观点和争论。有的专家预言,不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的ip世界、传送层面上的光的世界和接入层面上的无线世界。下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨干传输的发展也对光纤提出了新的要求。 1.1.1 扩大单一波长的传输容量目前,单一波长的传输容量已达到40 gbit/s,并已开始进行160 gbit/s的研究。40gbit/s以上传输对光纤的PMD(物理介质关联层接口)将提出一定的要求,2002年的ITU-T sg15会议上,美国已提出对40gbit/s系统引入一个新的光纤类别(g.655.c)的提议,并建议对其PMD传输中的一些问题进行深入探讨,也许不久的将来就会出现一种专门的40gbit/s光纤类型。 1.1.2 实现超长距离传输中继传输是骨干传输网的理想,目前有的公司已能够采用色散齐理技术,实现2000~5000km的无电中继传输。

有的公司正进一步改善光纤指标,采用拉曼光放大技术,可以更大地延长光传输的距离。 1.1.3 适应DWDM(密集型光波复用)技术的运用目前32× 2.5gbit/s DWDM系统已经运用,64×2.5gbit/s及32×10gbit/s系统已在开发并取得很好的进展。DWDM系统的大量使用,对光纤的非线性指标提出了更高的要求。ITU-T对光纤的非线性属性及测试方法的标准(g.650.2)最近也已完成,当光纤的非线性测试指标明确之后,对光纤的有效面积将会提出相应指标,特别是对g.655光纤的非线性特性会有进一步改善的要求。 1.2 光纤标准的细分促进了光纤的准确应用 2000年世界电信标准大会批准将原g.652光纤重新分为g.65 2.a、g.652.8和g.652.c 3类光纤;将g.655光纤重新分为g.655.a和g.655.b两类光纤。这种光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求(如有些光纤几何参数的容差变小),明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD 值的规定),并提出了一些新的指标概念(如“色散纵向均匀性”等),对合理使用光纤取得了很好的作用。所有这些建议的修改、子建议的出现及新子建议的起草,都意味着光纤分类及指标、测试方法有某些改进,或有重要的提升;都标志着要求光纤质量的提高或运用方向上的调整,是值得注意的光纤技术新动向。

相关文档
相关文档 最新文档