文档库 最新最全的文档下载
当前位置:文档库 › 二次函数实际问题专题练习

二次函数实际问题专题练习

二次函数实际问题专题练习
二次函数实际问题专题练习

二次函数实际应用问题

1、(1)该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg ;

(2)由题意,得:14250402)10950)(5

5()10950(202

++-=----=x x x x

x y

(3)14450)10(22

+--=x y ,又201≤≤x 且x 为整数,所以,当101≤≤x 时,y 随x 的增大而增大,当2010≤≤x 时,y 随x 的增大而减小;因此,当10=x 时,y 取得最大值,为14450元。 2、解:(1)由题意,得:w = (x -20)·y =(x -20)·(10500x -+)21070010000x x =-+-

352b x a

=-=.答:当销售单价定为35元时,每月可获得最大利润.

(2)由题意,得:2

10700100002000x x -+-=,解这个方程得:x 1 = 30,x 2 = 40. 答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.

(3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.

∵x ≤32,∴当30≤x ≤32时,w ≥2000. 设成本为P (元),由题意,得:20(10500)P x =-+20010000x =-+

∵200k =-<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600. 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.

法二:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000.

∵10500y x =-+,100k =-<,∴y 随x 的增大而减小.∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小,成本越小,∴201803600?=(元).

3、解:(1)4月份y 与x 满足的函数关系式为0.2 1.8y x =+.

把1x =, 2.8y =和2x =, 2.4y =分别代入2120y x bx c =-++,得1

2.8,20

142 2.4.20b c b c ?-++=????-?++=??

解得 0.25,

3.1.

b c =-??=?∴5月份y 与x 满足的函数关系式为20.050.25 3.1y x x =--+.

(2)设4月份第x 周销售一千克此种蔬菜的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元.11

(0.2 1.8)( 1.2)4

W x x =+-+0.050.6x =-+.∵0.050-<,∴1W 随x 的增大而减小.∴当1x =时,

10.050.60.55W =-+=最大.221

(0.050.25 3.1)(2)5

W x x x =--+--+20.050.05 1.1x x =--+.

∵对称轴为0.05

0.52(0.05)

x -=-

=-?-,且0.050-<,∴当0.5x >-时,y 随x 的增大而减小.

∴当1x =时,21W =最大.所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;

5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元. (3)由题意知:[]100(1%)2 2.4(10.8%) 2.4100a a -+?+=?. 整理,得 2232500a a +-=. 解得

a =

∵2391521=,2401600=,而1529更接近1521

39≈. ∴31a ≈-(舍去)或8≈a . 4、解:(1)140;57500;(2)w 内 = x (y -20)- 62500 = 100

1-

x 2

+130 x 62500-, w 外 = 100

1-

x 2

+(150a -)x . (3)当x = )

100

1

(2130-?-= 6500时,w 内最大;由题意得 2

2

14()(62500)130

0(150)100114()4()100100a ?-?----=

?-?-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.

(4)当x = 5000时,w 内 = 337500, w 外 =5000500000

a -+. 若w 内 < w 外,则a <32.5;若w 内 = w 外,则a = 32.5;若w 内 > w 外,则a >32.5.

所以,当10≤ a <32.5时,选择在国外销售;当a = 32.5时,在国外和国内销售都一样;

5、解:(1)由题意可知,当x ≤100时,购买一个需5000元,故15000y x =;

当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以

x≤

10

3500

5000-+100=250. 即100≤x ≤250时,购买一个需5000-10(x -100)元,故y 1=6000x -10x 2;

当x >250时,购买一个需3500元,故13500y x =;

所以,??

?

??-=x x x x y 3500106000500021 ).250()250100()1000(>≤<≤≤x x x ,

,2500080%4000y x x =?=. (2) 当0

当100

6、解:(1)y=50-10x (0≤x <160);(2)w=(180+x-20)y=(180+x-20)(50-10

x

)=800034102++-x x ; (3)因为w=800034102++-x x ,所以当x=a

b

2-,即x=170时,利润最大,此时订房数y=50-

10

x

=33.此时的利润是5110元. 7、解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104

k b k b ?+=?

+=?,

解得114

k b ?=-?

=?,所以函数的解析式为y 2=-x+14.

(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.

