文档库 最新最全的文档下载
当前位置:文档库 › A 知识讲解 直线与双曲线的位置关系(理)

A 知识讲解 直线与双曲线的位置关系(理)

A 知识讲解 直线与双曲线的位置关系(理)
A 知识讲解 直线与双曲线的位置关系(理)

直线与双曲线的位置关系 编稿:张希勇 审稿:李霞

【学习目标】

1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程;

2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题;

3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】

【要点梳理】

【高清课堂:双曲线的性质 371712一、复习】 要点一、双曲线的定义及其标准方程 双曲线的定义

在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.

双曲线的标准方程:

焦点在x 轴上的双曲线的标准方程

说明:焦点是F 1(-c ,0)、F 2(c ,0),其中c 2=a 2-b 2

焦点在y 轴上的双曲线的标准方程 22

221(0,0)

x y a b a b -=>>2

2

22

1(0,0)y x a b a b -=>>

说明:焦点是F 1(0,-c)、F 2(0,c),其中c 2=a 2-b 2

要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值.

要点二、双曲线的几何性质

要点三、直线与双曲线的位置关系 直线与双曲线的位置关系

将直线的方程y kx m =+与双曲线的方程22

221x y a b

-=(0,0)a b >>联立成方程组,消元转化为关于x

或y 的一元二次方程,其判别式为Δ.

222222222()20b a k x a mkx a m a b ----=

若2220,b a k -=即b

k a =±

,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若2220,b a k -≠即b

k a

≠±,

①Δ>0?直线和双曲线相交?直线和双曲线相交,有两个交点; ②Δ=0?直线和双曲线相切?直线和双曲线相切,有一个公共点; ③Δ<0?直线和双曲线相离?直线和双曲线相离,无公共点. 直线与双曲线的相交弦

设直线y kx m =+交双曲线22

221x y a b

-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则

12||PP =

12|x x -

同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:

12||x x -

12||y y -双曲线的中点弦问题

遇到中点弦问题常用“韦达定理”或“点差法”求解.

在双曲线22221x y a b -=(0,0)a b >>中,以00(,)P x y 为中点的弦所在直线的斜率20

20

b x k a y =-;

涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.

解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 要点四、双曲线的实际应用与最值问题

对于双曲线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用双曲线定义,构建参数a,b,c 之间的关系,得到双曲线方程,利用方程求解

双曲线中的最值问题,按照转化途径主要有以下三种: (1) 利用定义转化

(2) 利用双曲线的几何性质 (3) 转化为函数求最值 【典型例题】

类型一:双曲线的方程与性质 例1.求下列双曲线的标准方程.

(1)与椭圆

22

11625x y +=共焦点,且过点(-2的双曲线;

(2)与双曲线

22

1164x y -=有公共焦点,且过点,2)的双曲线. 【解析】(1)∵椭圆22

11625x y +=的焦点为(0,±3), ∴所求双曲线方程设为:22

22

19y x a a

-=-,

又点(-2在双曲线上, ∴

2210419a a

-=-,解得a 2=5或a 2=18(舍去). ∴所求双曲线方程为22

154

y y -=.

(2)∵双曲线22

1164x y -=的焦点为(±0), ∴设所求双曲线方程为:22

22

120x y a a -

=-,

又点,2)在双曲线上, ∴

22184120a a

-=-,解得a 2=12或30(舍去), ∴所求双曲线方程为

22

1128

x y -=. 【总结升华】根据焦点所在轴的位置合理的设出方程是求双曲线方程的基本步骤。 举一反三:

【变式1】设双曲线焦点在x 轴上,两条渐近线为y =±1

2x ,则该双曲线的离心率为( )

A .5 B.

C.

2

D.

54

【答案】C

【变式2】(2015 安徽卷)下列双曲线中,焦点在y 轴上且渐近线方程为y=±2x 的是( )

(A)22

14y x -= (B)2214x y -= (C)2214y x -= (D)22

14

x y -= 【答案】 C 【解析】

由题意:选项中A ,B 焦点在x 轴,排除

C 项的渐近线方程为2

204

y x -=,即y =±2x , 故选C.

