文档库 最新最全的文档下载
当前位置:文档库 › 第一节输入阻抗

第一节输入阻抗

第一节输入阻抗
第一节输入阻抗

第一节、放大器输入阻抗的计算与测量

一、动态阻抗的概念

1、输入动态阻抗的概念

二极管导通后动态阻抗的概念

如果用万用表的欧姆档埋设二电容的电阻,结果一定是无穷大。但电容对交流信号却不是绝缘的,而是有一定的阻抗

Zc=1/2πfC

所以电容的阻抗不能简单地用直流阻抗概念总的R=U/I来理解。而应当用交流阻抗的概念来理解

Zc=Uj/Ij。

同样的道理,二极管正向导通后的阻抗如果用直流阻抗的概念的理解那就应当是Zi=U/I。

我们假设二极管在U=0.7V时,I=1mA。用直流的阻抗的概念来理解

Z=0.7V/1mA=700Ω。

按照这个逻辑,二极管在U=1.4V时,I就应当=2mA。实际情况当然不是这样。

所以二极管的正向导通阻抗,应当是以导通点为基准、特定的电压变化量所引起的特定的电流变化量的比值。

Z=ΔU/ΔI

如图所示:

由此可见,二极管在不同的导通点,特定的电压变化所引起的电流变化量是不一样的,也就是说导通的斜率是不同的。所以,二极管在不同的导通点,有不同的动态阻抗。

二、共发射极简单偏置电路

1、三极管的基极与发射极之间的动态阻抗与导通电流之间的关系

三极管的基极与发射极之间,相当于一个导通电流为10uA的二极管。

如上图a点所示:当输入电压为10mV的时候,使导通电压由0.7V上升到0.71V,导通电流就会由10uA上升到14.14uA。

当输入电压为-10mV的时候,10导通电压由0.7V下降到0.69V,导通电流就会由10uA下降到0.707uA。

输入电压的变化量是Ubpp=0.71V-0.69V=20mV

输入电流的变化量是Ibpp=14.14uA-7.07uA=7.07uA

输入动态阻抗等于输入电压的变化量与输入电压电流变化量的比值,

Z=Ubpp/Ibpp=20mV/7.07uA=2.9KΩ

如上图b点所示:当输入电压为10mV的时候,使导通电压由0.71V上升到

0.72V,导通电流就会由20uA上升到28.28uA。

当输入电压为-10mV的时候,10导通电压由0.71V下降到0.70V,导通电流就会由20uA下降到14.14uA。

输入电压的变化量是Ubpp=0.72V-0.70V=20mV

输入电流的变化量是Ibpp=28.28uA-14.14uA=14.14uA

输入动态阻抗等于输入电压的变化量与输入电压电流变化量的比值,

Z=Ubpp/Ibpp=20mV/14.14uA=1.45KΩ

由此可见:基极发射极之间的动态阻抗,由基极静态工作电流决定,并且与基极静态工作电流成反比。

2、偏置电阻对放大器输入阻抗的影响

a、共发射极简单偏置电路放大器还有基极电阻R b1与基极发射极之间的动态阻抗组成并联关系,但由于基极电阻大大于基极与发射极之间的动态阻抗,所以这种并联的影响可以忽略不计。

如图所示:

b、共发射极固定偏置电路基极发射极之间的动态阻抗;与共发射极简单偏置电路是完全一样的。但由于流过固定偏置电路为基极提供静态工作电压的分压电阻的电流;必须大大与三极管的基极静态工作电流,所以电阻值往往比较小。

R b2和R b3与三极管的输入动态阻抗式并联的关系

R b2和R b3并联以后,阻抗约为2.1KΩ,对放大器的输入阻抗有着显著的影响。

由此可见:共发射极固定偏置电路总的输入阻抗等于R b3、R b3、三极管输入动态阻抗的并联值。

三、共基极放大器

如图所示:

共基极放大器的发射极与基极之间,相当于一个导通电流为1mA的二极管。

当输入电压为+10mV的时候,使Ue由2V上升到2.01V,Ueb就会由0.7V下降到0.69V,导通电流就会由1mA下降到0.707mA。

当输入电压为-10mV的时候,使Ue由2V下降到1.99V,Ueb就会由0.7V上升到0.71V,导通电流就会由1mA下降到1.414mA。

输入电压的变化量是Ubpp=0.71V-0.69V=20mV

输入电流的变化量是Ibpp=14.14mA-7.07mA=7.07mA

输入动态阻抗等于输入电压的变化量与输入电压电流变化量的比值,

Z=Ubpp/Ibpp=20mV/7.07mA=29Ω

由此可见:

与同样条件下的共发射极放大器相比,共基极放大器的输入阻抗下降了β倍。这是因为二极管导通后的动态阻抗与导通电流是成反比的,而发射极的静态工作电流大约就是基极静态工作电流的β倍。

所以,与其它类型的放大器相比,共基极放大器的输入阻抗是最低的。

四、共集电极放大器

1、输入阻抗

因为输出电压约等于输入电压,输入电压虽然在发射极电阻上引起的电流变化符合欧姆定律的规律,但由于IbIe/=(β+1),所以,输入电压在基极引起的电流变化只有发射极电流变化量的1/(β+1)。相当于输入阻抗对提高了B+1倍。再加上三极管基极发射极之间的动态阻抗与发射极电阻之间是串联的关系,所以,共集电极放大器的输入阻抗Zi=(β+1)Re+Zbe

具体计算方法如下:

a、输入信号的正半周为+5V的时候,基极电压由+5.7V上升到+10.7V。发射极电流Ie随之上升,发射极电阻上的电压URe也因发射极电流的上升而从6V上升到略小于11V的位置、IRe增加了接近一倍。

静态Ube=0.7v,此时因为电流增加了一倍而变为0.72V。所以,URe此时的精确值应当是10.98V。

输入信号的正半周是+5V,输出信号的正半周是10.98-6=4.98V。输出信号略小于输入信号,相位与输入信号相同。

b、当输入信号的负半周为-5V的时候,基极电压由+5.7V下降到2.7V。发射极电流Ie随之下降,发射极电阻上的电压URe也因为发射极电流的下降而下降到略大于2V的位置、IRe减小了接近2.5倍。静态Ube=0.7v,此时因为电流减小了接近2.5倍而变为0.685V。所以,URe此时的精确值应当是2.015V。

输入阻抗等于输入电压的变化量与输入电流变化量的比值

Zi=Uipp/Iipp=(7.77V-3.63V)/(14.14uA-5uA)=502.9KΩ

也等于(β+1)Re+Zbe = (100+1)5KΩ+2.9KΩ =502.9KΩ

2、自举电路的原理

如图所示:

共集电极放大器的输入阻抗ri=BRe=600K。如果用简单偏置电路,基极电阻Rb=(E-Ue-0.7V/打假)Ib=530K。不仅能将共集电极放大器输入阻抗高的优点减少一半,而且静态工作点还不够稳定。如果采用固定偏置电路,虽然能够稳定静态工作点,但却更加严重地降低了共集电极放大器输入阻抗。

解决问题的方法:自举电路

采取自举电路可以将共集电极基极偏置电阻对输入阻抗影响减少到忽略不计的水平。

如图所示:

具体原理是:自举电容的容量较大,两端能够保持基本稳定的静态偏置电压。当输入信号交流信号电压的时候,发射极输出电压也跟随发生变化(与输入电压上升的幅度很接近),自举电容Cb2端的电压也随之发生同样的变化。由于自举电阻两端的电压都上变化了几乎同样的幅度,所以自举电阻两端的电压差基本没有发生变化。输入端变化的电压使自举电阻上的电流没有发生变化,相当于自举电阻在系统中的阻抗无穷大,从而对集电极放大器输入阻抗的影响几乎可以忽略不计。

五、差动放大器

如图所示:

根据共集电极放大器输入阻抗的计算原理,放大器发射极的阻抗反映到基极会被放大B倍。

三极管放大器从发射极看进去的阻抗;等于零从基极看进去阻抗的B分之一。

差动放大器两个放大用的三极管,都是选择参数很接近的,而且两个三极管都工作在电流基本相同的情况下。每一个三极管发射极的阻抗都互为另一个三极管发射极的阻抗。所以这个阻抗反映到三极管的基极;就等于这个三极管的基极阻抗。