(3)设当销售单价为x 时,产量为y ,则由题意得:

W=(x-2)y=(x-2)(0.5x+11)=0.5x 2+10x-22=

()21

10722

x +-(2≤x ≤10) 8、解:(1)降低x 元后,所销售的件数是(500+100x ),y =-100x 2

+600x+5500 (0<x ≤11 )

(2)y =-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2

+6400 当x=3时,y 的最大值是6400元。即降价为3元时,利润最大。所以销售单价为10.5元时,最大利润为6400元。

答:销售单价为10.5元时,最大利润为6400元。 9、解:(1)x y 305002+=;(2)依题意得:??

?≥-≤+9021705030500x x

x ;

解得:25≤x ≤40

(3)∵5001402)30500()2170(2

21-+-=+--=-?=x x x x x y y x W

∴1950)35(22

+--=x W ;而25<35<40, ∴当x=35时,1950=最大W ;

即,月产量为35件时,利润最大,最大利润是1950万元.

10、解:(1)①甲基地累积存入仓库的量:85%×60%y=0.51y (吨);②乙基地累积存入仓库的量:22.5%×40%y=0.09y (吨);(2)p=0.51y+0.09y=0.6y ;∵y=2x+3;∴p=0.6(2x+3)=1.2x+1.8;

(3)设在此收获期间内仓库库存该种农产品T 吨,T=42.6+p-m=42.6+1.2x+1.8-(6.12.132

-+-x x ) =10)6(46122

2

+-=+-x x x ;∵1>0,∴抛物线开口向上;又∵(1≤x ≤10且x 为整数),∴当x=6时,T 的最小值为10;∴在此收获期内连续销售6天,该农产品库存达到最低值,最低库存为10吨。

(三)运用二次函数解决几何问题

1、

2、⑴在矩形ABCD 中,∠B=∠C =Rt ∠,∴在Rt △BFE 中, ∠1+∠BFE =90°,又∵EF ⊥DE ∴∠1+∠2=90°,

∴∠2=∠BFE ,∴Rt △BFE ∽Rt △CED ∴BF BE CE CD =即8y x

x m

-=∴28x x y m -=

⑵当m =8时, 288x x y -=,化成顶点式: ()2

1428

y x =--+,

∴当x =4时,y 的值最大,最大值是2.

⑶由12y m =,及2

8x x y m

-=得x 的方程: 2

8120x x -+=,得, 122;6x x ==,∵△DEF 中∠FED

是直角,∴要使△DEF 是等腰三角形,则只能是EF =ED ,此时, Rt △BFE ≌Rt △CED ,∴当EC =2

时,m =CD =BE =6; 当EC =6时,m =CD =BE =2.即m 的值应为6或2时, △DEF 是等腰三角形. 3、 (1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,∴C HQD ∠=∠=90°,HD =HA ,

∴A HDQ ∠=∠,∴△DHQ ∽△ABC . (2)①如图1,当5.20≤

ED =x 410-,QH =x A AQ 4

3

tan =∠,

此时x x x x y 415

2343)410(212+-=?-=.

当4

5=x 时,最大值3275

=y .

②如图

2,当55.2≤

3

tan =

∠,此时x x x x y 4

15

2343)104(212-=?-=

. 当5=x 时,最大值475=y . ∴y 与x 之间的函数解析式为?????≤<-≤<+-=).

55.2(4152

3),5.20(415

2322x x x x x x y y 的最大值是475

(3)①如图1,当5.20≤

5

cos =∠, DE =x 410-,

∴x 410-=x 45,21

40

=x .显然ED =EH ,HD =HE 不可能;

②如图2,当55.2≤

40

=x ; 若HD =HE ,此时点D ,E 分别

与点B ,A 重合,5=x ;若ED =EH ,则△EDH ∽△HDA ,∴AD DH DH ED =,x x x x 2454

5104=

-,103320=x . ∴当x 的值为103320

,

5,1140,2140时,△HDE 是等腰三角形.

4、(1)若要四边形MNQP 为矩形,则有MP=QN ,此时由于∠PMA=∠QNB=90°,∠A=∠B=60°,所以Rt △PMA ≌Rt △QNB ,因此AM=BN.移动了t 秒之后有AM=t ,BN=3-t ,由AM=BN ,t=3-t 即得 t=1.5. 此时Rt △AMP 中,AM=1.5,∠A=60°,所以MP=

2

33,又MN=1,所以矩形面积为

2

33.

