文档库 最新最全的文档下载
当前位置:文档库 › FLUENT大作业__工程流体力学模板分析

FLUENT大作业__工程流体力学模板分析

FLUENT大作业__工程流体力学模板分析
FLUENT大作业__工程流体力学模板分析

图1-1 Fluent工作框

,选择单位标准“m”,即可进入dm操作界面进行建模,在

分别自坐标原点为起始点延x和y方向绘制一条直线。绘制出气体出口上端轮廓线和

图1-2 绘制好的卧式分离器轮廓

图1-3 卧式分离器轮廓参数

图1-5 生成平面模型

点击线选择按钮选择入口直线v10,然后右键选择named selection在details view generate,再在tree outline操作界面下选中namesell右键rename,输入

图1-6 tree outline界面图1-7 定义入口名称

用同样的方法设置上下端出口,将上端出口设置为outlet1下端出口设置为outlet2

图1-10 details of mesh操作界面

图1-11 网格划分结果

file-export保存文件,单击file-close meshing,安全退出。在workbench

,右键选择update。

模型计算设置及流场仿真

workbench中双击setup,出现fluent launcher对话框,按OK进入模型计算设置的操作查看几何区域所在范围并Check检查网格,当下方出现done时便可确定网格划分没有问

图1-13 Gavity界面

图1-14 models界面图1-15 multiphase模型界面viscous model设置湍流模型为标准K-ε模型,单击OK。

图1-16 models界面图1-17 viscous model

图1-18 materials界面图1-19 create/edit material界面

图1-20 fluent database界面

图1-21 定义第一相为water 图1-22 定义第二相为air boundary conditions中选中inlet,进口设置为速度进口,phase为mixture

图1-23 boundary conditions界面图1-24 velocity inlet 界面

选中inlet,将phase改为air,设置multiphase中体积分数为0.4。

图1-25设置inlet体积分数

图1-26 pressure outlet1 界面图1-27设置outlet1体积分数

同样设置outlet2湍流强度为1%,水力直径为0.05。设置multiphase中体积分数为

图1-29 设置outlet2体积分数

下拉菜单,选中piso模型,其他值默认。单击

standard initialization,compute from设置为all-zones,单击

图1-30 solution methods界面图1-31 设置为all-zones方式初始化monitors,设置残差精度为默认值,单击OK

图1-32 monitors界面

图1-33 patch界面

run calculation,输入time step size为0.01s,迭代步数为

图1-34 残差曲线图

点击graphics and animations,在graphics中选择contors,单击set up,弹出contours 框,选择phase和filed,然后单击display即可得到3s时的相图。

图1-35 3s时的相图

图1-36 3s时的压力云图

contours对话框,选择velodty和filed,然后单击display即可得到3s时的速度云图。

图1-37 3s时的速度云图

迭代步数为100步,点击calculate计算,得到4s时的残差曲线图:

图1-38 4s时的残差曲线图

点击graphics and animations,在graphics中选择contors,单击set up,弹出contours 框,选择phase和filed,然后单击display即可得到4s时的相图。

图1-40 4s时的压力云图

在contours对话框,选择velodty和filed,然后单击display即可得到4s时的速度云图。

图1-41 4s时的速度云图

结论:

时的结果与4s时的结果有了明显的变化。4s时进口附近的液相趋于消失,且整个液相内的气泡数量有了明显的减少,说明卧式分离器中的气液两相分离工作进一步完成,且容器内压力正在降低。

图2-1 几何模型

method,点击mesh-insert-method用扫描的方式创建:

图2-2 mesh-insert-method界面

界面划分圆面上的网格,采用四面体方式划分,并预览划分结果:图2-3 size界面图2-4 设置四面体方式划分方式

图2-6 定义进口面

图2-7 定义出口面

图2-8 定义壁面模型计算设置及流场仿真

图2-9 velocity models界面materials设置:

图2-10 materials和fluent database界面

图2-11 create/edit material界面

设置进口边界条件:

图2-13 pressure outlet界面

进行初始化,然后运行计算,迭代步数为50步,点击calculate计算,残差曲线如图:

图2-14 残差曲线图

图2-15 iso-surface界面

图2-16 压力云图速度云图为:

图2-17 速度云图湍流云图为:

