文档库 最新最全的文档下载
当前位置:文档库 › SiCw Al碳化硅晶须增强铝基复合材料

SiCw Al碳化硅晶须增强铝基复合材料

SiCw Al碳化硅晶须增强铝基复合材料
SiCw Al碳化硅晶须增强铝基复合材料

Fabrication and wear behavior of CNT/Al composites

JIANG Jin-long(姜金龙)1, WANG Hai-zhong(王海忠)2, YANG hua(杨华)1, XU Jin-cheng(徐金城)3

1. School of Science, Lanzhou University of Technology, Lanzhou 730050, China;

2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,

Lanzhou 730000, China;

3. Department of Materials Science, Lanzhou University, Lanzhou 730000, China

Received 15 July 2007; accepted 10 September 2007

Abstract: Aluminum matrix composites reinforced with carbon nanotube were fabricated by a powder metallurgy method. The effects of carbon nanotube content on the relative density, the hardness, and the friction and wear behavior of the composites under dry sliding condition were investigated using the ball (pin)-on-block tester. By scanning electron microscopy (SEM), the worn surfaces and worn chips were observed, and the wear mechanism of composites was analyzed and discussed. The results indicate that the addition to the aluminum matrix of 2.0%(mass fraction) carbon nanotube causes the increase in the Vickers hardness of about 80%. Within the range of carbon nanotubes content from 1.0% to 2.0%, both the friction coefficient and wear rate of composites decrease with the increase of carbon nanotube content. The delamination wear is the main wear mechanism for the composites.

Key words: carbon nanotubes; Al matrix composite; wear behavior

1 Introduction

Since the discovery of carbon nanotubes (CNTs) in 1991 by IIJIMA[1], there has been much interest and significant research in the filed of carbon fiber materials and their composites. The ratio of length to diameter of nanotubes can reach 100?1 000 and their diameter is about several nanometers. They have superior mechanical properties, as well as excellent thermal stability and electrical conductivity. Carbon nanotubes exhibit almost five times the elastic modulus(about 1 TPa) and close to 100 times the tensile strength (about 150 GPa) of those of high strength steels[2?3].Therefore, defect free and light mass CNTs can be used as potential fiber materials for composites.

In recent years, much research has been focused on the development of CNT reinforced Al matrix composites[4?8], because Al matrix composites have wide prospects of application in aviation, spaceflight and automobile industries. DENG et al[6] found that the maximal increases of tensile strength and elastic modulus of the 1.0%(mass fraction) nanotube/2024Al composite, compared with the 2024Al matrix, are 35.7% and 41.3%, respectively. CI et al[7?8] investigated the chemical stability and interfacial reaction between multi-walled carbon nanotubes and aluminum. Many researches have been done on improving the strength properties and materials design of CNTs/Al composites. However, the research on wear behavior of CNT reinforced Al matrix composites has been rather limited. Thus, in this study, CNT reinforced aluminum matrix composites were fabricated by a powder metallurgy method. The effects of CNT content on the relative density, the hardness, and the friction and wear behavior of the composites under dry sliding condition were investigated.

2 Experimental

2.1 Materials and preparation of composites

The CNTs used in this work were synthesized by anodic arc discharge method[9]. With the addition of cocatalysts such as Fe, Ni, Co, web-like substances and thin films made up of CNTs, catalyst particles and amorphous carbon were obtained. The CNTs were subjected to an oxidation treatment in concentrated nitric acid for 48 h and hydrofluoric acid for 24 h, then filtered

Foundation item: Project(3ZS061-A25-039) supported by the Natural Science Foundation of Gansu Province, China Corresponding author: JIANG Jin-long; Tel: +86-931-2973780; E-mail: jinlong@https://www.wendangku.net/doc/409183651.html,

JIANG Jin-long, et al/Trans. Nonferrous Met. Soc. China 17(2007) s114

and washed with distilled water.

The aluminum powder (purity of 99.0%, grain size

of 70 μm) and CNTs were homogeneously mixed by hand grinding for 30 min, and ethanol was added to avoid possible oxidation. The mixture of CNTs and aluminum powder was uniaxially pressed in steel dies under a pressure of 300 MPa for 2 min. The specimens were isothermally sintered at 100 ℃for 1 h and 600 ℃

for 2 h in a pure argon atmosphere. The specimens for testing, containing 0 to 3% of CNTs respectively, were

60 mm×10 mm×2 mm in size.

2.2 Friction and wear tests

The friction coefficient of the composites was measured using a reciprocating ball-on-block apparatus under dry condition. The counterpart was a ball with 3 mm diameter made from GCr15 steel with hardness of

61 HRC. The experiments were operated with loads of

1 N and 3 N at a sliding velocity of 0.16 m·s?1. The stroke length and testing distance were 10 mm and 50 cm, respectively.

The wear tests were conducted on a DMT-1 multi-functional reciprocating sliding wear apparatus (pin-on-block) under dry condition. The counterpart was

a pin with 1.5 mm diameter made by high-speed steel with hardness of 45?50 HRC. The experiments were operated with loads of 1N and 3 N at a sliding velocity of 0.5 m·s?1. The stroke length and testing distance were 30 mm and 30 m, respectively. The ratio of mass loss to sliding distance was taken as the wear rate to evaluate wear resistance of the composites, and the average of the three replicates was cited as a result for each specimen in this article. All the friction and wear tests were performed at room temperature, and a relative humidity

of 40%?60%. The morphologies of the worn surfaces were analyzed on a 6700F scanning electron microscope (SEM).

3 Results and discussion

3.1 Hardness of composites

The hardness of the composites was tested on a MH?5?VM Vickers tester with a contact load of 0.98 N

for 15 s. The density of composites was measured by the Archimedes method, the relative density being obtained

by comparing measured densities to the theoretical densities. The effects of CNT content on relative density and hardness of the composites are shown in the Table 1. The average of measured hardness from five different locations of the each specimen surface was considered the hardness of the specimen. It is showed that the Vickers hardness of the composites is 29?54, and the relative density is 93.5%?97%. The XRD patterns of Al and 3.0% CNTs/Al composite are shown in Fig.1. However, the (002) peak of carbon nanotubes can not be

found at approximately 2θ=26?. The reason may be that

the peaks of carbon nanotubes interfuse with backgrounds due to the low content and scattering coefficient of CNTs[10].