D

Q

E

B A

C

P

图1 Q

D E

P

B A

C

(图2)

类似地也可求得 2≤t ≤=3 时的情况,此时面积为 S=

2

3

(7-2t). 5、解:(1)当正方形DEFG 的边GF 在BC 上时,如图1),过点A

作BC 边上的高AM ,交DE 于N ,垂足为M .∵S △ABC =48,BC =12,∴AM =8. ∵DE ∥BC ,△ADE ∽△ABC , ∴

AM

AN

BC DE =

,而AN=AM -MN=AM -DE , ∴

8

812DE

DE -=

. 解之得8.4=DE .∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为4.8. (2)分两种情况:

①当正方形DEFG 在△ABC 的内部时,如图(2),△ABC 与正方形DEFG 重叠部分的面积为正方形DEFG 的面积,∵DE =x ,∴2

x y =,此时x 的范围是x <0≤4.8…4分

②当正方形DEFG 的一部分在△ABC 的外部时,如图(2),设DG 与BC 交于点Q ,EF 与BC 交于点P ,△ABC 的高AM 交DE 于N ,∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC ,即

AM AN

BC DE =

,而AN =AM -MN =AM -EP , ∴8812EP x -=,解得x EP 328-=.所以)328(x x y -=, 即x x y 83

22

+-=.由题意,x >4.8,x <12,所以128.4<

因此△ABC 与正方形DEFG 重叠部分的面积为???

??<<+-=)128.4(83

222

x x x x y

当x <0≤4.8时,△ABC 与正方形DEFG 重叠部分的面积的最大值为4.82=23.04

当128.4<

22

+-=,所以当6)

32(28=-?-

=x 时, △ABC 与正方形DEFG 重叠部分的面积的最大值为

24)

3

2(480)32

(42

=-?-?-?. 因为24>23.04,所以△ABC 与正方形DEFG 重叠部分的面积的最大值为24.

(第5题图(2))

A D E F

G

C

M B (第5题图(3)) A D

E

F G

C

N

P Q (0< x ≤4.8) (第5题图(1))

A D

E

F G C

M N

(完整版)初三数学二次函数较难题型

一、二次函数解析式及定义型问题 ( 顶点式中考要点 ) . 把二次函数的图象向左平移 2 个单位, 再向上平移 1 个单位, 所得到的图象对应的二次函数关系式是 y (x 则 b 、 c 的值为 10. 抛物线 y x 2 ax 4的顶点在 X 轴上,则 a 值为 11. 已知二次函数 y 2(x 3)2 ,当 X 取 x 1和 x 2时函数 值相等,当 X 取 x 1+x 2时函数值为 12. 若二次函数 y ax 2 k ,当 X 取 X1 和 X2( x 1 x 2)时函数值相 等 , 则当 X 取 X1+X2时,函数值为 13. 若函数 y a (x 3)2 过(2 . 9)点,则当 X =4时函数值 Y = 14. 若函数 y (x h )2 k 的顶点在第二象限则, h 0, k 0 15. 已知二次函数当 x=2 时 Y 有最大值是1 . 且过(3 . 0)点求解析式? 17. 已知抛物线在 X 轴上截得的线段长为6 二、一般式交点式中考要点 18. 如果抛物线 y=x 2-6x+c-2 的顶点到 x 轴的距离是 3, 那么 c 的值等于( ) (A ) 8 (B ) 14 (C ) 8 或 14( D )-8 或 -14 19. 二次函数 y=x 2-(12-k )x+12, 当 x>1 时, y 随着 x 的增大而增大, 当 x<1 时, y 随着 x 的增大而减小, 则 k 的值应取 ( (A ) 12 ( B )11 ( C )10(D ) 9 20. 若 b 0 ,则二次函数 y x 2 bx 1的图象的顶点在 ( A ) ( A )第一象限( B )第二象限 ( C )第三象限( D )第四象限 21. 不论 x 为何值 , 函数 y=ax 2+bx+c (a ≠ 0) 的值恒大于 0 的条件是 ( ) A.a>0, △ >0 B.a>0, △ <0 1)2 则原 . 如果函数 y (k 3)x k2 . ( 08 绍兴)已知点3k 2 y 1 ) , 2, 1 ),形状开品与抛物线 y= - 2x 2相同,这个函数解析式为 kx 1 是二次函数 , 则 k 的值是 _ .( 兰州 A .若 y 1 B .若 C .若 x 1 0 y 2,则 x 1 x 2,则 x 2 y 2 D .若 x 1 10) 抛物线 x 1 x 2 x 2 ,则 y 1 y 2 y 1 b y 2 c 图像向右平移 2 个单位再向下平移 3 个单位, 所得图像的解析式为 y 2x 3, A . b=2 C . b= -2 . 抛物线 c=2 , c=-1 (m 1)x 2 ax B. b=2 D. b= -3 c=0 , (m 2 3m 4)x 5以 Y 轴为对称轴则。 M = 8. 函数 y (a 5)x a 2 a 4a 5 的图象顶点在 Y 轴负半轴上。且函数值有最小值,则 m 的取值范围 5 2x 9. 抛物线 y (3x 1)2 当 x 时, 1 , 当 a ____ 时 , 它是一次函数 ; 当 a 时 , 它是二次函数 . 16. 将 y 2x 2 12x 12 变为 y a(x 2 m ) n 的形式,则 m . 且顶点坐标为(2,3)求解析式?(讲解对称性书写)