类型二:直线与双曲线的位置关系

例2.已知双曲线x 2-y 2=4,直线l :y =k (x -1),讨论直线与双曲线公共点个数. 【思路点拨】

直线与曲线恰有一个交点,即由直线方程与曲线方程联立的方程组只有一组解.

【解析】联立方程组?

??=--=4)

1(2

2y x x k y 消去y ,并依x 项整理得: (1-k 2)·x 2+2k 2x -k 2-4=0 ① (1)当1-k 2=0即k =±1时,方程①可化为2x =5,x =

2

5

,方程组只有一组解,故直线与双曲线只有一个公共点(实质上是直线与渐近线平行时的两种情况,相交但不相切).

(2)当1-k 2≠0时,即k ≠±1,此时有Δ=4·(4-3k 2)若4-3k 2>0(k 2≠1),

则k ∈???

? ???-????? ??--332,1)1,1(1,332,方程组有两解,故直线与双曲线有两交点. (3)若4-3k 2=0(k 2≠1),则k =±

3

3

2,方程组有解,故直线与双曲线有一个公共点(相切的情况). (4)若4-3k 2<0且k 2≠1则k ∈???

? ??+∞????? ??-∞-,332432,,方程组无解,故直线与双曲线无交点. 综上所述,当k =±1或k =±

3

3

2时,直线与双曲线有一个公共点; 当k ∈????

???-????? ??--332,1)1,1(1,332时,直线与双曲线有两个公共点; 当k ∈???

? ??+∞????? ??-

∞-,332332,时,直线与双曲线无公共点. 【总结升华】本题通过方程组解的个数来判断直线与双曲线交点的个数,具体操作时,运用了重要的数学方法——分类讨论,而且是“双向讨论”,既要讨论首项系数1——k 2是否为0,又要讨论Δ的三种情况,

为理清讨论的思路,可画“树枝图”如图:

举一反三:

【变式1】(2014 天津)已知双曲线122

22=-b

y a x (a >0,b >0)的一条渐近线平行于直线l :y =2x +10,

双曲线的一个焦点在直线l 上,则双曲线的方程为( )

A .

12052

2=-y x B .

15202

2=-y x C .

1100

32532

2=-y x D .125

310032

2=-y x

【答案】A

【解析】令y =0,可得x =-5,即焦点坐标为(-5,0),∴c =5,

∵双曲线122

22=-b

y a x (a >0,b >0)的一条渐近线平行于直线l :y =2x +10,

a

b

=2, ∵c 2=a 2+b 2, ∴a 2=5,b 2=20,

∴双曲线的方程为

120

52

2=-y x . 故选:A .

【答案】B

【变式2】直线y =x +3与曲线-

x 1x ·|x |+9

1y 2=1的交点个数是 (

)

【答案】

D

例3.过点P 与双曲线

22

1725

x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。 【思路点拨】

显然采用过P 点的直线方程与双曲线方程

22

1725

x y -=联立的方法,但要注意直线斜率不存在的情况要先判断。

【解析】若直线的斜率不存在时,则x =

0),满足条件;

若直线的斜率存在时,设直线的方程为5(y k x -=则5y kx =+-

2

17x =, ∴22257(5725x kx -+-=?,

222(257)72(5(57250k x kx --?-+--?=,

当k =

时,方程无解,不满足条件;

当k =21075??=方程有一解,满足条件;

当2257

k ≠

时,令222

[14(54(257)[(5165]0k k ?=-----=,化简得:k 无解,所以不满足条件;

所以满足条件的直线有两条x =

10y x =+。 【总结升华】直线与双曲线有一个公共点时可能相切也可能相交,注意直线的特殊位置和所过的特殊点. 举一反三:

【高清课堂:双曲线的性质371712 例2】

【变式】双曲线22221-=x y a b

的右焦点到直线x-y-1=0的距离为2,且223=a c .