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

工程流体力学A第2次作业

一 一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中 只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.欲使水力最优梯形断面渠道的宽度和深度相等,则相应的渠道边坡系数m=( C )。 A 0.25 B 0.50 C 0.75 D 1.0 2.静止液体作用在平面上的静水总压力A p P c =,这里c c gh p ρ=为( B ) A 、受压面形心处的绝对压强 B 、受压面形心处的相对压强 C 、压力中心处的绝对压强 D 、压力中心处的相对压强 3.平衡流体的等压面方程为( D ) A 、0=--z y x f f f B 、0=++z y x f f f C 、0d d d =--z f y f x f z y x D 、0d d d =++z f y f x f z y x 4.绝对压强的起量点为( A ) A 、绝对真空 B 、当地大气压 C 、液面压强 D 、标准大气压 5.渐变流过流断面近似为( D ) A 、旋转抛物面 B 、双曲面 C 、对数曲面 D 、平面 6.已知突然扩大管道突扩前后管段的直径之比5.0/21=d d ,则相应的断面平均流速之比=21/v v ( B ) A 、8 B 、4 C 、2 D 、1 7.流速水头的表达式为( D ) A 、22v B 、22v ρ C 、22gv D 、g v 22 8.已知动力黏度μ的单位为s Pa ?,则其量纲=μdim ( D ) A 、1MLT - B 、T ML -1 C 、LT M -1 D 、1 -1T ML - 9.下列各组物理量中,属于同一量纲的为( D ) A 、密度、重度、黏度 B 、流量系数、流速系数、渗流系数 C 、压强、切应力、质量力 D 、水深、管径、测压管水头 10.底宽为b 、水深为h 的矩形断面渠道的水力半径=R ( A ) A 、h b bh 2+ B 、bh h b 2+ C 、) (2h b bh + D 、bh h b )(2+ 11.突然扩大管段的局部水头损失=j h ( B ) A 、g v v 221- B 、g v v 2)(221- C 、g v v 22221- D 、g v v 22221+

工程流体力学第一章习题

第一章小结 1、流体的特征 与固体的区别:静止状态下,只能承受压力,一般不能承受拉力与抵抗拉伸变形。 在任意剪切力作用下,流体将发生连续的剪切变形(流动),剪切力大小正比于剪切变形速率。固体所受剪切力大小则正比于剪切变形量。 液体与气体的区别:难于压缩;有一定的体积,存在一个自由液面; 2、连续介质 连续介质模型:把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型。 流体质点:几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 3、粘性 流体在运动(流动)的状态下,产生内摩擦力以抵抗流体变形的性质。粘性是流体的固有属性。 牛顿内摩擦定律(粘性定律):液体运动时,相邻液层间所产生的切应力与剪切变形的速率成正比。 动力粘性系数μ:反映流体粘滞性大小的系数。 国际单位:牛·秒/米2, N.s/m2 或:帕·秒 运动粘性系数ν:ν=μ/ρ国际单位:米2/秒, m2/s 粘度的影响因素:温度是影响粘度的主要因素。当温度升高时,液体的粘度减小,气体的粘度增加。 粘滞性是流体的主要物理性质,它是流动流体抵抗剪切变形的一种性质,不同的流体粘滞性大小用动力粘度μ或运动粘度v来反映。其中温度是粘度的影响因素:随温度升高,气体粘度上升、液体粘度下降。 复习题 1.连续介质假设意味着。 (A)流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有空隙 (D) 流体不可压缩 2.流体的体积压缩系数k 是在条件下单位压强变化引起的体积变化率。 (A) 等压 (B) 等温 (C) 等密度 3.水的体积弹性模数空气的弹性模数。