Table 1 Hardness and density of composites

CNT content/% Relative density/% Hardness(HV)

0 97.8 29.9

0.5 95.2 40.9

1.0 94.6 50.3

2.0 94.4 54.0

3.0 93.8 38.0

Fig.1 XRD patterns of Al and 3.0%CNTs/Al composite

3.2 Friction and wear of composites

The friction coefficients of CNT/Al under 1 N and 3

N loads are plotted in Fig.2. The friction coefficient of composites shows a decreasing trend with increasing content of carbon nanotubes. It is suggested that an increase in surface fraction of carbon nanotubes reduces

the direct contact between the Al and the steel ball. Due

to self-lubrication of CNTs, the friction coefficient of the composites decreases. Fig.2 also shows that the friction coefficient under a load of 3 N is slightly lower than those under a load of 1 N. The possible reasons are as follows. The contact surface proportion of composite and

the counterpart ball is a nonlinear function of load because the composite and the steel ball are an elastic-plastic contact; when the load is 3 N, more carbon

film can cover wear surface.

Fig.3 shows the effects of CNT content on the wear

rates of the composites at a sliding speed of 0.5 m·s-1

under 1 N and 3 N of loads. Within the range of CNT content from 0 to 2.0 %, the wear rate of the composites shows a steadily decreasing trend with increasing content

of CNTs. The favorable effects of CNT on wear resistance are attributed to their excellent mechanical properties and the efficiency reinforcement to Al matrix. However, owing to the agglomeration of the CNTs

JIANG Jin-long, et al/Trans. Nonferrous Met. Soc. China 17(2007) s115

decreasing the hardness of the composites, when the CNT content is more than 2.0%, the wear rate of the composites exhibits a severe increase.

Fig.2 Friction coefficients of composites with increasing content of carbon nanotube

Fig.3 Relationship between wear rate of composites and content of carbon nanotubes

Fig.4 shows typical SEM morphologies of worn surfaces of the composites with different CNT contents under 1 N and 3 N loads. There is evidence of adhesion and ploughing on the Al worn surface, which shows a distinct characteristic of abrasive and adhesive wear. The counterpart pin is seized twice in the wear tests, which may be the result of the weld contact surface metal at some protruding points. Al wear particles on the worn surfaces are laminated by the pin on the contact area, forming plough. Because wear particles contain some aluminum oxide, ZHOU et al believed that the oxidation wear was the main wear mechanism of composites[11]. However, according to the SEM images of worn surfaces of the composite and the delamination theory of wear, it can be deduced that the delamination wear could be the main wear mechanism. Dislocations at the surface, subsurface crack and void are induced due to the repeated plastic deformation of the surface layer of composites. The cracks extend later and cause break and split of the hardened surface layer by shear deformation of the surface[12?13]. Because Al matrix is reinforced with carbon nanotubes, the plastic deformation of the matrix is restricted, which hinders the movement of the dislocations and formation of micro-cracks. It can be seen that the flake-like sheets scars in the worn surface of composite become smaller and more, and the evidence of ploughing become shallower, comparing Figs.4(a) and (b). It is suggested that the abrasive and adhesive wear of the composites is slighter than pure aluminum due to increases of hardness and self-lubrication of carbon nanotube, and the delamination wear becomes important. It can be seen that the 3.0% CNTs/Al composite exhibits a severe wear and the layer wear debris is found on the worn surface (Fig.4(c)), which attributes to generation of higher porosity in the composite matrix and causes an increase in the wear rate.

Fig.4 SEM images of worn surface of test specimens with (a) Al (1 N); (b) 2.0% CNTs/Al (3 N); (d) 3.0% CNTs/Al (1 N)

JIANG Jin-long, et al/Trans. Nonferrous Met. Soc. China 17(2007) s116

4 Conclusions

1) The hardness of the composites increases with increasing CNTs content, but then decreases for CNTs greater than 2.0%. The hardness of the composite with 2.0% CNTs is the highest.

2) Within the range of CNTs content from 1.0% to 2.0%, the CNTs can decrease both the friction coefficient and wear rate of the composites. The composite containing 2.0% CNTs exhibits the lower friction coefficient and wear rate.

3) The main wear mechanism is the delamination wear for the composites containing 2.0% CNTs. References

[1] IIJIMA S. Helical microtubes of graphitic carbon[J]. Nature, 1991,

354: 56?58.

[2] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics:

Elasticity, strength and toughness of nanorods and nanotubes[J].

Science, 1997, 277: 1971?1975.

[3] TREACY M J, EBBESEN T W, GIVSON J M. Exceptionaly high

Young’s modulus observed for individual carbon nanotubes[J].

Natutre, 1996, 381: 678?680.

[4] KUZUMAKI T, MIYZA WA W, ICHINOSE H, ITO K. Processing

of carbon nanotube reinforced aluminum composites[J]. J Mater Res,

1998, 13 (9): 2445?2449.

[5] GEORGE R, KASHYAP K T, RAHUL R, YAMDAGNI S.

Strengthing in carbon nanotube/aluminium (CNT/Al) composite[J].

Scripta Materialia, 2005, 53(10): 1159?1163.

[6] DENG C F, WANG D Z, ZHANG X X, LI A B. Processing and

properties of carbon nanotubes reinforced aluminum composites[J].

Materials Science and Engineering A, 2007, 444(1/2): 138?145. [7] CI L J, RYU Z Y, JIN-PHILLIPP N Y, RüHLE M. Investigation of

the interfacial reaction between multi-walled carbon nanotubes and

aluminum[J]. Acta Materialia, 2006, 54(20): 5367?5375.

[8] DENG Chun-feng, ZHANG Xue-xi, WANG De-zun. Chemical

stability of carbon nanotubes in the 2024Al matrix[J]. Materials

Letters, 2007, 61(3): 904?907.

