文档库 最新最全的文档下载
当前位置:文档库 › 一元二次函数的最值问题

一元二次函数的最值问题

一元二次函数的最值问题
一元二次函数的最值问题

一元二次函数最值问题

例1、(1)求函数

在[t ,t +2]上的最小值.

(2)、求函数

在区间[-1,1]上的最小值.

(3)、已知函数

在区间[-3,2]上的最大值为4,求实数a 的值.

变式:(2006江苏)(本小题满分16分,第一小问4分,第二小问满分6分,第三小问满分6分)

设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。

(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t )

(Ⅱ)求g (a ) (Ⅲ)试求满足)1()(a

g a g =的所有实数a

例2.(浙江卷15)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=___.1

例3、(2009江苏高考)设a 为实数,函数||)(2)(2a x a x x x f --+=.

(1) 若1)0(≥f ,求a 的取值范围;

(2) 求)(x f 的最小值;

(3) 设函数()+∞∈=,),()(a x x f x h ,求不等式1)(≥x h 的解集.

变式:已知函数1)(2

-=x x f ,|1|)(-=x a x g .

(1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围;

(2) 若R x ∈时,不等式)()(x g x f ≥恒成立,求实数a 的取值范围;

(3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值.

例1、

(1)求函数在[t,t+2]上的最小值.

解析:

(1)当,即时,在[t,t+2]上单调递减,

.

(2)当,即时,.

(3)当时,在[t,t+2]上单调递增,.(2)、求函数在区间[-1,1]上的最小值.

解析:

(1)当,即a≤-2时,;

(2)当,即时,;

(3)当,即a≥2时,.

综上,.

(3)、已知函数在区间[-3,2]上的最大值为4,求实数a 的值. 解析:.(1)若a=0,,不合题意.

(2)若a>0,则,由,得.

(3)若a<0,则,由1-a=4,得a=-3. 综上知或a=-3

变式:(2006江苏)(本小题满分16分,第一小问4分,第二小问满分6分,第三小问满分6分)

设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。

(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t )

(Ⅱ)求g (a ) (Ⅲ)试求满足)1()(a

g a g =的所有实数a 20.本小题主要考查函数、方程等基本知识,考查分类讨论的数学思想方法和综合运用数学知识分析问题、解决问题的能力。

t =要使有t 意义,必须1+x ≥0且1-x ≥0,即-1≤x ≤1,

∴22[2,4],t =+t ≥0 ①

t 的取值范围是2112t =

-

∴m(t)=a(2112t -)+t=21,2]2

at t a t +-∈

(2)由题意知g(a)即为函数21(),2]2

m t at t a t =+-∈的最大值。 注意到直线1t a =-是抛物线21()2

m t at t a =+-的对称轴,分以下几种情况讨论。

当a>0时,函数y=m(t), t ∈的图象是开口向上的抛物线的一段,

由1t a

=-<0知m(t)在上单调递增,∴g(a)=m(2)=a+2

(2)当a=0时,m(t)=t, t ∈,∴g(a)=2.

(3)当a<0时,函数y=m(t), t ∈的图象是开口向下的抛物线的一段,

若1t a =-∈

,即2

a ≤-

则()g a m ==

若12]t a =-∈

,即12

a <≤-则11()()2g a m a a a =-=-- 若1(2,)t a =-

∈+∞,即102a -<<则()(2)2g a m a ==+

综上有2,1(),2a g a a a ?+??=--?

121,222

a a a >--<<-≤- (3)解法一:

情形1:当2a <-时112a >-

,此时()g a =11()2g a a

=+

由121a a +==--a<-2矛盾。 情形2

:当2a -≤<

112a <≤-

时,此时()g a =11()2a g a a =--

12

a a =--解得,

a =

a < 情形3

:当a ≤≤

1a ≤

时,此时1()()g a g a ==

所以2

a ≤- 情形4

:当122

a -<≤-

时,12a -≤<1()2g a a a =--,

1()g a

=1222

a a a a --==->-解得与矛盾。

情形5:当102a -

<<时,12a <-,此时

g(a)=a+2, 1()g a

=

由2a +=

12,2

a a =>-与矛盾。 情形6:当a>0时,10a >,此时g(a)=a+2, 11()2g a a =+

由1221a a a

+=+=±解得,由a>0得a=1.