抄作业学生检讨书模板汇编八篇

抄作业学生检讨书模板汇编八篇 抄作业学生检讨书篇1 尊敬的老师: 这是我第一次抄作业,我心里很惭愧。造成这个严重的结果我心里很不是滋味。 昨天下午,我在抄作业的时候粗心大意,东张西望,心不在焉,以致于自己抄漏了一项,况且又没有和同学对作业,才造成了这个严重的后果。 今天缺交作业的同学很多,老师很生气,后果很严重。唉!都怪我粗心大意,没有认真检查,千错万错都是我的错,怨天怨地终要怨自己,就像那句经典台词说的一样如果上帝能给我一次机会,我愿意认认真真、仔仔细细、瞪大眼睛、一字不漏、毫不差错地检查自己的作业!就像一个电视剧名称一样《对不起,我错了!》明明知道这句话已使老师您耳茧重重,但是我不得不说,因为再没有一句话更能准确地表达我内心的愧疚了。您现在肯定眉头紧皱、心里生气十,我现在心里也是酸酸的、苦苦的,不是滋味。 该忏悔的在以前的说明书中我都讲过了,现在不得不再温习一遍学习要细心,要学会负责。现在自己不得不拿那些陈词滥调来说老师,我真的真的真的真的知道自己错了,我真的真的真的真的很后悔,也许您觉得我的词言不够精美,不够华丽,但我的自我检讨还是很深刻的! 阳光一缕一缕地跳跃在我的发梢,但我的心情却一点也不好。我正在思考,思考我的检讨,思考应该怎样检讨。也许我的语言缺乏美妙,也许我的语言有点搞笑,但是您要知道,这是我最最深刻的检讨。天上的云在飘,我紧张而后悔的心在跳。后悔什么后悔自己的粗心大意,后悔自己没有好好完成作业。老师,我希望您能原谅我,我认为您会原谅我!因为我已经看到您美丽的笑。啊!人生多么美好,这挫折只让我稍稍跌倒,我会总结,我会学习,我会铭刻在心,把这次严重的错误在我的脑海里刻上深深的记号! 自古以来,赞颂老师的千古名句多如牛毛春蚕到死丝方尽,蜡炬成灰泪始干。我的失误,让老师多么生气,多么痛心。我没有尊重老师的劳动成果,我让老师多么失望。老师,我一定会谨记你的教导;老师,我今后会努力做到最好!

工程流体力学A卷及答案

工程流体力学 A 卷 一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.交通土建工程施工中的新拌建筑砂浆属于( ) A 、牛顿流体 B 、非牛顿流体 C 、理想流体 D 、无黏流体 2.牛顿内摩擦定律y u d d μτ=中的y u d d 为运动流体的( ) A 、拉伸变形 B 、压缩变形 C 、剪切变形 D 、剪切变形速率 3.平衡流体的等压面方程为( ) A 、0=--z y x f f f B 、0=++z y x f f f C 、0d d d =--z f y f x f z y x D 、0d d d =++z f y f x f z y x 4.金属测压计的读数为( ) A 、绝对压强p ' B 、相对压强p C 、真空压强v p D 、当地大气压a p 5.水力最优梯形断面渠道的水力半径=R ( ) A 、4/h B 、3/h C 、2/h D 、h 6.圆柱形外管嘴的正常工作条件是( ) A 、m 9,)4~3(0>=H d l B 、m 9,)4~3(0<=H d l C 、m 9,)4~3(0>>H d l D 、m 9,)4~3(0<

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

工程流体力学A概论

四、主观题 33.简述流体的形态特征和力学特征。 答:形态特征:流体随容器而方圆,没有固定的形状。力学特征:流体主要承受压力,静止流体不能承受拉力和剪力。 34. 一封闭水箱如图所示,已知金属测压计读数 Pa,金属测压计中心和容器内 液面分别比A点高0.5m和1.5m,试求液面的绝对压强和相对压强。答: 35. 如图所示为测量容器中A点压强的真空计。已知,试求A点的真空 压强及真空度。答:

36.如图所示绕铰链C 转动的自动开启式矩形平板闸门。已知闸门倾角为,宽度 为,闸门两侧水深分别为和,为避免闸门自动开启,试求转轴C 至闸 门下端B的距离 x。 答: 37.利用检查井作闭水试验检验管径的市政排水管道施工质量。已知排水管堵 头形心高程为 256.34m,检查井中水面高程为259.04m,试求堵头所受的静水总压力大小。 答: 38.如图所示盛水(重度为)容器由半径为 R 的两个半球用 N 个螺栓连接而成,已知

测压管水位高出球顶 H ,试求每个螺栓所受的拉力 F 。 答: 39.如图所示水流流经等径直角弯管。已知管径mm,管轴上A、B 两点高差400 mm ,U 形水银差压计读数=300mm ,管流速度m/s,相对压强, ,试求相对压强和 A 、B 两断面间的机械能损失。 答: 40.如图所示,为测流需要,在宽度m的平底矩形断面渠道的测流段,将渠底抬高