(1)求此双曲线的方程;

(2)设直线y=kx+m(m≠0)与双曲线交于不同两点C 、D ,若点A 坐标为(0,-b),且|AC|=|AD|,求实数k 取值范围。

【答案】(1)2

213x y -=

(2)(,()-∞??+∞

类型三:双曲线的弦

例4.(1)求直线1y x =+被双曲线2

2

14

y x -=截得的弦长; (2)求过定点(0,1)的直线被双曲线2

2

14

y x -=截得的弦中点轨迹方程. 【思路点拨】

(1)题为直线与双曲线的弦长问题,可以考虑弦长公式,结合韦达定理进行求解。

(2)题涉及到直线被双曲线截得弦的中点问题,可采用点差法或中点坐标公式,运算会更为简便.

解:由2

214

1y x y x ?-=???=+?

得22

4(1)40x x -+-=得23250x x --=(*) 设方程(*)的解为12,x x ,则有121225

,33

x x x x +=

=- 得,

12|d x x =-===(2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为1y kx =+,它被双曲线截得的弦为AB 对应的中点为(,)P x y ,

由22

114

y kx y x =+???-

=??得22(4)250k x kx ---=(*) 设方程(*)的解为12,x x ,则22

420(4)0k k ?=+->

∴2

1680,||k k <<

且121222

25

,44k x x x x k k +=

=---, ∴121212

22

1114(),()()124224k x x x y y y x x k k =+==+=++=--, 2

2444k x k y k ?=??-?

?=?-?

得2

2

40(4x y y y -+=<-或0)y >.

方法二:设弦的两个端点坐标为1122(,),(,)A x y B x y ,弦中点为(,)P x y ,则

22

1122

2244

44

x y x y ?-=??-=??得:121212124()()()()x x x x y y y y +-=+-, ∴

121212124()

y y x x x x y y +-=+-, 即41

y x x y =-,

即2

2

40x y y -+=(图象的一部分)

【总结升华】(1

)弦长公式1212||||AB x x y y =-=-; (2)注意上例中有关中点弦问题的两种处理方法. 举一反三:

【变式】垂直于直线230x y +-=的直线l 被双曲线221205

x y -=

,求直线l 的方程

【答案】210y x =± 类型四:双曲线的综合问题

例5.设P 是双曲线x 2

-2

3

y =1的右支上的动点,F 为双曲线的右焦点,已知A (3,1),则|P A |+|PF |的最

小值为________.

【答案】

-2

【解析】设双曲线的另一个焦点为F ′,则有F ′(-2,0),F (2,0),连结AF ′交双曲线的右支于点P 1,连结P 1F ,则|P 1F ′|-|P 1F |=2a =2.

于是(|P A |+|PF |)min =|P 1A |+|P 1F | =|P 1A |+(|P 1F ′|-2)=|AF ′|-2

-2.

【总结升华】双曲线的定义是解决有关最值问题的重要依据 举一反三:

【变式1】设)2,3(A ,F 为双曲线2

x 32

y -=1的右焦点,在双曲线上求一点P ,使得||2

1||PF PA + 取

得最小值时,求P 点的坐标.

【答案】P 点的坐标为???

?

??2,321

【高清课堂:双曲线的性质371712例3】

【变式2】一条斜率为1的直线l

22

221(0,0)-=>>x y a b a b

交于P 、Q 两点,直

线l 与y 轴交于R 点,且-3,3OP OQ PR RQ ?==,求直线和双曲线方程.

【答案】直线方程1y x =+;

双曲线方程2

2

12

y x -=

【变式3】(2016年 山东文)已知双曲线E :2

2x a

–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E

上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【解析】

依题意,不妨设6,4AB AD ==作出图像如下图所示

则2124,2;2532,1

,c c a DF DF a ===-=-==故离心率2

21

c a ==

双曲线知识点复习总结

双曲线知识点总结复习 1.双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2.双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±;⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为:,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