二次函数解决实际问题归纳

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式表示它们的关系→用数学方法求解→检验结果的合理性; 2、基本步骤:审题→建模(建立二次函数模型)→解模(求解)→回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题

解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公

式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少 2、用二次函数解抛物线形问题

巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点; 抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点 纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为,现有载满货物的汽车欲通过大门,货物顶部距地面,装货宽度为。这辆汽车能否顺利通过大门若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售

二次函数培优专项练习

学习必备 欢迎下载 1个单位,所得到的图象对应的二次函数关系式是 2)1(2-+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与 抛物线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(2 32 ++-=+-kx x k y k k 是二次函数, 则k 的值是______ 4.已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5. 抛物线 c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322--=x x y ,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(2 2+--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52 -+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 9.抛物线2 )13(-=x y 当x 时,Y 随X 的增大而增 大 10.抛物线42 ++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2 )3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为 12.若二次函数k ax y +=2 ,当X 取X1和X2(21x x ≠) 时函数值相等,则当X 取X1+X2时,函数值为 13.若函数2)3(-=x a y 过(2.9)点,则当X =4 时函数值Y = ★14.若函数k h x y ---=2 )(的顶点在第二象限则, h 0 ,k 0 15.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式? 16.将121222--=x x y 变为n m x a y +-=2)(的 形式,则n m ?=_____。 ★17. 已知抛物线在X 轴上截得的线段长为6.且顶点 的顶点到x 轴的距离是3, 那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-14 19.二次函数y=x 2 -(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9 20.若0 B.1a < C.1a ≥ D.1a ≤ 30.抛物线y= (k 2-2)x 2 +m-4kx 的对称轴是直线x=2,且它的最低点在直线y= - 2 1 +2上,求函数解析式。 31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 32.y= ax 2 +bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式 32.抛物线562 -+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。 (2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。求M 点坐标(得分点的把握) (3)在该抛物线的对称轴上是否存在点Q ,使得 △QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. 4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰 梯形,若存在,求出P 点的坐标;若不存在,请说明理由

二次函数实际问题易考题型总结(学生版)

二次函数实际问题易考题型总结(学生版)一、利润最值问题 (一)一般利润最值问题 1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?最大利润为多少? (二)与一次函数相关的利润最值问题 2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式 13 36 8 y x =-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示. (1)试确定b,c的值; (2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式; (3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?

3.市大润发超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(30 x)存在如下图所示的一 次函数关系式. ⑴试求出y与x的函数关系式; ⑵设大润发超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的围(直接写出答案). 二、面积最值问题 4.老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? x

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

培优二次函数辅导专题训练及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

最新二次函数应用题题型归纳

围墙 A 09 D 二次函数应用题 题型一面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园. 其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米. (1) 若平行于墙的一边的长为 y 米,直接写出y 与x 之间的函数关系式及其自变量 x 的取 值范围; (2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3) 当这个苗圃园的面积不小于 88平方米时,试结合函数图像,直接写出 x 的取值范围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙 (墙的长度不 限),另三边用木栏围成,建成的苗圃为如图所示的长方形 ABCD ?已知木栏总长为120米, 设AB 边的长为x 米,长方形 ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量 x 的取值范围).当x 为何值时,S 取 得最值 (请指出是最大值还是最小值 )?并求出这个最值; ⑵学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆, 其圆心分别为 01和02,且01到AB 、BC 、AD 的距离与02到CD 、BC 、AD 的距离都相等,并要求在苗 圃内药材种植区域外四周至少要留够 0.5米宽的平直路面,以方便同学们参观学习?当 (I )中 S 取得最大值时,请问这个设计是否可行 ?若可行,求出圆的半径;若不可行,请说明理由. B -----------------------C 围墙 _i I _i