0.3m 。若测得抬高前的水深为1.8m ,抬高后水面降低0.12m ,水头损失经率定按抬高 后流速水头的一半计算,试求渠道流量。 答: 四、主观题 19.为研究某铁路盖板箱涵无压过流的水力特征,拟取线性比尺进行水工模型实验。已知原型涵洞的宽度m ,高度m ,洞内设计水深m和设计流速m/s 。试确定模型的几何尺寸和模型流量 答:

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。() 2.平面无旋流动既存在流函数又存在势函数。() 3.附面层分离只能发生在增压减速区。() 4.等温管流摩阻随管长增加而增加,速度和压力都减少。() 5.相对静止状态的等压面一定也是水平面。() 6.平面流只存在流函数,无旋流动存在势函数。() 7.流体的静压是指流体的点静压。() 8.流线和等势线一定正交。() 9.附面层内的流体流动是粘性有旋流动。() 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。() 11.相对静止状态的等压面可以是斜面或曲面。() 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。() 13.壁面静压力的压力中心总是低于受压壁面的形心。() 14.相邻两流线的函数值之差,是此两流线间的单宽流量。() 15.附面层外的流体流动时理想无旋流动。() 16.处于静止或相对平衡液体的水平面是等压面。() 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 () 18.流体流动时切应力与流体的粘性有关,与其他无关。() 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有和。 3、流体的主要力学模型是指、和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。

《工程流体力学》习题参考答案

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

工程流体力学A主观作业答案

工程流体力学A第1次作业 四、主观题(共8道小题) 33.简述流体的形态特征和力学特征。 形态特征:流体随容器而方圆,没有固定的形状。 力学特征:流体主要承受压力,静止流体不能承受拉力和剪力。 34.一封闭水箱如图所示,已知金属测压计读数Pa,金属测压计中心和容器液面分别比A 点高0.5m和1.5m,试求液面的绝对压强和相对压强。 解: 由得水箱液面的相对压强 绝对压强或93.1kPa 35.如图所示为测量容器中A点压强的真空计。已知,试求A点的真空压强及真空度。解: 真空计的测压管中压缩空气压强变化可忽略不计。由题意 得A点真空压强 及真空度 36.如图所示绕铰链C 转动的自动开启式矩形平板闸门。已知闸门倾角为,宽度为,闸门两侧水深分别为和,为避免闸门自动开启,试求转轴C至闸门下端B的距离x。 解:为避免闸门自动打开,由理论力学知必有关系 式中

故 37.利用检查井作闭水试验检验管径的市政排水管道施工质量。已知排水管堵头形心高程为256.34m,检查井中水面高程为259.04m,试求堵头所受的静水总压力大小。 解:排水管堵头形心处的相对压强 堵头所受的静水总压力 38.如图所示盛水(重度为)容器由半径为 R 的两个半球用 N 个螺栓连接而成,已知测压管水位高出球顶 H ,试求每个螺栓所受的拉力 F 。 解:取上半球为隔离体,由,得 式中为静止液体作用在上半球面上的总压力的铅垂分力,由上半球面的压力体计算得 故每个螺栓所受的拉力为 39.如图所示水流流经等径直角弯管。已知管径mm,管轴上A、B两点高差400mm,U形水银差压计读数=300mm,管流速度m/s,相对压强,,试求相对压强和A、B两断面间的机械能损失。 解: 由差压计原理 得 由伯努利方程 考虑到,得A、B两断面间的机械能损失

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

(完整版)工程流体力学习题集及答案

第1章 绪论 选择题 【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒; (c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。 (d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变 形速度;(c )切应力和剪切变形;(d )切应力和流速。 解:牛顿内摩擦定律是 d d v y τμ =,而且速度梯度d d v y 是流体微团的剪切变形速度 d d t γ,故d d t γ τμ=。 (b ) 【1.3】 流体运动黏度υ的国际单位是:(a )m 2 /s ;(b )N/m 2 ;(c )kg/m ;(d )N·s/m 2 。 解:流体的运动黏度υ的国际单位是/s m 2 。 (a ) 【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 解:不考虑黏性的流体称为理想流体。 (c ) 【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b ) 1/1 000;(c )1/4 000;(d )1/2 000。 解:当水的压强增加一个大气压时,其密度增大约 95d 1 d 0.51011020 000k p ρ ρ -==???= 。 (a ) 【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时 不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。 (c ) 【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a ) 【1.8】 15C o 时空气和水的运动黏度6215.210m /s υ-=?空气,621.14610m /s υ-=?水,这说明:在运动中(a )空气比水的黏性力大;(b )空气比水的黏性力小;(c )空气 与水的黏性力接近;(d )不能直接比较。 解:空气的运动黏度比水大近10倍,但由于水的密度是空气的近800倍,因此水的黏度反而比空气大近50倍,而黏性力除了同流体的黏度有关,还和速度梯度有 关,因此它们不能直接比较。 (d ) 【1.9】 液体的黏性主要来自于液体:(a )分子热运动;(b )分子间内聚力;(c )易变形 性;(d )抗拒变形的能力。解:液体的黏性主要由分子内聚力决定。 (b )