[9] WANG Q, DAI J F, LI W X, MA Q. Investigation of preparation

parameters of carbon nanotubes[J]. Journal of Lanzhou University of

Technology, 2004, 30(6): 27?29. (in Chinese)

[10] XU Long-shan, CHEN Xiao-hua, WU Yu-rong. Preparation of CNTs/

Cu composite[J]. The Chinese Journal of Nonferrous Metals, 2006,

16(3): 406?411. (in Chinese)

[11] ZHOU Sheng-ming, ZHANG Xiao-bin, DING Zhi-peng, MIN

Chun-yan, XU Guo-liang, ZHU Wen-ming. Fabrication and tribological properties of carbon nanotubes reinforced Al composites

prepared by pressureless infiltration technique[J]. Composites Part A:

Applied Science and Manufacturing, 2007, 38(2): 301?306.

[12] SUH N P. The delamination theory of wear[J]. Wear, 1973, 25(1):

111?124.

[13] XU Jin-cheng, YU Hui, XIA Long, LI Xiao-long, YANG Hua.

Effects of some factors on the tribological properties of the short

carbon fiber-reinforced copper composite[J]. Materials and Design,

2004, 25(6): 489?493.

(Edited by ZHAO Jun)

铝基碳化硅增强材料_Al_SiC_和低温共烧陶瓷_LTCC_的钎焊

文章编号:100520299(1999)增刊20153204 铝基碳化硅增强材料(Al/SiC)和 低温共烧陶瓷(LTCC)的钎焊 郭明华,王听岳 (南京电子技术研究所,江苏南京210000) 摘 要:铝基碳化硅增强材料(Al/S iC)和低温共烧陶瓷(LT CC)适合高性能微波电路的高密度组 装.对这两种材料进行焊接时,温度和气氛对基材的焊接性能影响很大.铝基碳化硅增强材料的镀 层在焊接温度时容易发生氧化,低温共烧陶瓷的厚膜导体在真空加热和高温还原性气体的条件下 焊接性劣化.采用金基钎料中温钎焊时,优质的焊料和合理的焊接工艺是获得优质焊缝的关键. 关键词:铝基碳化硅增强材料;低温共烧陶瓷;焊接性 中图分类号:TG454 文献标识码:A Soldering of SiC particulate2reinforced aluminum(Al/SiC)and low temperature co2fired ceramic(L TCC)materials G UO Ming2hua,W ANG T ing2yue (Nan Jing Research Institute of E lectronics T echnology,Nanjing210000,China) Abstract:SiC particulate2rein forced aluminum(Al/SiC)and low tem perature cofired ceramic(LT CC)material are very suitable for high performance microwave circuit packages.S olderability of tw o materials is greatly influenced by tem perature and atm osphere.The plate layer of Al/SiC is easily oxidized when the material is atm osphere treatment. The film conductor′s s olderability of LT CC will become weak when heated in vacuum or heated in reduced atm o2 sphere.Proper s oldering process and using high quality s oldering material are the essential factor to gain g ood joint when middle2tem perature s oldering where g old bases s older is used. K ey w ords:Al/SiC;LT CC;s olderability 军用和航天电子系统电路要求组装密度高,封装体积小,结构重量轻,性能可靠性高.为适应这种需求,MC M技术应运而生[1].MC M-C技术是MC M技术的重要分支.为满足机载相控阵雷达和航天电子高频微波电路的组装要求,采用新型金属复合材料Al/SiC和LT CC.它们优良的性能为MC M-C技术提供了理想的封装和基板材料[2,3].图1为采用MC M-C技术,以这两种材料为组装基材的机载相控阵雷达T/R组件. 微波有 图1 采用Al/S iC和LT CC材料的T/R组件Fig.1 T/R m odule based on Al/S iC and LT CC materials  第7卷 增刊材 料 科 学 与 工 艺 V ol.7 Sup 1999年 MATERI A L SCIE NCE&TECH NO LOGY 1999

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

铝碳化硅

铝碳化硅(Al/SiCp)系第三代电子封装材料,这种SiC颗粒增强铝基复合材料具有的高比强度、高比模量、耐磨损及抗腐蚀性等优良的性能使得其在航空、航天、医疗、汽车等领域获得了广泛的应用前景,也使得其制备、加工以及应用成为当今世界科技发展的一个研究热点。 增强体颗粒SiC比常用的刀具如高速钢刀具和硬质合金钢刀具的硬度高, 在机械加工过程中能引起剧烈的刀具磨损, 因此,复合材料的难加工性和昂贵的加工成本限制了铝基碳化硅复合材料的广泛应用。目前, 在进一步扩大铝基碳化硅复合材料的应用方面, 材料的切削加工是最重要的研究课题之一。随着SiCp/Al复合材料在航空、航天等领域应用的不断增加,出现了越来越多的带有直线、曲线形状的深窄沟槽、小尺寸孔、螺纹且需要对它们进行精密加工的零件。如何突破这种难加工材料的加工工艺方法,有效的降低其加工成本,使其得到广泛的应用,对我国国防事业有着重要意义。 基于当前世界的机械制造水平,我国有部分科研院所针对这个课题作了部分研究,人们尝试了多种加工方法:有金刚石刀具高速加工、金刚石砂轮进行高效磨削、电火花加工、激光加工、超声振动切削加工等等。这么多的方法总而言之,各有利弊,铝碳化硅材料的加工工艺方法还处于摸索总结阶段。 我公司于2009年启动该项目,经过不断地摸索实验与总结,已经取得了一系列研究成果,促进了SiCp/Al复合材料加工技术的发展和应用。我们认为采用金刚石刀具高速切削和采用金刚石砂轮进行高效磨削以及结合电火花加工能有效的保证设计尺寸精度要求。但是,要有效的降低其加工成本还有很多的路要走。其加工制造的瓶颈主要有三点: 1.高精度、高转速、高效率的切削机床。这是实现铝碳化硅复合材料高效加工的根 本,是金刚石刀具高速加工及金刚石砂轮高效磨削的前提条件。 2.金刚石刀具及金刚石砂轮的制造。如何提高金刚石刀具及金刚石砂轮的使用寿 命,降低其制造成本,实际上也就决定了铝碳化硅复合材料的加工成本。 3.切削参数。合理的切削参数能有效的保护机床和刀具,提高加工效率。 针对以上三点,在十二五期间,我们计划再用2年时间解决。首先机床在资金允许的前提下,购买国内外满足使用性能的机床;进一步加大对金刚石刀具的制造和再次刃磨研究;进一步改进电镀金刚石砂轮和钎焊金刚石砂轮的研究;加强对切削参数的优化与总结。同时也进一步展开对其他工艺方法的研究。