所以,差动放大器的输入阻抗总是相当于这个三极管组成共发射极放大器输

入阻抗的两倍。

六、输入阻抗的测量方法

因为放大器的输入阻抗不是一个纯电阻,所以不能用对待普通电阻的方式直接进行测量。

如图所示:

R是一个已知的电阻,它与放大器的输入阻抗成串联关系, 所以输入信号的幅度到达放大器的输入端会被减小。用仪器可以测出Ui1和Ui2的电压,从图中结构可以看出:

∵R/r=(Ui1-Ui2)/Ui2

∴r=RUi2/(Ui1-Ui2)

七、输出阻抗的测量方法:

把放大器看着一个输出交流信号的电源,输出阻抗就是它的内阻。所以用也

1、没有输出负载电阻的情况

集电极静态工作电流为1mA,受输入信号的控制,Ic在0.5至1.5之间变化,

集电极电压因此在7.5V--2.5V之间变化。

2、合上开关(接上负载电阻)以后的情况

电源接通以后输出电容已被充入电荷而逐渐达到5V。输出电容的容量很大,在动态情况下,能够基本保持不变。

集电极电压发生变化时,负载电阻与集电极电阻上的电压变化量相同,因此电流变化量以相同。当集电极电流由1mA变化到0.5mA的时候,0.5mA的电流变化量为平均分配给负载电阻和集电极电阻。集电极电阻的电流就会由1mA变化到1.25mA,负载电阻上的电流就会由0mA变化到0.25mA。

由此可见,当接上负载电阻以后,本来应当到在7.5V--2.5V之间变化的输出电压,变为只能在6.25V--3.75V之间变化。

根据计算电源内阻的原理

在理想三极管的条件下,共发射极放大器的输出阻抗就等于集电极电阻。

在非理想三极管的条件下,三极管的集电极电流并不完全与集电极电压无关,所以三极管集电极的恒流特性是有限的(三极管集电极的输出动态阻抗大约在几十KO和左右),对集电极电阻的并联影响基本可以忽略不计。

2、共基极放大器

共基极放大器输出阻抗的原理和参数与共发射极放大器相同。

3、共集电极放大器

如图所示:(负载电阻,用以测量输出阻抗)

a、不加输出负载的情况

输入信号的正半周为+5V的时候,基极电压由+5.7V上升到+10.7V。发射极电流Ie随之上升,发射极电阻上的电压URe也因发射极电流的上升而从6V上升到略小于11V的位置、IRe增加了接近一倍。

静态Ube=0.7v,此时因为电流增加了一倍而变为0.72V。所以,URe此时的精确值应当是10.98V。

输入信号的正半周是+5V,输出信号的正半周是10.98-6=4.98V。输出信号略

小于输入信号,相位与输入信号相同。

当输入信号的负半周为-5V的时候,基极电压由+5.7V下降到2.7V。发射极电流Ie随之下降,发射极电阻上的电压URe也因为发射极电流的下降而下降到略大于2V的位置、IRe减小了接近2.5倍。静态Ube=0.7v,此时因为电流减小了接近2.5倍而变为0.685V。所以,URe此时的精确值应当是2.015V。

b、合上开关(接上负载电阻)的情况

电路接上电源以后,输出电容被逐渐充满电荷而达到+5V。

输入信号的正半周为+5V的时候,输出信号在没有负载的情况下应当变为9.98V,而加上负载以后,Re获得了与Re同样的电压变化量,因此也会产生同样的电流变化量。发射极输出电流因此就会达到约等于1.828mA。Ube因此就会达到0.72V,输出电压的精确是就会达到9.97V。

输入信号的负半周为-5V的时候,输出信号在没有负载的情况下应当变为2.015V,而加上负载以后,Re获得了与Re同样的电压变化量,因此也会产生同样的电流变化量。发射极输出电流因此就会达到约等于0.171mA。Ube因此就会达到0.68V,输出电压的精确是就会达到2.005V。