工程流体力学第2版答案

课后答案网 工程流体力学 第一章绪论 1-1. 20C 的水2.5m 3 ,当温度升至80C 时,其体积增加多少? [解]温度变化前后质量守恒,即 = 7V2 3 又20C 时,水的密度 d 二998.23kg / m 3 80C 时,水的密度 = 971.83kg/m 3 啦 3 V 2 =亠=2.5679m 「2 则增加的体积为 V 二V 2 -V^ 0.0679 m 3 1-2.当空气温度从 0C 增加至20C 时,运动粘度\增加15%,重度 减少10%,问此时动力粘度 」增加 多少(百分数)? [解] 宀(1 0.15)、.原(1 -0.1)「原 = 1.035 原「原=1.035'I 原 ■' -「原1.035?L 原一」原 原 原——原二0.035 卩原 卩原 此时动力粘度 J 增加了 3.5% 2 1-3?有一矩形断面的宽渠道,其水流速度分布为 u =0.002 Jg(hy-0.5y )/」,式中'、」分别为水的 密度和动力粘度,h 为水深。试求h =0.5m 时渠底(y=0)处的切应力。 [解] 一 =0.002「g(h -y)/「 dy 当 h =0.5m , y=0 时 = 0.002 1000 9.807(0.5 —0) J du dy -0.002 'g(h -y)

= 9.807Pa 1-4.一底面积为45 x 50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 mg sin v I mg sin A U 0.4 0.45 — d 0.001 」-0.1047Pa s 1-5 .已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y 方向的分布图。 [解]木块重量沿斜坡分力 F 与切力T 平衡时,等速下滑 5 9.8 sin 22.62 -=一,定性绘出切应力 dy 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度」=0.02Pa . s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。 0.9mm ,长度20mm ,涂料 (1.O1N ) e y I

FLUENT中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L 关系可以表示为: l = 0.07L (8-3)

西南交大,工程流体力学A离线作业

工程流体力学A 第一次作业 四、主观题(共8道小题) 33.简述流体的形态特征和力学特征。 答:形态特征:流体随容器而方圆,没有固定的形状。 力学特征:流体主要承受压力,静止流体不能承受拉力和剪力。 34.一封闭水箱如图所示,已知金属测压计读数Pa,金属测压计中心和容器内液面分别比A点高0. 5m和1.5m ,试求液面的绝对压强和相对压强。 解: 由 得水箱液面的相对压强 绝对压强 或93.1kPa 35.如图所示为测量容器中A点压强的真空计。已知,试求A 点的真空压强及真空度。 解:真空计的测压管中压缩空气内压强变化可忽略不计。由题意 得A点真空压强

及真空度 36.如图所示绕铰链C 转动的自动开启式矩形平板闸门。已知闸门倾角为 ,宽度为,闸门两侧 水深分别为和,为避免闸门自动开启,试求转轴C至闸门下端B的距离x。 解:为避免闸门自动打开,由理论力学知必有关系 式中 故 37.利用检查井作闭水试验检验管径 的市政排水管道施工质量。已知排水管堵头形心高程为256. 34m,检查井中水面高程为259.04m,试求堵头所受的静水总压力大小。 解:排水管堵头形心处的相对压强 堵头所受的静水总压力

38.如图所示盛水(重度为 )容器由半径为 R 的两个半球用 N 个螺栓连接而成,已知测压管水位高出球顶H ,试求每个螺栓所受的拉力 F 。 解:取上半球为隔离体,由 ,得 式中为静止液体作用在上半球面上的总压力的铅垂分力,由上半球面的压力体计算得 故每个螺栓所受的拉力为