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

颗粒增强铝基复合材料研究与应用进展

颗粒增强铝基复合材料研究与应用进展摘要:综述了颗粒增强铝基复合材料的研究现状,从基体、增强体的选择,铝基复合材料的制备方法,影响复合材料性能的因素和改善措施等方面进行阐述,并介绍了该复合材料的广泛应用。 关键词:颗粒;铝基复合材料;制备方法; 应用 Abstract :The research progress of particle reinforced aluminum matrix composite was summarized. The research status of the composite was reviewed in detail from the choice of the reinforcement and the matrix, the preparation technique of aluminum matrix composite, the factors which can affect the performance of the composite. Key words :particle; aluminum matrix composite; preparation methods; application 1.前言 铝基复合材料是以金属铝及其合金为基体 , 以金属或非金颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。由于颗粒增强铝基复合材料具有高的比强度、比刚度,优良的高温力学性能和耐磨性,并且价格便宜,适于批量生产,良好的耐磨性和导热性能等优点,在航天、航空、汽车、电子、光学等工业领域具有相当广泛的应用前景。 颗粒增强复合材料是指弥散的硬质增强相的体积超过 20%的复合材料,而不包括那些弥散质点体积比很低的弥散强化金属的金属基复合材料[1] 。此外,这种复合材料的颗粒直径和颗粒间距很大,一般大于1μm。在这种复合材料中,增强相是主要的承载相,而基体的作用则在于传递载荷和便于加工。这种材料虽然其增强效应远不及连续纤维,但它主要是可以弥补某些材料性能的不足,如增加刚度、耐磨性、耐热性、抗蠕变等。在这种复合材料中,硬质增强相造成的对基体的束缚作用能阻止基体屈服。颗粒复合材料的强度通常取决于颗粒的直径、间距和体积比,但基体很重要。除此之外,这种材料的性能还对界面性能及颗粒排列的几何形状十分敏感[2]。 2.铝基复合材料的选择

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

碳化硅增强铝基复合材料界面改善对力学性能的影响

碳化硅增强铝基复合材料界面改善对力学性能的影响3 徐金城1,邓小燕1,2,张成良1,田亮亮1 (1 兰州大学物理科学与技术学院,兰州730000;2 西北民族大学电气工程学院电子材料实验室,兰州730030) 摘要 用粉末冶金法制备了致密度较好的镀铜碳化硅增强铝基复合材料,并对碳化硅的表面化学镀工艺进行了分析。通过化学镀前后复合材料力学性能的对比研究表明,碳化硅表面镀铜较好地解决了碳化硅与基体的相容性问题,使复合材料的力学性能得到明显提高。 关键词 粉末冶金法 碳化硅 复合材料 化学镀 E ffect of Improved Interface on Mechanic Properties of SiC Particles R einforced Aluminum Matrix Composites XU Jincheng 1,D EN G Xiaoyan 1,2,ZHAN G Chengliang 1,TIAN Liangliang 1 (1 School of Physical Science and Technology ,Lanzhou University ,Lanzhou 730000;2 Key Laboratory for Electronic Materials , College of Electrical Engineering ,Northwest University for Nationality ,Lanzhou 730030) Abstract The SiC particles reinforced aluminum matrix composite is prepared by powder metallurgy.And the technology of electroless plating copper on SiC surfaces is investigated.The comparison of mechanic properties of com 2posites reinforced by coated and uncoated SiC particles indicates that the copper coating on SiC particles preferably im 2proves the compatibility between SiC particles and aluminum matrix and improves the mechanic properties of the com 2posite. K ey w ords powder metallurgy ,SiC particles ,composite ,electroless plating  3甘肃省自然科学基金资助项目(3ZS0512A252048)  徐金城:男,1945年生,教授,目前主要从事金属材料、金属基复合材料及环境材料方面的研究 邓小燕:女,通讯作者,博士生,讲师,研究方向为金属材料、金属基复合材料 E 2mail :dengxy02@https://www.wendangku.net/doc/409183651.html, 0 引言 碳化硅颗粒增强铝基复合材料是金属基复合材料 (MMC )中最具应用前景的一种新型高技术材料。由于其具 有优异的高温强度、高耐磨性、高比刚度等力学性能和良好的可加工性等优点[1-3],已在航空航天、汽车和其它制造业作为结构材料得到了应用。 由于碳化硅陶瓷颗粒与金属基体界面的结合强度低而恶化复合材料的性能,如果在陶瓷表面涂覆金属镀层,不仅可以促进陶瓷粒子在基体金属中的均匀分布,还能改善基体与增强体的界面结合强度,而且这种方法的成本低廉、工艺简单易行,因而成为增强颗粒表面处理中的一种常用方法[4,5]。目前,国内外研究得比较成熟的包裹工艺有沉淀法、溶胶2凝胶法、溶胶法、醇盐水解法、非均相凝固法等[6],其中,化学镀法制备的包裹粉体包裹层与粉体基体结合比较紧密,包裹层厚度容易控制,采用的设备比较简单。 本文用传统粉末冶金方法和化学镀处理粉末的方法制备了SiC 颗粒增强Al 2Cu 2Mg 基复合材料,并研究了化学镀过程中粉末的形貌微观结构和性能的变化,以及它对复合材料力学性能的影响。 1 实验 1.1 原材料 实验中使用纯度为99.5%的Al 粉、Cu 粉和Mg 粉,粒 度均为200目,SiC 粉末为3~5 μm ,纯度为98.5%。1.2 样品的制备 实验先将碳化硅进行化学镀铜处理,化学镀实验中HF 作为净化剂,氯化亚锡作为敏化剂,硝酸银作为活化剂,硫酸铜作为主盐,酒石酸钾钠作为络合剂,甲醛作为还原剂,用氢氧化钠调节镀液的p H 值进行化学镀铜[7]。由于碳化硅镀铜后干燥时间过长,铜膜易氧化,须在200℃下氢气还原3h 。化学镀后SiC 与Cu 质量比为4∶1。 再将原始碳化硅和化学镀铜后的碳化硅分别与铝基合金粉料在研体中混合均匀,然后加入到模具中,制备出SiCp/Al 24%Cu 21.2%Mg (质量分数)复合材料。碳化硅的体积分数依次取0%、3%、6%、9%、12%,同时,SiC 颗粒表面涂覆的Cu 质量计入合金元素百分比。而后用Q Y L50250吨油压千斤顶加压到250MPa ,保压15min ,再将压力加到400MPa 保压30min ,卸载后得到条状试样60mm ×10mm ×3.5mm 。 在氩气保护下,先在400℃预烧60min ,然后升温到560℃进行烧结,保温1.5h ,炉冷得到试样。将烧结试样在氩 ? 52?碳化硅增强铝基复合材料界面改善对力学性能的影响/徐金城等