题型二利润问题 1利民商店经销甲、乙两种商品?现有如下信息:请根据以上信息,解答下列问题: (1 )甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商 品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利 润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 信息1:甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少 1元. 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买I型、n型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1 )分别求出y1和y2的函数解析式; (2 )有一农户同时对I型、n型两种设备共投资10万元购买,请你设计一个能获得最 大补贴金额的方案,并求出按此方案能获得的最大补贴金额 型号 金额 I型设备n型设备 投资金额x(万元) x5x24 补贴金额y (万元) y1=kx(k 工 0)2y2=ax +bx(a 丰 0) 2.4 3.2 3?利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售

二次函数与实际问题

实际问题与二次函数 一、利用函数求图形面积的最值问题 一、 围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为 米),面积为y (平方米),求y 关 于x 的函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0180<x<x >x >∴? ??- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为( 250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 2521)250(2+-=-=中,a=2 1-<0,∴y 有最大值, 即当25)21(2252=-?-=-=a b x 时,2625)2 1(42504422max =-?-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2 625平方米。 3、 围成正方形的面积最值 例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. (1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x ) cm

实际问题与二次函数典型l例题

1. 某商品的售价为每件60 元,进价为每件40元,每星期可卖出300件,该商场一星期卖这种商品的利润为元。 2、我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件. 该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查: 如调整价格,每降价1元,每星期可多卖出20件. 请问同学们,该如何定价,才能使一星期获得的利润最大? 3、某种商品每件的进价为30元,在某段时间内若以每件x元出售(按部门规定,单价不超过每件70元),可以卖出(100- x)件,应如何定价才能使利润最大? 4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。 (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润ω(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查,在进价不变的情况下,若每千克涨价1元,销量将减少10千克 (1)该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 6、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). (1)由已知图象上的三点坐标,求累积利润s(万元)与销售时Array间t(月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

实际问题与二次函数-详解与练习(含答案)

. 初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题 一、围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的 函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 分析:关键是用含x 的代数式表示出矩形的长与宽。 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0 180 <x<x >x >∴?? ?- (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(218 2=-?-=- =a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回扣问题实际时,一定注意不要遗漏了单位。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠 墙。问如何围,才能使养鸡场的面积最大? 分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(2 50x -)(米), 根据题意,得:x x x x y 252 1 )250( 2+-=-=; 又∵500,02 500 <x<>x x >∴??? ??- ∵x x x x y 2521)250( 2+-=-=中,a=2 1 -<0,∴y 有最大值, 即当25) 2 1(2252=-?- =-=a b x 时,2625) 2 1(42504422max =-?-=-=a b ac y

最新中考数学专题培优:二次函数综合应用(含答案)

2020年中考数学专题培优 二次函数综合应用(含答案) 一、解答题(共有7道小题) 1.如图,直线1y x =+与x 轴教育点A ,切经过点B(4,m)。点C 在y 轴负半轴上,满足OA=OC ,抛物线 () 20y ax bx c a =++≠经过A 、B 、C 三点,且与x 轴的另一交点为D 。 (1)球抛物线的解析式。 (2)在抛物线的对称轴上找一点P ,使PA+ PC 的和最小。求出点P 的坐标。 2.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形, 请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. 3.如图,已知二次函数 2 = + + y ax bx c 的图象与x 轴相交于A(-1,0),B(3,0)两点,与y 轴相交于点C(0,-3). y x C D B A O x y P B A C O

(1)求这个二次函数的表达式; (2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值; ②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标. 4.如图,在平面直角坐标系中,二次函数265=- + - y x x 的图象与x 轴交于A 、B 两点,与 y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)求点P ,C 的坐标; (2)直线l 上是否存在点Q ,使△PBQ 的面积等于△PAC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由. 5.如图,已知二次函数2 2y ax x c = + + 的图象经过点C(0,3),与x 轴分别交于点A ,点B(3, 0).点P 是直线BC 上方的抛物线上一动点. (1)求二次函数 2 2y ax x c = + + 的表达式; (2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标; (3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. y x M C A O B P H y x D B A l C P O x y P B A C O

二次函数应用题题型归纳

二次函数应用题 题型一 面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗 圃药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. O 2 O 1 围墙 D A B C O 2 O 1 围墙D A B C E F H I J

题型二 利润问题 1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当 m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是 多少? 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出1y 和2y 的函数解析式; (2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