根据输出阻抗的计算公式:

未完成

由此可见,输出阻抗略小于从三极管发射极看进去的静态工作电流等于1mA 时的动态阻抗,这是因为发射极电阻的并联关系所造成。

所以,集电极放大器的输出阻抗约等于从三极管发射极看进去的静态工作电流条件下的动态阻抗。

4、差动放大器

差动放大器输出阻抗的原理和参数与共发射极放大器相同。

八、输出阻抗的测量

与输入阻抗的测量有同样的道理,放大器的输出阻抗不是一个纯电阻,不能用对待普通电阻的方式直接进行测量。

具体的测量原理如图所示:

如图A所示:是测量电源内阻的方法

公式:未完成

如图B所示:把放大器的输出端看作一个输出交流电压的电源,并且用测量电源内阻的方式来测量放大器的输出阻抗。

公式:未完成

作业:

(共发射极简单偏置电路、共发射极固定偏置电路、共基极放大器、共集电极简单偏置电路、共集电极固定偏置电路、共集电极自举电路、差动放大器)

一、计算各种类型放大器在不同静态工作点下的小信号输入阻抗。

二、计算各种类型放大器在不同静态工作点下的小信号输出阻抗。

三、计算各种类型放大器在不同静态工作点下的大信号输入阻抗。

四、计算各种类型放大器在不同静态工作点下的小信号输出阻抗。

未完成

高输入阻抗放大电路的设计仿真与实现

课程设计任务书 学生姓名:专业班级:电信1101班 指导教师:工作单位:信息工程学院 题目: 高输入阻抗放大电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对高输入阻抗放大电路的设计、装配与调试,鼓励自制稳压电源。(2)设计要求 ①电压增益>=100,输入信号频率<100HZ,共模抑制比≥60dB; ② 选择电路方案,完成对确定方案电路的设计; ③ 利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电 路工作原理并仿真实现系统功能; ④ 安装调试并按规范要求格式完成课程设计报告书; ⑤ 选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、前半周,完成仿真设计调试;并制作实物。 2、后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1.电路方案选择 (4) 2.高输入阻抗放大电路设计 (5) 2.1差分放大电路 (5) 2.1.1零点漂移 (5) 2.1.2差模信号与共模信号 (5) 2.1.3.共模抑制比 (6) 2.1.4差分放大电路的分析 (6) 2.2镜像恒流源 (7) 2.2.1镜像电流源电路特点 (8) 2.2.2镜像电流源电路分析 (8) 2.3同向比例放大电路 (8) 2.4电压串联负反馈 (9) 2.5电路原理设计图 (10) 3.直流稳压电源的设计 (10) 3.1理论分析 (10) 3.2原理图 (11) 3.3直流稳压电源仿真结果 (11) 4高输入阻抗放大电路仿真 (12) 5实物安装和调试 (17) 5.1布局焊接 (17) 5.2调试方法 (17) 5.3测试结果分析 (17) 5.4实物展示 (18) 6. PCB制作 (19) 7.个人总结 (23) 参考文献 (24)

基本条分法

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs= 抗滑力矩/滑动力矩,即 =M R/M h

图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

输入输出阻抗以及阻抗匹配

输入、输出阻抗以及阻抗匹配 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。输入阻抗是用来衡量放大器对信号源的影响的一个性能指标: 对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。理论基础:Us=(Rs+Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要

驱动电路、输入阻抗及输出阻抗

1.驱动电路(Drive Circuit),位于主电路和控制电路之间,用来对控制电路的信号进行放大的中间电路(即放大控制电路的信号使其能够驱动功率晶体管),称为驱动电路。 功率驱动电路:一般情况下,无论是数字电路还是模拟电路,为了减小功耗,那么在内部信号处理和计算的时候,电压、电流比较小,那么这些信号对外部的驱动能力也就很小。但是比如电机等一些外部设备,他们的功率比较高,如果直接用这些内部计算得到的信号去驱动它们显然是不行的,那么就需要有功率驱动电路了,由这些控制信号来控制功率驱动电路,再由功率驱动电路产生大功率信号,来驱动外部设备(如:电机)。 NPN三极管驱动继电器电路 注:当三极管由导通变为截止时,继电器产生一个较大的自感电压,二极管的作用是消除这个感生电动势,吸收改电动势(反向续流)。