高中数学 选修1-1 18.直线与双曲线的位置关系

18.直线与双曲线的位置关系 教学目标 班级_____姓名________ 1.了解直线与双曲线的位置关系. 2.掌握双曲线中弦长问题的解法. 教学过程 一、直线与双曲线的位置关系. 1.直线与双曲线的位置关系. (1)相交:①有两个交点:交点在双曲线同一支或交点在双曲线两支上; ②有一个交点;(直线与渐近线平行时) (2)相切:直线与双曲线相切,只有一个交点.(直线只能与双曲线的一支相切) (3)相离:直线与双曲线无交点. 2.分析直线与双曲线的位置关系. (1)通过斜率分析.(已知直线恒过定点) (2)通过?分析.(注意特殊情况) 3.弦长公式. 设直线方程m kx y +=,直线与双曲线相交,两交点分别为),(11y x A ,),(22y x B . 则 (1)2122124)(1||x x x x k AB -+?+=(联立方程,消y ,应用韦达定理); (2)2122124)(11||y y y y k AB -+?+ =(联立方程,消x ,应用韦达定理). 二、例题分析. 1.直线与双曲线的位置关系. 例1:已知双曲线C :122 2 =-y x ,直线l 过点P )1,1(,当斜率k 为何值时,直线l 与双曲线C :(1)有一个公共点;(2)有两个公共点;(3)无公共点.

2.双曲线中的弦长问题. 例2:双曲线的两条渐近线的方程为x y 2±=,且经过点)32,3(-,若过双曲线的右焦点F 且倾斜角为 60的直线交双曲线于A 、B 两点,求AB 弦长. 作业:已知斜率为2的直线l 在双曲线12 32 2=-y x 上截得的弦长为4,求直线l 的方程.

双曲线知识点复习总结

双曲线知识点总结复习 1. 双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线 2. 双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心 率:c e a = ,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为:

等轴双曲线的渐近线方程为: ,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

直线与圆锥曲线的位置关系专题复习

直线与圆锥曲线的位置关系 一.知识网络结构: 2. 直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。 ⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax2 bx c 0。 ① .若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合; 当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。 ② .若a 0,设b2 4ac。a . 0时,直线和圆锥曲线相交于不同两点,相交。 b. 0时,直线和圆锥曲线相切于一点,相切。 c. 0时,直线和圆锥曲线没有公共点,相离。 二.常考题型解读:题型一:直线与椭圆的位置关系: 2 2 例1.椭圆—J 1上的点到直线X 2y .2 0的最大距离是() 16 4 A.3 B. ,11 C. 2 2 D. . 10 2 2 例2.如果椭圆—y 1的弦被点(4,2)平分,则这条弦所在的直线方程是() 36 9 A. x 2y 0 B. x 2y 4 0 C. 2x 3y 12 0 D. x 2y 8 0 题型二:直线与双曲线的位置关系: 例3.已知直线L:y kx 1与双曲线C:x2 y2=4。 ⑴若直线L与双曲线C无公共点,求k的范围;⑵若直线L与双曲线C有两个公共点,求k 的范围; ⑶若直线L与双曲线C有一个公共点,求k的范围;⑷若直线L与双曲线C的右支有两个公共点,求k的范围;⑸若直线L与双曲线C的两支各有一个公共点,求k的范围。 题型三:直线与抛物线的位置关系: 例4.在抛物线y2 2x上求一点P,使P到焦点F与P到点A(3,2)的距离之和最小。

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

双曲线知识点总结 (1)

双曲线知识点 知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且) 的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意: 1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F 1 、F 2 为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F 1 F 2 的垂直平分线。 标准方程 图形 性质 焦点,, 焦距 范围,, 对称性关于x轴、y轴和原点对称 顶点

轴长实轴长 =,虚轴长= 离心率 渐近线方 程 1.通径:过焦点且垂直于实轴的弦,其长 a b2 2 2.等轴双曲线 :当双曲线的实轴长与虚轴长相等即2a=2b时,我们称这样的双曲线为等轴双曲线。其离心率,两条渐近线互相垂直为,等轴双曲线可设为 3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上) 4.焦点三角形的面积 2 cot 2 2 1 θ b S F PF = ? ,其中 2 1 PF F ∠ = θ 5.双曲线的焦点到渐近线的距离为b. 6.在不能确定焦点位置的情况下可设双曲线方程为:)0 (1 2 2< = +mn ny mx 7. 椭圆双曲线 根据|MF 1 |+|MF 2 |=2a 根据|MF 1 |-|MF 2 |=±2a a>c>0, a2-c2=b2(b>0) 0<a<c, c2-a2=b2(b>0) , (a>b>0) , (a>0,b>0,a不一定大于b)