综上知,满足1

()()g a g a =的所有实数a 为,2

a ≤≤-

或a=1 例2.(浙江卷15)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=___。1

例3、(2009江苏高考)设a 为实数,函数||)(2)(2a x a x x x f --+=.

(4) 若1)0(≥f ,求a 的取值范围;

(5) 求)(x f 的最小值;

(6) 设函数()+∞∈=,),()(a x x f x h ,求不等式1)(≥x h 的解集.

变式:已知函数1)(2

-=x x f ,|1|)(-=x a x g .

(4) 若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围;

(5) 若R x ∈时,不等式)()(x g x f ≥恒成立,求实数a 的取值范围;

(6) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值.

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

二次函数最大利润问题专项练习(20191110123257)

二次函数最大利润问题练习 1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 2.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400 件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 3.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人 数是多少时,旅行社可以获得最大营业额?

4.某商场以每台 2500 元进口一批彩电。如每台售价定为 2700 元,可卖出 400 台,以每 100 元为一个价格单位,若将每台提高一个单位价格,则会少卖出 50 台,那么每台定价为 多少元即可获得最大利润?最大利润是多少元? 5.某产品每件成本10 元,试销阶段每件产品的销售价 x (元) 与产品的日销售量y (件)之间的关系如下表: x (元) 15 20 30 ? 若日销售量y 是销售价 x 的一次函数. y (件) 25 20 10 ? ⑴求出日销售量y (件)与销售价 x (元)的函数关系式; ⑵要使每日的销售利润最大, 每件产品的销售价应定为多少元?此时每日销售利润是多 少元? 6.某商品的进价为每件 40 元.当售价为每件 60 元时,每星期可卖出 300 件,现需降价处理, 且经市场调查:每降价 1 元,每星期可多卖出 20 件.在确保盈利的前提下, 解答下列问题: ( 1)若设每件降价 x 元、每星期售出商品的利润为 y 元,请写出 y 与 x 的函数关系式, 并求出自变量x 的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

二次函数中的利润问题

22.3 二次函数中的利润问题 教学目标 1.会求二次函数y =ax 2+bx +c 的最小(大)值. 2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 3.根据不同条件设自变量x 求二次函数的关系式. 教学重点 1.根据不同条件设自变量x 求二次函数的关系式. 2.求二次函数y =ax 2+bx +c 的最小(大)值. 教学难点 将实际问题转化成二次函数问题. 教学过程 一、导入新课 二次函数y=ax2+bx+c(a ≠0)的性质:顶点式,对称轴和顶点坐标公式: ? 利润=售价-进价. ? 总利润=每件利润×销售数量. 二、探究新知 1、日用品何时获得最大利润 ? 1.某商店购进一批单价为20元的日用品,如果以单价30元销售,.44222 a b ac a b x a y -+??? ??+=a b x 2-= ???? ??--a b a c a b 44,22

那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? ? 设销售价为x 元(x ≥30元), 利润为y 元,则 ? 探究2:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 教师引导学生阅读问题,理清自变量和变量.在这个探究中,某商品调整,销量会随之变化.调整的价格包括涨价和降价两种情况. (1)我们先看涨价的情况. 设每件涨价x 元,每星期则少卖l0x 件,实际卖出(300-l0x )件,销售额为(60 + x ) (300-l0x )元,买进商品需付40(300-10x )元.因此,所得利润y =(60+x )(300-l0x )一40(300-l0x ), 即y =-l0x 2+100x +6 000. 列出函数解析式后,教师引导学生怎样确定x 的取值范围呢? 由300-l0x ≥0,得x ≤30.再由x ≥0,得0≤x ≤30. 根据上面的函数,可知: 当x =5时,y 最大,也就是说,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大利润是6250元. (2)我们再看降价的情况. 设每件降价x 元,每星期则多卖20x 件,实际卖出(300+20x )件,销售额为(60-x ) (300+20x )元,买进商品需付40(300+20x )元.因此,所得利润 y =(60-x )(300+20x )-40(300+20x ), 即 y =-20x 2+100x +6 000. 怎样确定x 的取值范围呢? 由降价后的定价(60-x )元,不高于现价60元,不低于进价40元可得0≤x ≤20. 当x =2.5时,y 最大,也就是说,在降价的情况下,降价2.5元,()()[] 202040020---=x x y 20000 140202-+-=x x ().450035202 +--=x

二次函数及实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

最新中考二次函数---利润问题教学提纲

中考二次函数利润问题 题型一、与一次函数结合 1、某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元). (1)求y与x之间的函数关系式. (2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150 元的销售利润,销售价应定为多少元? 2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数. (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?