※注:输入、输出阻抗与带负载能力(驱动能力) 对于带负载能力,可以理解为输出功率的大小。一般大功率的功放用MOSFET管,因为它的内阻更小。 一般地,运算放大器输入阻抗越大越好,输出阻抗越小越好。若输入信号源的电压和内阻是不变的,则放大器的输入电阻越大(即高输入阻抗),从信号源取得的电流就越小,而在信号源内阻上的压降也就越小,信号电压就能以尽可能小的损失加到放大器的输入端;若放大器的输出电阻越小(即低输出阻抗),根据电阻串联分压原理,信号源电压(放大器的输出电压)在内阻Rs(输出阻抗)上的损失也越小,负载就会获得尽可能高的输出电压,常称之为“负载能力强”,即放大器可以带动功率更大,内阻更小的负载。 2.输入阻抗和输出阻抗小结 (1)输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值就是输入阻抗。 输入阻抗跟一个普通的电抗元件一样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 (2)输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意,但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源,这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

瑞典条分法毕肖普条分法基本假设

条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理。 瑞典条分法基本假设: 滑面为圆弧面; 垂直条分; 所有土条的侧面上无作用力; 所有土条安全系数相同。 毕肖普条分法基本假设:(双重叠代可解) 滑弧为圆弧面;垂直条分;所有土条安全系数相同;考虑土条的侧向受力。 影响基底压力因素主要有: 荷载大小和分布基础刚度基础埋置深度土体性质 地基土中附加应力假设: 地基连续、均匀、各向同性、是完全弹性体、基底压力是柔性荷载。 应力分布: 空间问题——应力是x,y,z 三个坐标轴的函数。 平面问题——应力是x,z 两个坐标的函数。 库仑(C. A.Coulomb)1773年建立了库仑土压力理论,其基本假定为: (1)挡土墙后土体为均匀各向同性无粘性土(c=0); (2)挡土墙后产生主动或被动土压力时墙后土体形成滑动土楔,其滑裂面为通过墙踵的平面; (3)滑动土楔可视为刚体。 库仑土压力理论根据滑动土楔处于极限平衡状态时的静力平衡条件来求解主动土压力和被动土压力。 朗肯土压力理论是朗肯(W.J.M.Rankine)于1857年提出的。它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。 临塑荷载及临界荷载计算公式的适用条件 (1)计算公式适用于条形基础。这些计算公式是从平面问题的条形均布荷载情况下导得的,若将它近似地用于矩形基础,其结果是偏于安全的。 (2)计算土中由自重产生的主应力时,假定土的侧压力系数K0=1,这与土的实际情况不符,但这样可使计算公式简化。 (3)在计算临界荷载时,土中已出现塑性区,但这时仍按弹性理论计算土中应力,这在理论上是相互矛盾的,其所引起的误差随着塑性区范围的扩大而扩大。

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗 阻抗匹配(impedance matching)是指信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对于低频电路和高频电路,阻抗匹配有很大的不同。 在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。 当这个电压源给负载供电时,就会有电流I 从这个负载上流过,并在这个电阻上产生I ×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会