巩固练习直线与双曲线的位置关系文基础

【巩固练习】 一、选择题 1.双曲线2233x y -=的渐近线方程是( ) A .3y x =± B .1 3y x =± C .y = D .y x = 2.椭圆22214x y m +=与双曲线22 212 x y m -=有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 3.已知双曲线方程为22 1205 x y -=,那么它的半焦距是( ) A .5 B .2.5 C. D. 4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14 B .-4 C .4 D. 14 5. 已知双曲线的两个焦点为F 1(0)、F 20),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A. 22123x y -= B. 22132x y -= C. 2 214x y -= D .2 2 14y x -= 6. 已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16 B .18 C .21 D .26 二、填空题 7.已知双曲线22 1124 x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________.

8.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条. 9.已知双曲线22 221x y a b -= (a >0,b >0)的左、右焦点分别是F 1,F 2,点P 在双曲线右支上,且|PF 1|=4|PF 2|,则此双曲线离心率e 的最大值为________. 10.设一个圆的圆心在双曲线22 1916 y x -=的上支上,且恰好经过双曲线的上顶点和上焦点,则原点O 到该圆圆心的距离是________. 三、解答题 11.已知双曲线的中心在原点,焦点为F 1 ,F 2(0,),且离心率2e =,求双曲线 的标准方程及其渐近线. 12.设双曲线C :1:)0(1222 =+>=-y x l a y a x 与直线相交于两个不同的点A 、B ;求双曲线C 的离心率e 的取值范围: 13.设双曲线22 22b y a x -=1(00,b >0)的两个焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°,求双曲线的渐近线方程.

双曲线的性质A知识讲解

双曲线的性质 编稿:希勇审稿:霞 【学习目标】 1.理解双曲线的对称性、围、定点、离心率、渐近线等简单性质. 2.能利用双曲线的简单性质求双曲线的方程. 3.能用双曲线的简单性质分析解决一些简单的问题. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一、双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 围 2 22 2 1 x x a a x a x a 即 或 ≥≥ ∴≥≤- 双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 顶点

①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线22 221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为 A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。 ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。 ③实轴和虚轴等长的双曲线称为等轴双曲线。 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a ==。 ②因为c >a >0,所以双曲线的离心率1c e a = >。 由c 2 =a 2 +b 2 ,可得2222 2()11b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。 ③等轴双曲线a b =,所以离心率2=e 。 渐近线 经过点A 2、A 1作y 轴的平行线x=±a,经过点B 1、B 2作x 轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是b y x a =± 。 我们把直线x a b y ± =叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。 22= --||b b MN x a x a a

双曲线知识点归纳总结

第二章 2.3 双曲线 双曲线 标准方程(焦点在x轴) )0 ,0 (1 2 2 2 2 > > = -b a b y a x 标准方程(焦点在y轴) )0 ,0 (1 2 2 2 2 > > = -b a b x a y 定义 第一定义:平面内与两个定点 1 F, 2 F的距离的差的绝对值是常数(小于 12 F F)的 点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M2 2 1 = -()21 2F F a< 第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e,当1 e>时, 动点的轨迹是双曲线。定点F叫做双曲线的焦点,定直线叫做双曲线的准线,常数 e(1 e>)叫做双曲线的离心率。 范围x a ≥,y R ∈y a ≥,x R ∈ 对称轴x轴,y轴;实轴长为2a,虚轴长为2b 对称中 心 原点(0,0) O x y P 1 F 2 F x y P x y P 1 F 2 F x y x y P 1 F 2 F x y x y P 1 F 2 F x y P