二次函数与实际问题-利润问题

课题:人教版第二十六章第一节《实际问题与二次函数》 教学目标: 1、知识与技能: 能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数求出实际问题中的最大(小)值,发展学生解决问题的能力。 2、过程与方法: 经历探索商品销售中最大利润问题的过程,进一步认识如何利用二次函数的有关知识解决实际问题,增强学生数学应用能力。 3、情感态度与价值观: 提高学生解决问题的能力,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。 教学重点与难点: 1、重点: 让学生通过解决问题,掌握如何应用二次函数来解决经济中最大(小)值问题。 2、难点: 如何分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的。 教学过程: 一、创设情境: 请同学们考虑下列问题: 已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 学生根据相应的数量关系列出方程。 设每件涨价x元 (60+x -40)×(300-10x)=6090 (从实际生活入手,创设问题情境,提高学生兴趣,激发求知欲望。) 二、探索新知,进入新课 1、商场的服装,经常出现涨价、降价,这其中有何奥妙呢?商家的利润否是随涨价而增多,降价而减少呢? 2、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。如何定价才能使利润最大? 教师展示问题, (1)、本题中的变量是什么? (2)、如何表示赚的钱呢? 学生分组讨论,利用函数模型解决问题 设每件涨价x元,由此商品 ①每件的利润为:(60+x -40)元 ②每星期的销售量为:(300-10x)件 ③所获利润是:(60+x -40)×(300-10x)元 若设所获得利润为y元,则有y=(60-40+x)(300-10x),即 y=-10x2+100x+6000。

实际问题与二次函数练习题及答案

12999数学网 https://www.wendangku.net/doc/478507659.html, 26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

培优 易错 难题二次函数辅导专题训练附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.已知抛物线26y x x c =-++. (1)若该抛物线与x 轴有公共点,求c 的取值范围; (Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值; (Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ???,求c 的取值范围. 【答案】(I )9c -;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是21 74 c -<< 【解析】 【分析】 (1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可; (2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解; (3)由OPA OQB ???可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解. 【详解】 解:(I )∵抛物线2 6y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根。 240b ac ∴?=-,即264(1)0c -?-?.解得9c - (Ⅱ)根据题意,设()()1122,21,,21M x x N x x ++ 由2621 y x x c y x ?=-++?=+?,消去y ,得2410x x c -+-= ①. 由2 (4)4(1)1240c c ?=---=+>,得3c >-. ∴方程①的解为1222x x == ()()()()2 2 2 21212122121520(3)MN x x x x x x c ∴=-++-+=-=+???? 20(3)20c ∴+=,解得2c =- (Ⅲ)设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,且0, 0,m n m n >>≠, 2266m m c n n n c m ?-++=∴?-++=?,两式相减,得227()0n m m n -+-=,即()(7)0m n m n -+-= 7m n ∴+=,即7n m =- 2770m m c ∴-+-=,其中07m << 由0?,即2 74(1)(7)0c -?-?-,得214 c - .

2018年二次函数压轴题题型归纳

2018二次函数压轴题题型归纳 一、二次函数常考点汇总 1、两点间的距离公式:AB y A y B X A X B 2、中点坐标:线段AB的中点C的坐标为:X B ,匕尘 22 直线y k1x b1k1 0 )与y k2x b2 ( k2 0) 的位置关系: (1) 两直线平行k[ k?.且b[b2(2)两直线相交 (3) 两直线重合k[ k?.且b[b2(4)两直线垂直k? 1 3、一元二次方程有整数根问题,解题步骤如 下: ①用和参数的其他要求确定参数的取值范围; ②解方程,求出方程的根;(两种形式:分式、二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式例:关于x 的一元二次方程x2—2 m 1 x m2= 0有两个整数根,m v5且m为整数,求m的值。4、二次函数与x轴的交点为整数点问题。(方法同上) 例:若抛物线y mx2 3m 1 x 3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x的方程mx2 3(m 1)x 2m 3 0 (m为实数),求证:无论m为何值,方程总有一个固定的根。 解:当m 0时,x 1 ; 2 3 m 1 i 小3 当m 0 时,m3 0,x ,捲 2 、X2 1 ; 2m m 综上所述:无论m为何值,方程总有一个固定的根是1。 6函数过固定点问题,举例如下: 已知抛物线y x2 mx m 2 (m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m的方程y x2 2 m 1 x ; ??? y X 2 0,解得:y 1;^抛物线总经过一个固定的点(1,—1)o 1 x 0 x 1 (题目要求等价于:关于m的方程y x2 2 m 1 x不论m为何值,方程恒成立) 小结:关于x的方程ax b有无数解 a 0 '' b 0

实际问题与二次函数练习题及答案

26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

相关文档
相关文档 最新文档