碳化硅增强铝基复合材料显微组织分析中期报告

中期报告 题目:碳化硅增强铝基复合材料显微组织的 分析

1.设计(论文)进展状况 1.1实验材料 本实验采用的碳化硅增强铝基复合材料各元素含量见表1,表2 表1:本实验用碳化硅增强铝基复合材料试样1化学成分(wt%)元素SiC Al Mg 含量/ wt% 10 87 3 表2:本实验用碳化硅增强铝基复合材料试样2化学成分(wt%)元素SiC Al Mg 含量/ wt% 15 80 5 本实验考虑球磨比1:4配料所得的各成分加入量见表3,表4 表3:配料计算(g) 元素SiC Al Mg 加入量/g 24 208.8 7.2 表4:配料计算(g) 元素SiC Al Mg 加入量/g 36 192 12 1.2实验设计 为使实验具有对比性,首先金相分析其显微组织,其次对SiCp/Al的表面硬度、孔隙率的测量。本实验采用的试棒使用的是粉末冶金工艺,先用球磨机球球磨处理高温处理后结块的碳化硅,时间为45min。目的是把结块的碳化硅打碎。用烘干箱烘干SiC粉末和Al粉末、Mg粉末,目的是确保原材料干燥,混料是不形成结块,易于冷压成型。然后在WE-30型万能材料试验机上进行冷压,压力:600MP,时间:3min。最后将冷压好的试棒放入西安工业大学自制热压机进行热压。 1.3试样制备 1.3.1金相试样的制备 将热压后的试棒进行表面处理。金相试样制备流程如下: (1)取样:选择合适的、有代表性的试样是进行金相显微分析的极其重要的一步,包括选择取样部位、检验面及确定截取方法、试样尺寸等。 (2)磨制:分粗磨和细磨两步。粗磨目的是将切割后试样的切痕等粗略磨掉,为细磨做准备;细磨目的是将已露金属表面上的划痕逐一磨掉,依次使用240#、600#、800#、1000#和1200#水砂纸研磨。

颗粒增强铝基复合材料的研究

颗粒增强铝基复合材料的研究 姓名:陈云班级:10161201 学号:1016120118 【摘要】本文简要介绍了常见的几种颗粒增强铝基复合材料的增强颗粒和性质,以及颗粒增强铝基复合材料的制备方法和应用。 【关键词】颗粒增强铝基复合材料碳化硅氧化铝碳化钛石墨粉末冶金原位反应合成 0 前言 金属基复合材料是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。铝基复合材料是金属基复合材料的一种,按照增强体形式不同可以分为长纤维增强铝基复合材料,短纤维增强铝基复合材料,晶须增强铝基复合材料及颗粒增强铝基复合材料。 颗粒增强铝基复合材料的增强颗粒克服了制备过程中出现的纤维损伤,微观组织不均匀,纤维与纤维相互接触,反应带过大等影响材料性能的缺点。同时,颗粒增强铝基复合材料制备成本低廉,回收性和再利用性好,使其在各个领域都具有广泛应用。因此,本文将简要介绍颗粒增强铝基复合材料的部分相关内容。 1 颗粒增强铝基复合材料 颗粒增强铝基复合材料具有密度小,比强度、比刚度高,剪切强度高,热膨胀系数低,热稳定性和导热、导电性能良好,以及抗磨耐磨性能和耐有机液体和溶剂侵蚀优良等一系列优点。颗粒的增强主要是弥散强化,颗粒越小,弥散强化的效果越好,材料的性能也就越佳。 颗粒增强铝基复合材料增强体的选择要求颗粒在基体中高度弥散均匀分散,尺寸大小要适度,与基体间要有一定粘结作用,而且它们之间各方面都要相匹配。常见的增强颗粒有:碳化硅、碳化钛、氧化铝和石墨颗粒。 1.1 碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基(SiC p/Al)复合材料是一种陶瓷颗粒增强金属基复合材料,它是用碳化硅颗粒作为增强体,采用铝或铝合金作基体,按设计要求,以一定形式、比例和分布状态,构成有明显界面的多组相复合材料。通过改变碳化硅颗粒在复合材料中的含量,可以对材料的性能进行调整。一般随碳化硅体积含量的增