39.如图所示水流流经等径直角弯管。已知管径mm,管轴上A、B两点高差400mm,U形水银差压计 读数 =300mm,管流速度m/s,相对压强,,试求相对压强和A、 B 两断面间的机械能损失。 解: 由差压计原理 得 由伯努利方程 考虑到,得A、B两断面间的机械能损失

工程流体力学课后作业答案莫乃榕版本

流体力学练习题 第一章 1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。则在同一地点的相对密度和比重为: 0ρρ= d ,0 γγ=c 1-2解:336/1260101026.1m kg =??=-ρ 1-3解:269/106.191096.101.0m N E V V V V p p V V p p p ?=??=?- =?-=????-=ββ 1-4解:N m p V V p /105.210 4101000295 6 --?=?=??-=β 1-5解:1)求体积膨涨量和桶内压强 受温度增加的影响,200升汽油的体积膨涨量为: 由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。故: 2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。设装的汽油体积为V ,那么:体积膨涨量为: 体积压缩量为:

因此,温度升高和压强升高联合作用的结果,应满足: 1-6解:石油的动力粘度:s pa .028.01.0100 28 =?= μ 石油的运动粘度:s m /1011.39 .01000028.025-?=?== ρμν 1-7解:石油的运动粘度:s m St /1044.0100 40 25-?=== ν 石油的动力粘度:s pa .0356.010*******.05=???==-ρνμ 1-8解:2/1147001 .01 147.1m N u =? ==δ μ τ 1-9解:()()2/5.1621196.012.02 1 5.0065.02 1 m N d D u u =-? =-==μ δ μ τ 第二章 2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。在水银面建立等压面1-1,在测压管与容器连接处建立等压面2-2。根据等压面理论,有 21p gh p a +=ρ(1) gz p z H g p 2221)(ρρ+=++(2) 由式(1)解出p 2后代入(2),整理得: 2-5解:设:水银的密度为1ρ,水的密度为2ρ,油的密度为3ρ;4.0=h ,6.11=h , 3.02=h ,5.03=h 。根据等压面理论,在等压面1-1上有: 在等压面2-2上有:

工程流体力学试卷A答案

流体力学试卷 一、名词解释(5×4=20分) 1、黏性 流体在受到外部剪切力作用时发生变形(流动),其内部相应要产生对变形的抵抗,并以内摩擦力的形式表现出来,这种流体的固有物理属性称为流体的粘滞性或粘性。 2、连续介质 由于假定组成流体的最小物理实体是流体质点而不是流体分子,因而也就假定了流体是由无穷多个、无穷小的、紧邻毗邻、连绵不断的流体质点所组成的一种绝无间隙的连续介质。 3、绝对压强 以绝对真空或完全真空为基准计算的压强成为绝对压强。 4、流管 在流场中任意取一非流线的封闭曲线,通过该曲线上的每一点作流线,这些流线所构成的封闭管状曲面称为流管。 5、局部阻力(局部损失) 发生在流动边界有急变的流域中,能量的损失主要集中在该流域及其附近的流域,这种集中发生的能量损失称为局部阻力或局部损失。 二、选择题(10×2=20分) 1、理想流体是指 C 的流体。 A. 所需要;B. 水;C.无粘性;D.不可压缩 2、在伯努利方程P/ρ+Hg+V2/2= const 中,P/ρ的物理意义是 B 。A. 单位重量流体的重力压力能; B.单位质量流体的压力能; C. 单位重量流体的动能; D.单位质量流体的动能 3、均匀流是指 C 。 A.所有物理量与时间无关;B. 所有物理量与时间有关; C所有物理量与空间位置无关;D. 所有物理量与空间位置有关4、圆管道的层流的动量修正系数β是 C 。 A.64 e R β=;B. 1/4 0.3164 e R β=; C.4 3 β=;D. 2 β=。 5、稳定流动的迹线是 C 。 A.直线;B. 随时间变化的; C.不随时间变化的;D. 总是平行的。 6、表面力是指 A 。 A.与控制体表面有关的力;B. 与控制体表面无关的力; C是正压力;D.是粘性力。 7、流体的静压力是与 C 无关。 A.深度;B.流体的温度;C.方向;D.大气压 8、静止流体的微分方程是 D 。 A.0 1 = -dp gdz ρ B. 0 1 = ? +p f ρ ;C. dt u d p f = ? + ρ 1D. 1 = +dp gdz ρ 9、已知大气压是 a a Mp p1.0 =,流体内某点的真空度为 2 2 50000 m N p c =,试问该点的绝对压 力是 B a Mp。 A.0.10;B.0.05;C.0.15;D.5.10 10、临界雷诺数是用于判断 B 的准数。 A. 稳定流与非稳定流;B. 层流与紊流; C. 均匀流与非均匀流; D. 有势流与非有势流 三、简答题(10×2=20分) 1.拉格朗日坐标系与欧拉坐标系不同之处? 答: 1)拉格朗日坐标系下,着眼于流体质点,先跟踪个别流体质点,研究其运动参数随时间变化特征,然后将流场中所有质点的运动情况综合起来,得到整个流场的运动,简而言之,即观察者位于一个流体质点上,并随流体一起运动时,观察到的流场运动。 2)欧拉坐标系下,着眼于流场中的空间点,研究流体质点经过这些空间点时,运动参数随时间的变化,并用同一时刻所有空间点上的流体运动情况来描述流场运动。简单说来,即观察者位于空间的一个固定点上时,观察到的空间点上的流场运动。 3)在欧拉坐标系中,空间坐标和时间是相互独立的变量,而在拉格朗日坐标系下,空间坐标和时间并非相互独立,