焦点坐 标 1 (,0) F c- 2 (,0) F c 1 (0,) F c- 2 (0,) F c 焦点在实轴上,22 c a b =+;焦距: 12 2 F F c = 顶点坐 标 (a -,0) (a,0) (0, a -,) (0,a) 离心率e a c e( =>1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离: c a2 2 顶点到 准线的 距离 顶点 1 A( 2 A)到准线 1 l( 2 l)的距离为 c a a 2 - 顶点 1 A( 2 A)到准线 2 l( 1 l)的距离为a c a + 2 焦点到 准线的 距离 焦点 1 F( 2 F)到准线 1 l( 2 l)的距离为 c a c 2 - 焦点 1 F( 2 F)到准线 2 l( 1 l)的距离为c c a + 2 渐近线 方程 x a b y± =x b a y± = 共渐近 线的双 曲线系 方程 k b y a x = - 2 2 2 2 (0 k≠)k b x a y = - 2 2 2 2 (0 k≠) ①当|MF1|-|MF2|=2a时,则表示点M在双曲线右支上; 当a MF MF2 1 2 = -时,则表示点M在双曲线左支上; ②注意定义中的“(小于 12 F F)”这一限制条件,其根据是“三角形两边 之和之差小于第三边”。 若2a=2c时,即 2 1 2 1 F F MF MF= -,当21 2 1 F F MF MF= -,动点轨迹是以2F为端点向右延伸的一条射线;当 2 1 1 2 F F MF MF= -时,动点轨迹是以1F为端点向左延伸的一条射线;

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系 ●知识梳理 本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式. ●点击双基 1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A.1条 B.2条 C.3条 D.4条 解析:数形结合法,同时注意点在曲线上的情况. 答案:B 2.已知双曲线C :x 2-4 2y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 A.1条 B.2条 C.3条 D.4条 解析:数形结合法,与渐近线平行、相切. 答案:D 3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是 A.(-∞,0) B.(1,+∞) C.(-∞,0)∪(1,+∞) D.(-∞,-1)∪(1,+∞)

解析:数形结合法,与渐近线斜率比较. 答案:C 4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________. 解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2). 代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0. ∵k 2≠0,∴x 1+x 2=2 2)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(42 22 -++k k k =8, ∴k 2=1. ∴△OAB 的重心的横坐标为x = 3 021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +9 2y =1所截得的线段的中点,则l 的方程是____________. 解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2), 将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-) (42121y y x x ++=

双曲线方程知识点总结_公式总结

双曲线方程知识点总结_公式总结 双曲线方程 1. 双曲线的第一定义: ⑴①双曲线标准方程:. 一般方程: . ⑴①i. 焦点在x轴上: 顶点:焦点:准线方程渐近线方程:或 ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或. ②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程 (分别为双曲线的左、右焦点或分别为双曲线的上下焦点) “长加短减”原则: 构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

⑴等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. ⑴共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. ⑴共渐近线的双曲线系方程:的渐近线方程为 如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程? 解:令双曲线的方程为:,代入得. ⑴直线与双曲线的位置关系: 区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线. 小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条. (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号. ⑴若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.

直线与双曲线位置关系典例精析

直线和双曲线的位置关系 一、要点精讲 1.直线和双曲线的位置关系有三种:相交、相切、相离. 2.弦长公式:设直线 y kx b 交双曲线于 P 1 x 1 , y 1 , P 2 x 2 , y 2 , 则 P 1P 2 x 1 x 2 1 k 2 1 k 2 x 1 x 2 2 4x 1 x 2 , 或 P 1P 2 y 1 y 2 1 1 1 1 y 1 y 2 2 4y 1 y 2 k 0 . k 2 k 2 二、基础自测 1.经过点 P 1 ,2 且与双曲线 4x 2 y 2 1仅有一个公共点的直线有( ) 2 (A)4 条 (B) 3 条 (C) 2 条 (D) 1 条 2.直线 y= kx 与双曲线 4x 2 y 2 16 不可能( ) ( A )相交 ( B )只有一个交点 ( C )相离 ( D )有两个公共 点 3.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线 y 2 x 2 的通径长是 16 1 9 (A) 9 (B) 9 (C)9 (D)10 4 2 4 . 若 一 直 线 l 平 行 于双 曲 线 的 一 条 渐 近线 , 则 l 与 双 曲线 的公 共 点 个 数 为 . 解:与双曲线渐近线平行的直线与双曲线有且只有一个公共点,应注意直线与 双曲线不是相切 5.经过双曲线 x 2 y 2 8 的右焦点且斜率为 2 的直线被双曲线截得的线段的长