铝碳化硅散热材料及散热解决方案

铝碳化硅介绍及产品设计 西安创正新材料公司是一家集研发、生产和销售为一体的高科技企业。主要致力于第三代电子封装材料——铝碳化硅的研发、生产与销售,根据用户需求,开发了多种AlSiC产品,为微波器件、大功率器件、微电子器件等制造商提供专业的热管理材料及技术方案。 公司产品广泛应用于轨道交通、新能源汽车、航空航天、军事等领域,是新一代大功率电子器件最佳选择。 公司将持续加强与用户的交流与合作,不断满足国内外用户的市场需求,力争以先进的工艺技术、严格的质量管控、一流的性能水平、最高的性价比优势服务用户、持续为客户创造价值。 铝碳化硅介绍 铝碳化硅AlSiC(Al/SiC,SiC/Al)是一种颗粒增强铝基复合材料,采用铝合金作为基体,SiC作为增强体,充分结合了陶瓷和金属铝的不同优势,实现了封装了轻便化、高密度化等要求。 AlSiC密度在2.95~3.1g/cm3之间,热膨胀系数(CTE)6.5~9ppm/℃,具有可调的体积分数,提高碳化硅体积分数可以使材料的热膨胀系数显著降低。同时,铝碳化硅还具有高的热导率和比刚度,表面能够镀镍、金、银、铜,具有良好的镀覆性能。 铝碳化硅复合材料的比刚度是所有电子材料中最高的:是铝的3倍,W-Cu 和Kovar的5倍,铜的25倍,另外铝碳化硅的抗震性好,因此是恶劣环境(震动较大,如航天、汽车等领域)下的首选材料。铝碳化硅复合材料已成为航空航

天、国防、功率模块和其他电子元器件所需求的新型封装材料。用于航空航天微波、功率放大模块等电子器件及模块的封装壳体或底座。 与其他材料性能对比:

铝碳化硅产品设计 ◆板类产品 用AlSiC制成各种板类的产品,用于各类电路的热沉、基板、封盖、过渡片等,可替代目前在使用的氧化铍、氮化铝、钼片、钨铜合金及其它金属材料。 板类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度厚度外形加工内部加工 最大24524510可加工各种 形状可打孔、攻丝、台阶 孔等 最小330.5 在特殊要求下,可以制造最大245*350*80mm的材料,但制造成本将会很高。过厚的材料内部致密度会受到影响。 最大尺寸可以是裸材或表面覆铝,也可在裸材或表面铝上加工各种形状(拱面,伞面等);最小尺寸一般为裸材,在特殊条件下,厚度可加工到0.3mm;而 最小尺寸表面覆铝厚度应不小于0.8mm和外形10mm。 可在某些部位镶嵌其他材料(钛合金、不锈钢、可伐合金等或其他难熔的非 金属)。 孔、台阶孔等处为铝合金材料,可以满足螺丝固定设计,孔、台阶孔可以在 铝碳化硅材料上直接加工,但成本比在铝合金上加工成本高。而螺纹孔需在铝合 金上做成,能过保证螺纹牙的完整性。 倒角、倒边、圆角以及各种设计的加工轮廓,均可在材料上加工。 ◇产品加工精度 一般要求可以做到平面度0.01mm/cm、尺寸精度±0.1mm的要求; 关键尺寸精度可以做在0.05mm以内。 ◇产品表面处理 表面可按设计覆盖各种镀层,如:镍、金、银等; ◆管壳类产品 用AlSiC制造的各类封装管壳产品,用于各种电路的外壳、底座、管件等,可替代目前在使用的可伐合金、铝、钼及其它金属材料外壳。 管壳类产品,可分为裸材和表面覆铝。 ◇产品成型尺寸 长度宽度高度壁厚外形加工内部加工 最大24524512010 可加工各种形 状可打孔、攻丝、台阶 孔等 最小8831 在特殊要求下,可以制造最大245*350*80*10mm的材料,但制造成本会比较

2016-2020年碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告

碳化硅增强铝基复合材料市场深度调研及投资战略咨询报告 2016-2020

核心内容提要 产业链(Industry Chain) 狭义产业链是指从原材料一直到终端产品制造的各生产部门的完整链条,主要面向具体生产制造环节; 广义产业链则是在面向生产的狭义产业链基础上尽可能地向上下游拓展延伸。产业链向上游延伸一般使得产业链进入到基础产业环节和技术研发环节,向下游拓展则进入到市场拓展环节。产业链的实质就是不同产业的企业之间的关联,而这种产业关联的实质则是各产业中的企业之间的供给与需求的关系。 市场规模(Market Size) 市场规模(Market Size),即市场容量,本报告里,指的是目标产品或行业的整体规模,通常用产值、产量、消费量、消费额等指标来体现市场规模。千讯咨询对市场规模的研究,不仅要对过去五年的市场规模进行调研摸底,同时还要对未来五年行业市场规模进行预测分析,市场规模大小可能直接决定企业对新产品设计开发的投资规模;此外,市场规模的同比增长速度,能够充分反应行业的成长性,如果一个产品或行业处在高速成长期,是非常值得企业关注和投资的。本报告的第三章对手工工具行业的市场规模和同比增速有非常详细数据和文字描述。 消费结构(consumption structure) 消费结构是指被消费的产品或服务的构成成份,本报告主要从三个角度来研究消费结构,即:产品结构、用户结构、区域结构。1、产品结构,主要研究各类细分产品或服务的消费情况,以及细分产品或服务的规模在整个市场规模中的占比;2、用户结构,主要研究产品或服务都销售给哪些用户群体了,以及各类用户群体的消费规模在整个市场规模中的占比;3、区域结构,主要研究产品或服务都销售到哪些重点地区了,以及某些重点区域市场的消费规模在整个市场规模中的占比。对消费结构的研究,有助于企业更为精准的把握目标客户和细分市场,从而调整产品结构,更好地服务客户和应对市场竞争。

颗粒增强铝基复合材料

颗粒增强铝基复合材料 1.复合材料 1.1复合材料的概述 材料是社会进步的物质基础和先导,是人类进步的里程碑。在许多方面,传统的单一材料已不能满足实际需要,这些都促进人们对材料的研究逐步摆脱过去单纯靠经验的摸索方法,向预定性能设计新材料的研究方展发展。复合材料(Composite Materials)一词大约出现在20世纪50年代,随之也出现复合材料较为严格的定义。复合材料是由两种或两种以上物理和纯学性质不固的物质组合两成的一种多相固体材料[1]。复合材料的组分材料虽然保持其相对的独立性,但复合材料的性能却不是组分材料的简单加和,两是有着重要的改进。复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。分散相是以独立的形态分布在整个连续相中,两相之间存在着相界面。分教相可以是增强纤维,也可以是颗粒状或弥散的填料。 自上世界40年代美国诞生了玻璃纤维增强塑料(俗称玻璃钢)以来,新型增强材料不断出现,到目前为止,聚合物基、金属基、陶瓷基、混凝土基复合材料和碳,碳复合材料正以前所未有的速度发展。随着航天航空技术的发展,对结构材料的比强度、比模量、韧性、耐热、抗环境能力和加工提出了新的要求。高强度、高模量的耐热纤维和颗粒与金属复合,特别是轻金属复合焉成的金属基复合材料,克服了树脂基复合材料耐热性差和不导电、导热性能低等不足,加上增强体不仅提高了材料的强度,还可以保持密度变纯不大甚至降低。此外,这种材料还具有耐疲劳、耐磨耗、高阻尼、不吸潮放气等特点,已经广泛应用予尖端技术领域,是理想的结构材料。2l世纪我们面临筋将是复合材料迅猛发展和更广泛应用的时代[2-4]。 1.2颗粒增强铝基复合材料 金属基复合材料(Metal Matrix Composite,简称MMC)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。在结构材料方面,