变压器怎样测试输入输出阻抗

变压器怎样测试输入输出阻抗 在牛的一组线圈上加上一个交流电压(电压不要太高,几伏到十几伏就可以了),用电压表测另一组的电压,找到他们的电压比然后平方,再乘以一边的阻抗就是另一边的阻抗了。公式为:(输入端电压/输出端电压)的平方×输出阻抗=输入阻抗。例:一个输入变压器输入端与输出端的电压比为10:1,则当输出端接1Ω负载时,输入端的阻抗为100Ω;当输出端接500Ω负载时输入端的输入阻抗为50K...... 不能用电阻来做参数,必须找到它们的电压比才能计算。变压器阻抗变换与初次级之间的匝数比有关系,电压比就直接反映出它们的匝数比关系,就可以算到它们的阻抗变换关系了。阻抗的计算只要找到它们的关联数据计算起来就很简单了,不要把它们想得太复杂。 由负载阻抗决定输入阻抗,如果牛输出端接的47K阻抗,那么1:1的输入牛输入阻抗就是47K。另外有一点,牛的工作阻抗还影响频响 说到频响这个话题我先来举个例:去年有一天我突发奇想,用一个输入变压器直接驱动6P14做功放。此变压器阻抗变换有两种(输出绕组固定),分别为1:64和1:4400。显然1:64这组输入线圈匝数要多些,也就是输入电感量要大些,那么低音就应该更好些,但事实却不是这样,反而1:4400这组低音好得多。当时一时还想不明白,事后分析才得出了结论,也就是接下来要讨论的问题。 当一个变压器绕组固定后,其阻抗比固定了,输入、输出电感量也固定了。变压器的高频性能取决于其自身损耗(铁心涡流、分布电容等),低频性能则取决于输入电感量和输入阻抗。前面说了变压器绕组固定后输入、输出电感量也固定了,那么其低频性能就只能由输入阻抗来决定了。它们的关系为f=Xl/2πL,f表示频率、Xl表示输入阻抗、L表示电感量。也就是说一个输入变压器如果输入阻抗越低其低频延伸就越好。只要输入变压器前级有足够的驱动能力,就尽可能的降低输入阻抗以取得好的低音效果。降低输入阻抗的方法是减小输入变压器的输出端的输出电阻(针对胆管就是减小栅极对地电阻),而不是在变压器输入端并接电阻(这样做没用)。 再回到上面的实例,我的6P14栅极对地电阻为470K,当我选择1:64输入端时其低频延伸为f=58.75K/6.28L1,选择1:4400时低频延伸为f=7.12K/6.28L2。从数据可以看出虽然L1〉L2,但58.75K远大于7.12K,所以1:4400组低频好于1:64这一组。

运算放大器工作原理及误差分析

运算放大器工作原理及误差分析 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的 输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。 第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。 第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。在处理直流信号方面接近理想运放特性。它的典型开环输入阻抗在10^12欧姆数量级。典型产品是ICL7650。 1.2.按照功能/性能分类 本分类方法参考了《中国集成电路大全》集成运算放大器。 按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。实际上由于为了满足应用需要,运放种类极多。本文以上述简单分类法为准。 需要说明的是,随着技术的进步,上述分类的门槛一直在变化。例如以前的LM108最初是归入精密运放类,现在只能归入通用运放了。另外,有些运放同时具有低功耗和高输入阻抗,或者与此类似,这样就可能同时归入多个类中。 通用运放实际就是具有最基本功能的最廉价的运放。这类运放用途广泛,使用量最大。 低功耗运放是在通用运放的基础上大降低了功耗,可以用于对功耗有限制的场所,例如手持设备。它具有静态功耗低、工作电压可以低到接近电池电压、在低电压下还能保持良好的电气性能。随着MOS技

什么是输入阻抗和输出阻抗

什么是输入阻抗和输出阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限

制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有

输出阻抗与输入阻抗详解

一般讲: 采集信号 1.信号源为电压源,输入阻抗越大越好; 2.信号源为电流源,输入阻抗越小越好; 采集功率 1.输入阻抗要与源阻抗一致 合成一句话,就是源和负载的阻抗要匹配(不同的应用场合,“匹配”的涵义不一样)

电路的带负载能力与输入输出阻抗的关系 带负载能力 带负载能力是指,外接器件后,输出的电压或电流大小不受影响的能力。比如,如果一个单片机的引脚输出5伏电压信号,如果接上一个负载后,它的5伏保持不变,那么,它就可以带动这个负载,如果变小,那就说明带不动负载。同样,如果输出的电流能够满足负载的需要,那就说明带负载能力满足要求,反之亦然。所谓带负载能力,是说电路的输出电阻的大小,和电压源(电流源)中的内阻是一个意思。 例如: 在放大电路中,如果你想负载获得得稳定的电压,即负载大小变化时也能获得稳定的电压,此时就要求放大电路的输出电阻越小越好,这样内阻基本上不参与输出电压的分压,所以负载电阻不管多大它上面的电压基本不变。你完全可以用电压源串一个内阻接负载时的情况分析。 如果放大电路输出可以等效成电流源(如果你想让负载上获得稳定的电流),此时就要求输出输出电阻越大越好(最好无穷大),这样不管负载怎么变化内阻(它是并联的)分得的电流都很小,所以电流很稳定。你完全可以用理想电流源并联一个内阻的情况来分析。 所以在实际电路,你要看它的输出端是想稳定输出电流还是想稳定电压(放大电路中的负反馈类型可以判断出来),如果是想稳定输出电压,说它带负载能