是. 6.直线l在双曲线x 2y21上截得的弦长为4,且l的斜率为 2,求直线l的方程.32 三、典例精析 题型一:直线与双曲线的位置关系 1.如果直线y kx 1 与双曲线 x 2y 2 4 没有公共点,求k的取值范围.有两个公共点呢? 解,所以△ =(b )240 ,所以 b 2 ,e c a2b2 1 ( b )2 5 ,故选D. a a a a a 2.(2010 ·安徽 )若直线 y=kx+2与双曲线 x2- y2=6的右支交于不同的两点,则k 的取值范围是() A.15 ,15 B. 0,15 C.15 ,0 D.15 ,1 33333 y=kx+ 2, 1k 20 2216k2 4 1k210 0 解:由 得 (1- k )x --=,∴,解 x2-y2= 64kx 10 0x1x20 x1x20 15 得-3

圆锥曲线-直线与圆锥曲线位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

直线与双曲线位置关系

直线与双曲线的位置关系和抛物线及其标准方程 知识点1:直线与双曲线的位置关系 1.直线与双曲线的位置关系的判断 设直线y=kx+b ,双曲线x 2a 2-y 2b 2=1 (a >0,b >0)联立消去y 得Ax 2+Bx+C=0(a≠0),Δ=B 2 - 4AC 。 若A=0即,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若Δ>0,直线与双曲线相交,有两个交点; 若Δ=0,直线与双曲线相切,有一个交点; 若Δ<0,直线与双曲线相离,无交点; 直线与双曲线有一个公共点是直线与双曲线相切的必要不充分条件。 2.弦长问题 设直线l:y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P1 (x 1,y 1),P2 (x 2,y 2), 且由,消去y→ax 2 +bx+c=0(a≠0),Δ=b 2 -4ac 。 k 为直线斜率) 例题选讲: 例1:直线l :y =kx +1与双曲线C :2x 2 -y 2 =1的右支交于不同的两点A 、B .求实数 k 的取值范围; 解 (1)将直线l 的方程y=kx+1代入双曲线C 的方程2x 2 -y 2 =1后,整理得(k 2 -2)x 2 +2kx+2=0.① 依题意,直线l 与双曲线C 的右支交于不同两点, 故????? k 2-2≠0, Δ=(2k )2 -8(k 2 - 2)>0,-2k k 2-2>0, 2k 2 -2>0. 解得k 的取值范围是-2

例3:已知椭圆C 1的方程为x 2 4 +y 2 =1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而 C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程; (2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB → >2 (其中O 为原点),求k 的取值范围. 解 (1)设双曲线C 2的方程为x 2a 2-y 2 b 2=1, 则a 2 =4-1=3,c 2 =4,由a 2 +b 2 =c 2 ,得b 2 =1, 故C 2的方程为x 2 3 -y 2 =1. (2)将y =kx +2代入x 2 3-y 2=1,得(1-3k 2)x 2 -62kx -9=0. 由直线l 与双曲线C 2交于不同的两点,得 ??? 1-3k 2 ≠0. Δ=(-62k )2 +36(1-3k 2 ) =36(1-k 2 )>0. ∴k 2≠13 且k 2 <1. ① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-9 1-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2 +1)x 1x 2+2k (x 1+x 2)+2=3k 2 +73k 2-1 . 又∵OA →·OB → >2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13

双曲线知识点总结

双曲线知识点总结 一.双曲线的定义及其性质 1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a

④若点P (x 0,y 0)在双曲线122 22=-b y a x 上,则过点P 与双曲线相切的直 线方程为 12020=-b y y a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。 二.双曲线的焦点三角形 (1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ; mn=θcos 122-b ),[2 +∞∈b ;θθcos 1cos 2-= b n m ),[2+∞-∈b ;S?PF 1F 2=2 tan 2θb . 证明如下: ①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ) ? mn=θcos 122 -b ②S?PF 1F 2=21mnsinΘ= 2 tan 2sin 22cos 2 sin 2cos 1sin 2212 222 θθθ θ θθ b b b == - 三.双曲线的中点弦 (1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2 (3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。