碳化硅--复合材料、

复合材料 姓名:黄福明 学号:2015141421022 专业:金属材料工程

碳化硅增强体 碳化硅纤维是典型的以碳和硅为主要成分的陶瓷纤维,在形态上有晶须和连续纤维两种。作为先进复合材料最重要的增强材料之一,它具有高温耐氧化性、高硬度、高强度、高热稳定性、耐腐蚀性和密度小等优点。与碳纤维相比,碳化硅纤维在极端条件下也能够保持良好的性能,故而在航空航天、军工武器装备等高科技领域备受关注,常用作耐高温材料和增强材料。此外,随着制备技术的发展,碳化硅纤维的应用逐渐拓展到高级运动器材、汽车废烟气除尘等民用工业方面。 一、碳化硅纤维的制备方法 碳化硅纤维的制备方法主要有先驱体转化法、化学气相沉积法(CVD)和活性炭纤维转化法三种。三种制备方法各有优缺点,而且使用不同制备方法得到的碳化硅纤维也具有不同的性能。 1、先驱体转化法 先驱体转化法是由日本东北大学矢岛教授等人于1975年研发,包括先驱体合成、熔融纺丝、不熔化处理与高温烧结4大工序。 先驱体转化法制备碳化硅纤维需要先合成先驱体——聚碳硅烷(PCS),矢岛教授以二甲基二氯硅烷等为原料,通过脱氯聚合为聚二甲基硅烷,再经过高温(450 ~500℃)分解处理转化为聚碳硅烷纤维(PCS),,采用熔融法在250 ~350℃下将PCS纺成连续PCS纤维,然后经过空气中约200℃的氧化交联得到不熔化聚碳硅烷纤维,最后在惰性气氛或高纯氮气保护下1300℃左右裂解得到碳化硅纤维。先驱体转化法制备原理其实就是将含有目标元素的高聚物合成先驱体,再将先驱体纺丝成有机纤维,然后通过一系列化学反应将有机纤维交联成无机陶瓷纤维。 随着碳化硅制备技术的不断改进,逐渐形成了 3代碳化硅纤维。第1代碳化硅纤维是以矢岛教授研发的方法制备而成。由于在制备过程中引入了氧,纤维中的氧质量分数为10%~15%,在高温下碳化硅纤维的稳定性变差,影响了纤维在高温环境下的强度和弹性模量。因此,为改善这个问题研制初了第 2代碳化硅纤维。第 2代碳化硅纤维是在无氧气氛中采用电子辐照对原纤维进行不熔化处理,利用这种方式来降低碳化硅纤维中的氧含量,从而保障其在高温环境下的稳定性。同样,为满足航空和军工领域对高温材料性能的更高要求,开发了第3代碳化硅纤维。第3代碳化硅纤维中的杂质氧、游离碳含量进一步降低,接近碳化硅的化学计量比。虽然第3代碳化硅纤维的杂质氧、游离碳含量减少,但是目前控制纤维中

SiC增强铝基复合材料要点

碳 化 硅 增 强 铝 基 复 合 材 料 班级:gj材料102 姓名:陈琨 指导老师:张小立 2012年6月6日

SiC增强铝基复合材料 摘要:SiC增强铝基复合材料能充分发挥SiC颗粒和金属基体的各自优势,而且可以进行成分设计,与基体合金相比,具有优异的机械性能和物理性能、高的比强度和比模量、良好的抗疲劳性能、低的热膨胀系数和良好的热稳定性,而且材料各向异性小,成本低廉,是一种具有广阔应用前景的先进材料,自问世以来一直受到材料科学及工程应用领域极大的重视,正在部分取代传统的金属材料而应用在航空航天、汽车、电子封装和体育器械等对材料性能要求较高的领域。本文将综合介绍和分析影响其导热性能、热膨胀系数及热稳定性的主要因素;SiC增强铝基复合材料的研究和进展,并比较了几种该复合材料的制备工艺,包括搅拌铸造法、压力铸造法、无压渗透法、喷雾沉积法、离心铸造法和粉末冶金法等;SiC增强铝基复合材料断裂韧性的影响因素,其影响因素有增强相的尺寸、形状以及含量,热处理工艺,基体与增强相具有不同的膨胀系数,金属基体的化学成分等,并在前人研究的基础上提出了几点设想。 关键词:SiC 颗粒;铝基复合材料;研究方法;导热性;热膨胀性;断裂韧性;影响因素 前言 近年来在金属基复合材料中,以颗粒、短纤维、晶须等非连续相增强的铝基复合材料(SiC Reinforced Aluminium Matrix Composite)因其良好的可再加工性和各向同性而倍受重视。由于其具有高的比强度、比刚度、导热性, 优良的摩擦性能,与铝合金密度相当,以及可调配的热膨胀系数等优点而成为目前国内外专家学者研究的热点之一。而SiCp 价格低廉,来源广泛,用它作为增强相,可以改善铝基或铝合金基体的高、低温强度,提高其弹性模量,增强其耐磨性能。所以铝基复合材料受到人们越来越广泛的关注, 国内外已对其进行了大量的研究报道。 1.SiC增强铝基复合材料的制备工艺【1】