力强表示其输出电阻比较小,如果是稳定输出电流,说它带负载能力强表示其输出电阻比较大。 通常,要求输出电阻比较小的情况居多。 输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 不管对于电压源还是电流源,其功率都是一定的(理想的为无穷大)。 分析: 对于电压源: P=(U^2)/R 电压一定,则输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响; 对于电流源:P=(I^2)R 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。

基本条分法

基本条分法

————————————————————————————————作者: ————————————————————————————————日期: ?

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs=抗滑力矩/滑动力矩,即=M R/Mh

O 1 O 2 F smin An A 土层2 土层1 B 图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

仪表输入阻抗

仪表输入阻抗 各台仪表的输入阻抗特性相差很大,但通常可把它们分为两类:高阻抗和系统阻抗。 1、离阻抗输入 设计高阻抗输入,可将负载影响减至最小,使被测电路至测量仪表的电压转移最大,这可使仪表的输入阻抗远大于电路的阻抗来达到。仪表输入阻抗的典型值在10kΩ和1MΩ之间。对于用在高频下的仪表,输入两端的电容很重要,通常仪表的使用手册会加以说明。 2、系统输入阻抗 许多电子系统有特定的系统阻抗,如50Ω(下图)假设系统的全部输入、输出、电缆和负载具有相同的电阻阻抗,那么,总能传送最大的功率。在高頻条件下(约大于300MHz),杂散电容和输送线的影响使得这样才是唯一的一类实用系统,系统阻抗常称恃性阻抗,并用符号Z。 在音频条件下,恒定的系统阻抗不是必需遵循的条件,但也常常遵循。许多应用中,使源电路为低阻抗(低于100Ω)、全部负载电路为高阻抗(大于1kΩ)就足够了。这样可获得最大输出电压(这里讲的是将功率输出放在其次)。某些音频系统保持系统阻抗为600Ω,这种系统用于实验为多,电话中也使用。 对于射频,50Ω是用得最多的通用阻抗。这一阻抗可易于保持,且不受分布电容影响。

50Ω是容易实现的,诸如业余的和商业射频发射机、发射天线、通信滤波器以及射頻测试设备通常都有50Ω的输入和输出阻抗。在射頻范围,居50Ω之次的就是75Ω阻抗。在射频范围,这一阻抗也用得很广泛,特别是与视频有关的应用中,如电视电缆就是用75(1阻抗。当进行电子测量时,作为特殊需要还可能遇到其他系统阻抗。 当测量这类系统时,系统中许多可测点都以系统阻抗(Z0)为负载。因此,许多仪表有标准的输入阻抗值(标准的为50Ω)。当测量时,这种仪表可与系统相接,起着50Ω负载的作用。来自海洋兴业。

运算放大器工作原理

运算放大器工作原理 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB 之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。

高输入阻抗运算放大器

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DA TA]) 带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DA TA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器(军用档) NS[DA TA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DA TA] LM224J 低功耗四运算放大器(工业档) NS[DA TA]/TI[DATA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DATA] LM301 运算放大器NS[DATA] LM308 运算放大器NS[DATA] LM308H 运算放大器(金属封装)NS[DA TA] LM318 高速运算放大器NS[DATA] LM324(NS[DA TA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DA TA] LM358 NS[DA TA] 通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA] 音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DA TA] LM386-4 音频放大器NS[DA TA] LM3886 音频大功率放大器NS[DA TA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DA TA] LM733 带宽运算放大器 LM741 NS[DA TA] 通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DA TA] NE5534 高速低噪声单运算放大器TI[DA TA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DA TA] TBA820M 小功率音频放大器ST[DA TA] TL061 BI-FET单运算放大器TI[DATA]