工程流体力学答案(陈卓如)第一章

[陈书1-15] 图轴在滑动轴承中转动,已知轴的直径cm D 20=,轴承宽度cm b 30=,间隙cm 08.0=δ。间隙中充满动力学粘性系数s Pa 245.0?=μ的润滑油。若已知轴旋转时润滑油阻力的损耗功率W P 7.50=,试求轴承的转速?=n 当转速min 1000r n =时,消耗功率为多少?(轴承运动时维持恒定转速) 【解】轴表面承受的摩擦阻力矩为:2D M A τ= 其中剪切应力:dr du ρντ= 表面积:Db A π= 因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度: δ ω2D dr du = 其中转动角速度:n πω2= 所以:2322nD D D nb M Db πμπμπδδ == 维持匀速转动时所消耗的功率为:3322D n b P M M n μπωπδ === 所以:Db P D n μπδπ1= 将: s Pa 245.0?=μ m cm D 2.020== m cm b 3.030== m cm 410808.0-?==δ W P 7.50= 14.3=π 代入上式,得:min r 56.89s r 493.1==n 当r 3 50min r 1000==n 时所消耗的功率为: W b n D P 83.6320233==δ μπ [陈书1-16]两无限大平板相距mm 25=b 平行(水平)放置,其间充满动力学粘性系数s Pa 5.1?=μ的甘油,在两平板间以m 15.0=V 的恒定速度水平拖动一面积为

2m 5.0=A 的极薄平板。如果薄平板保持在中间位置需要用多大的力?如果置于距一板10mm 的位置,需多大的力? 【解】平板匀速运动,受力平衡。 题中给出平板“极薄”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。 水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。 作用于薄板上表面的摩擦力为: A dz du A F u u u μτ== 题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。 设薄板到上面平板的距离为h ,则有: h V dz du u = 所以:A h V F u μ= 同理,作用于薄板下表面的摩擦力为: A h b V F d -=μ 维持薄板匀速运动所需的拖力: ?? ? ??-+=+=h b h AV F F F d u 11μ 当薄板在中间位置时,m 105.12mm 5.123 -?==h 将m 1025mm 253-?==b 、s m 15.0=V 、2m 5.0=A 和s Pa 5.1?=μ代入,得: N 18=F 如果薄板置于距一板(不妨设为上平板)10mm 的位置,则: m 1010mm 103-?==h 代入上式得:N 75.18=F [陈书1-17]一很大的薄板放在m 06.0=b 宽水平缝隙的中间位置,板上下分别放有不同粘度的油,一种油的粘度是另一种的2倍。当以s m 3.0=V 的恒定速度水平拖动平板时,每平方米受的总摩擦力为N 29=F 。求两种油的粘度。 【解】平板匀速运动,受力平衡。 题中给出薄板”,故无需考虑平板的体积、重量及边缘效应等。 本题应求解的水平方向的拖力。

相关文档
相关文档 最新文档