A 知识讲解 直线与双曲线的位置关系(理)

直线与双曲线的位置关系 编稿:张希勇 审稿:李霞 【学习目标】 1.能正熟练使用直接法、待定系数法、定义法求双曲线的方程; 2.能熟练运用几何性质(如范围、对称性、顶点、离心率、渐近线)解决相关问题; 3.能够把直线与双曲线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】 【要点梳理】 【高清课堂:双曲线的性质 371712一、复习】 要点一、双曲线的定义及其标准方程 双曲线的定义 在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 双曲线的标准方程: 焦点在x 轴上的双曲线的标准方程 说明:焦点是F 1(-c ,0)、F 2(c ,0),其中c 2=a 2-b 2 焦点在y 轴上的双曲线的标准方程 22 221(0,0) x y a b a b -=>>2 2 22 1(0,0)y x a b a b -=>>

说明:焦点是F 1(0,-c)、F 2(0,c),其中c 2=a 2-b 2 要点诠释:求双曲线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设双曲线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值. 要点二、双曲线的几何性质 要点三、直线与双曲线的位置关系 直线与双曲线的位置关系 将直线的方程y kx m =+与双曲线的方程22 221x y a b -=(0,0)a b >>联立成方程组,消元转化为关于x

双曲线的性质A知识讲解

双曲线的性质 编稿:张希勇审稿:李霞【学习目标】 1.理解双曲线的对称性、范围、定点、离心率、渐近线等简单性质. 2.能利用双曲线的简单性质求双曲线的方程. 3.能用双曲线的简单性质分析解决一些简单的问题. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一、双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 范围 2 22 2 1 x x a a x a x a 即 或 ≥≥ ∴≥≤- 双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点。

②双曲线22 221x y a b -=(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为 A 1(-a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A 1A 2叫作双曲线的实轴;设B 1(0,-b ),B 2(0,b )为y 轴上的两个点,则线段B 1B 2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A 1A 2|=2a ,|B 1B 2|=2b 。a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长。 ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。 ③实轴和虚轴等长的双曲线称为等轴双曲线。 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a ==。 ②因为c >a >0,所以双曲线的离心率1c e a = >。 由c 2=a 2+b 2,可得 22222()11b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。 ③等轴双曲线a b =,所以离心率2=e 。 渐近线 经过点A 2、A 1作y 轴的平行线x=±a ,经过点B 1、B 2作x 轴的平行线y=±b ,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是b y x a =± 。 我们把直线x a b y ± =叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。 22= --||b b MN x a x a a

知识讲解_双曲线的简单性质_基础

双曲线的简单性质 【学习目标】 1.知识与技能 理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念. 2.过程与方法 锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力. 3.情感态度与价值观 通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一:双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 范围 2 21 x a ≥,即22 x a ≥ ∴x a ≥,或x a ≤-. 双曲线上所有的点都在两条平行直线x= -a和x= a的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a ≥,或x a ≤-. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y, 方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为 对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点. ②双曲线 22 22 1 x y a b -=(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为

A1(-a,0),A2(a,0) ,顶点是双曲线两支上的点中距离最近的点. ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,- b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b.a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长. ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆. ②双曲线的焦点总在实轴上. ③实轴和虚轴等长的双曲线称为等轴双曲线. 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作 2 2 c c e a a ==. ②因为c>a>0,所以双曲线的离心率1 c e a =>. 由c2= a 2+b2,可得 22 22 2 ()11 b c a c e a a a - ==-=-,所以 b a 决定双曲线的开口大小, b a 越大,e也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度. ③等轴双曲线a b =,所以离心率2 e=. 渐近线 经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是 b y x a =±. 我们把直线 b y x a =±叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交. 22 || b b MN x a x a a =-- 22 22 b x a x a x x a =-- =→ +-

相关文档
相关文档 最新文档