护坡计算正式

土钉墙支护计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑基坑支护技术规程》 JGJ120-99 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):8.000; 土钉墙计算宽度b'(m):13.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):5.000; 基坑内侧水位到坑顶的距离(m):8.000; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 0(m) 宽度b 1 (m) 1 满布 10.00 -- --3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限 摩擦阻力饱和重度 (m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 填土 8.00 18.00 30.00 15.00 112.00 20.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 8.00 3.80 7.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 100.00 5.00 20.00 2.00 1.50 2 100.00 5.00 20.00 1.50 1.50 3 100.00 5.00 20.00 1.50 1.50 4 100.00 5.00 20.00 2.00 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ 0T jk 1、其中土钉受拉承载力标准值T jk 按以下公式计算: T jk =ζe ajk s xj s zj /cosα j 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj 、s zj --土钉之间的水平与垂直距离 α j --土钉与水平面的夹角ζ按下式计算: ζ=tan[(β-φ k )/2](1/(tan((β+φ k )/2))-1/tanβ)/tan2(45°-φ/2)

放大器的输出入阻抗

放大器的输出入阻抗 一般我们常耳闻的说法是:扩大机的输入阻抗是愈高愈好,而输出阻抗是愈低愈好。为什么呢? 因为输入阻抗高了,从讯号源来的讯号功率强度就可以不必那么大。 这么说也许还有读者不甚了解,让我们再回想一下欧姆定律;假设讯源输出不甚了解,让我们再回想一下欧姆定律;假设讯源输出一个固定电压,传送往下一级,如果这一级的输入阻抗高,是不是由讯源所提供的讯号电流就可以降低? 如果输入阻抗非常非常的高,则几乎不会消耗讯号电流(当然还是会有)就可以驱动这一级电路工作,换句话说就是几乎只要有讯号电压,电路就可以正常工作;但是对于低输入阻抗的电路呢?就正好相反了,它必须要求讯号能源能提供较为大量的讯号电流,因为在同一个电压下,低输入阻抗会流进较大的讯号电流,如果讯源提供的电流强度不足以满足下一级电路的需求,它就不能完美地驱动下一级电路。而讯源的电压和电流的乘积就是讯源的功率了。 何谓低输出阻抗呢?它有什么好处呢? 通常低输出阻抗被提到地方大半是指前级扩大机的输出阻抗,后级通常是称作输出内阻的。前级的低输出阻抗有几个好处:

一.通常会强调低输出阻抗即表示了它有较大的电流输出能力,容易搭配一些低输入阻抗的器材(后级); 二.低输出阻抗可以驱动长的讯号线及电容量较大的负载,以音响用前级为例;前级的输出阻抗在与讯号线结合后,输出阻抗加上讯号线本身固有的电阻与电容会形成一个R C滤波的网路,当输出阻抗愈高时,则经过讯号线后的讯号,其高频端的滚降点就会越低,反之则愈高。 你应该不会希望高频滚降点移进耳朵听得到的音频范围吧? 所以遇上电容量大的讯号线,你还是选一部输出阻抗低一点的前级较为保险。这也是为什么每一种讯号线会有不同声音部份原因。 有了以上大略的说明,你应该可以明白;所谓扩大机输入阻抗愈高愈好,输出阻抗愈低愈好,其主要理由即在此一在与其它器材互相搭配时,其匹配性比较高。 那么照此说来,我们就把每一部扩大机不论是前级或是后级的输入阻抗都设计得很高,输出阻抗都设计得很低,不是就完美无缺了吗? 让我们再从输入阻抗看起,由于高输入阻抗所需的讯号电流较少,可知连接其上的讯号线中流动的电流必较小,因此对于讯号线品质的要求就可以不必那么高,因为少了一个电流的干扰因素在内,这也是高输入阻抗带来的另一个优点。但是高输入阻抗的优点

相关文档
相关文档 最新文档