昆明理工大学材料学院学生大四上学期专业课论文_颗粒增强铝基复合材料

铝基复合材料的研究发展现状与发展前景——颗粒增强铝基复合材料 课程名称:复合材料 学生:XX 学号:XXXXX 班级:XX 日期:20XX年X月X日

铝基复合材料的研究发展现状与发展前景 ——颗粒增强铝基复合材料 XX (刚理工大学,省市,650093) 摘要:介绍了颗粒增强铝基复合材料的发展历史、制备工艺、性能及应用,以碳化硅颗粒增强铝基复合材料为例指出了颗粒增强铝基复合材料这一行业存在的问题,并对这种材料的未来发展趋势做了预测。 关键词:颗粒增强铝基复合材料;历史;工艺;性能;应用;趋势 0.引言 近年来在金属基复合材料领域, 铝基复合材料(包括纤维增强和颗粒增强)的发展尤为迅速。这不仅因为它具有重量轻、比强度、比刚度高、剪切强度高、热膨胀系数低、良好的热稳定性和导热、导电性能, 以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等一系列优点, 而且因为在世界围有丰富的铝资源, 加之可用常规设备和工艺加工成型和处理, 因而制备和生产铝基复合材料比其他金属基复合材料更为经济, 易于推广和应用,因此, 这种材料在国外受到普遍重视。而其中的颗粒增强铝基复合材料解决了纤维增强铝基复合材料增强纤维制备成本昂贵的问题, 而且材料各向同性, 克服了制备过程中出现的诸如纤维损伤、微观组织不均匀、纤维与纤维相互接触、反应带过大等影响材料性能的许多缺点。所以颗粒增强铝基复合材料已成为当今世界金属基复合材料研究领域中的一个最为重要的热点, 并日益向工业规模化生产和应用的方向发展。 1.发展历史 金属基复合材料(复合材料)自60年代初期开始研究,现在已经取得了突破性的进展。初期研究的工作主要集中在连续纤维增强复合材料]1[,但由于连续长纤维本身的制造工艺复杂、价格昂贵,再加上纤维的预处理以及纤维增强复合材料制造工艺限制,使连续纤维增强复合材料成本极高,仅限用于要求极高性能的场合。 因此,进入80年代,研究重点转向了成本较低的SiC、Al 2O 3 等颗粒或晶须作为增 强材料的不连续增强复合材料,这种材料具有比刚度、比强度强,耐磨性、抗蠕变性好、热膨胀系数小等特点]2[,其比刚度超过了钢和钛合金,而价格不到钛合金的十分之一]3[,用以取代钢、钛等材料,对减轻产品结构重量,降低成本具有明显的经济效益,尤其是取代航空、航天飞行器中的合金钢、钛合金构件,更具有巨大的潜力。 20世纪70年代末,美国政府开始将复合材料列入武器研究清单,并对其研究成果限制发表。日本通产省在20世纪80年代初期开始实施的“下世纪产业基础技术”规划中,把发展铝基复合材料放在了主要位置,并在财力、物力上向有关院所、高校和公司倾斜。我国从20世纪80年代中期开始经过十几年的努力,在颗粒增强铝基复合材料的组织性能、复合材料界面等方面的研究工作已接近国际先进水平,铝基复合材料已列为国家“863”新型材料研究课题。

铝基复合材料发展史

2003年5月中作为我国国防建设重点的三大杀手铜项目的总指挥和总工程师们已正式决定使用我们的这项技术,航天惯导用动压马达关键件类金刚石膜研究”和“铝基复合材料及其表面涂层”两项目已经在国防科工委立项。 于1996年进行了大规模的商业性试验,为铝基复合材料开拓了一个巨大的新应用领域。 1995年,anxide和方面的需要而进入航空航天用军工领域的,WauPaca合作生产的陶瓷加强铝基复合材料并且得到了日益广泛的应用。 于1996年进行了大规模的商业性试验,为铝基复合材料开拓了一个巨大的新应用领域。 1995年,anxide和方面的需要而进入航空航天用军工领域的,WauPaca合作生产的陶瓷加强铝基复合材料并且得到了日益广泛的应用。 自1994年起,不断有欧美国家惯导系统应用铝基复合材料的报道‘引。 Dural铝复合材料公司1990年夏天在加拿大魁北克建成了一座年产11,000吨商标为Duralcan的颗粒增强铝基复合材料的工厂。 自1990年起,美国Alcoa铝业公司的子公司—Dural铝基复合材料公司就已用此法进行铝基复合材料的批量生产。 1980—1990年是纤维增强金属举复合材料的时代,其中以铝基复合材料的应用最为_r’泛,这‘时期足复合材料发展的第二代。 1987一1988年美国ACMC公司与亚利桑那大学光学研究中心合作,采用SIC颗粒增强铝基复合材料研制成超轻量化(ULW)空间望远镜(包括结构析架部件与反射镜)和坦克激光反射镜。 1986年Dulal公司首先发明了第一种大批量生产可重熔的且适合于工业规模化生产的颗粒增强铝基复合材料铸锭的新工艺【使金属基复合材料获得了巨大进展。 另外,1986年Dural公司采用双重搅拌机构和真空技术,使涡流作用降低到最低程度,可明显减少熔体吸入的气体量,获得高质量的颗粒增强铝基复合材料并用于规模化生产。 1985年由哈尔滨工业大学牵头组织,引进日本的碳化硅晶须(Si蛛/AI)和颗粒(Si蛛/AI)复合材料制备技术,采用压铸法开始对碳化硅铝基复合材料的制作和应用进行研究。 1983年日本丰田汽车公司就是用这一方法制成铝基复合材料局部增强活塞,效果良好。1983年,日本丰田公司开发晶须增强铝基复合材料,并用于汽车活塞,哈尔滨工程大学硕士学位论文是金属基复合材料的第一次商业应用116,71。 自1983年日本丰田汽车公司制备了氧化铝短纤维增强铝合金活塞以来,铝基复合材料以其优越的性能得到世界范围的广泛研究,并日趋走向工业规模的应用。 自1983年日本丰田汽车公司制备了氧化铝短纤维增强铝合金活塞以来,铝基复合材料以其优

相关文档