题型二、寻找件数之间的关系 (一)售价为未知数 1、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少? 2、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。考虑了所有因素后该零售店每个面包的成本是5角。设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。 ⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y与x之间的函数关系式; ⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?

二次函数最大利润应用题(含答案)

二次函数最大利润应用题 参考答案与试题解析 1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、 线段CD分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2 (单位:元) 与产量x(单位:kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y 1 与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元; (2)设线段AB所表示的y 1与x之间的函数关系式为y=k 1 x+b 1 , ∵y=k 1x+b 1 的图象过点(0,60)与(90,42), ∴ ∴, ∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90); (3)设y 2与x之间的函数关系式为y=k 2 x+b 2 , ∵经过点(0,120)与(130,42), ∴, 解得:, ∴这个一次函数的表达式为y 2 =﹣0.6x+120(0≤x≤130), 设产量为xkg时,获得的利润为W元, 当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250; 当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535, 由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160, 因此当该产品产量为75kg时,获得的利润最大,最大值为2250.

2018中考总复习二次函数利润问题

2016扬州中考18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5. 【考点】二次函数的应用. 【分析】根据题意可以列出相应的不等式,从而可以解答本题. 【解答】解:设未来30天每天获得的利润为y, y=(20+4t)﹣(20+4t)a 化简,得 y=﹣4t2+t+1400﹣20a 每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大, ∴≥﹣4×302+×30+1400﹣20a 解得,a≤5, 又∵a>0, 即a的取值范围是:0<a≤5. 24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元. (1)求y关于x的函数表达式; (2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围. 【考点】二次函数的应用;分段函数. 【分析】(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可. (2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,30<x≤m时,y=﹣x2+150x=﹣(x ﹣75)2+5625,根据二次函数的性质即可解决问题. 【解答】解:(1)y=. (2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加, 当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625, ∵a=﹣1<0, ∴x≤75时,y随着x增加而增加, ∴为了让收取的总费用随着团队中人数的增加而增加, ∴30<m≤75.

人教版初中数学九年级数学上册:22.3 实际问题与二次函数 二次函数求利润的最值问题

二次函数求商品利润的最值问题 例题:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 解:设每件降价x元,总利润为y元。 则y=(60-40-x)(300+20x)) =-20x2+100x+6000 =-20(x-2.5)2+6125 因此当x=2.5时,y有最大值6125. 60-x=60-2.5=57.5 答:每件定价为:57.7元时利润最大. 一、说题意 1:题目涉及到的知识点 ①二次函数最值问题

顶点 ②利润问题 2、已知条件和未知条件之间的关系 每件的利润=每件的售价-每件的进价 总利润=每件的利润×所售的件数 3、题目的基础背景 二次函数的性质作为初中课本中的重要知识点,在实际生活中有着广泛的应用,而应用二次函数的性质求商品利润最值的相关题目在练习和中考题中经常出现,对于这类题,我们应先仔细分析题目中给出的信息,列出二次函数,然后利用二次函数的性质,便可使这类题迎刃而解。 二、说思路 三、说思想 本题间接设每件降价为x元比直接设每件定价为x元要在计算量上简单本节主要学习了利用二次函数解决利润问题中的一些最值问题,解决这类问题,一般先理清楚题中各个数量关系,通过建模思想建立函数模型,最后利

用二次函数中求最值的方法达到我们解决问题的目的 四、问题的延伸及拓展 变式训练:某商品现在的售价为每件60元,每星期可卖出300件,市 场反映,每涨价2元,每星期可少卖出20件。已知商品的进价为每件40元, 如何定价才能使利润最大? 分析:本题的数量关系 (1)每件利润=每件售价-每件进价 (2)销售总利润=单件利润×销售件数 分析:设每件涨价x元,总利润为y元 解:设设每件涨价x元,总利润为y元 当x=5时利润最大为6250元 60+x=60+5=65 答:当定价为65元时能获得最大利润,且最大利润为6250元

实际问题与二次函数最大利润问题 专题练习题 含答案

实际问题与二次函数最大利润问题专题练习题 1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( ) A.150元 B.160元 C.170元 D.180元 2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( ) A.50元 B.80元 C.90元 D.100元 3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( ) A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月 4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元. 6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:

每投入x万元,可获得利润P=-1 100 (x-60)2+41. 每年最多可投入100万元的销售投资, 则5年所获利润的最大值是. 7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少? 8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据: 设y与x的关系是我们所学过的某一种函数关系. (1)直接写出y与x的函数关系式,并指出自变量x的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少? 9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的

二次函数与最大利润问题 (2)

二次函数与最大利润问题 教学内容及其分析: 1、内容:二次函数与最大利润问题,利用二次函数的图象和性质确定最大值. 2、分析:二次函数是描述现实世界变量之间关系的重要数学模型,运用二 次函数可以解决许多实际问题,例如生活中涉及的求最大利润、最大面积等实际问题都与二次函数的最小(大)值有关.本节课是在学习了二次函数与实际问题的基础上,进一步让学生熟练地掌握用二次函数的性质求最大利润问题的解题方法。所以本节课的教学重点是:从实际问题中抽象出二次函数关系并运用二次函数的最小(大)值解决实际问题. 二、教学目标及其分析: 1、目标:(1)能根据已知条件找出等量关系列出二次函数关系式, (2)会用二次函数的性质确定最值. 2、分析:学生通过具体问题,找出变量之间的等量关系,进一步从实际问题中抽象出二次函数模型,结合实际问题研究二次函数,将二次函数的最小(大)值的结论和已有知识综合运用起来解决实际问题. 三、教学问题诊断分析: 学生已经学习了二次函数与实际问题,但运用二次函数的知识解决实际问题要求学生能选取适当的用来描述变量之间关系的函数分析问题和解决问题,对学生来说难度较大。基于以上分析,本节课的难点是:根据实际问题列出二次函数的解析式,并根据二次函数的性质确定最大值. 四、教学过程设计 教学基本流程:课前回顾——揭示复习目标——中考考点链接——典例分析——当堂训练——课后小结 教学情境 (一)课前回顾: ,对称轴为的图象开口向 函数342.22-+-=x x y 有最小值时,当有最大值时,当的增大而 随时当y x y x x y x ==-≤≤-,,15 1. 二次函数y= ax 2+bx+c (a ≠0)的图象和性质 x x y o

二次函数求最大利润问题的教学设计

二次函数求最大利润问题的教学设计 范亚书 一、学生知识状况分析 学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y =ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。 学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。 二、教学任务分析 “怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。二次函数化为顶点式后,很容易求出最大或最小值。而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。具体地,本节课的教学目标是: (一)知识与技能

1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。 2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。 (三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。 2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。 教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 三、教学过程分析

二次函数与实际问题-利润问题

课题:人教版第二十六章第一节《实际问题与二次函数》 教学目标: 1、知识与技能: 能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数求出实际问题中的最大(小)值,发展学生解决问题的能力。 2、过程与方法: 经历探索商品销售中最大利润问题的过程,进一步认识如何利用二次函数的有关知识解决实际问题,增强学生数学应用能力。 3、情感态度与价值观: 提高学生解决问题的能力,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。 教学重点与难点: 1、重点: 让学生通过解决问题,掌握如何应用二次函数来解决经济中最大(小)值问题。 2、难点: 如何分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的。 教学过程: 一、创设情境: 请同学们考虑下列问题: 已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 学生根据相应的数量关系列出方程。 设每件涨价x元 (60+x -40)×(300-10x)=6090 (从实际生活入手,创设问题情境,提高学生兴趣,激发求知欲望。) 二、探索新知,进入新课 1、商场的服装,经常出现涨价、降价,这其中有何奥妙呢?商家的利润否是随涨价而增多,降价而减少呢? 2、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。如何定价才能使利润最大? 教师展示问题, (1)、本题中的变量是什么? (2)、如何表示赚的钱呢? 学生分组讨论,利用函数模型解决问题 设每件涨价x元,由此商品 ①每件的利润为:(60+x -40)元 ②每星期的销售量为:(300-10x)件 ③所获利润是:(60+x -40)×(300-10x)元 若设所获得利润为y元,则有y=(60-40+x)(300-10x),即 y=-10x2+100x+6000。

初中数学:利用二次函数解决距离、利润最值问题练习(含答案) (2)

初中数学:利用二次函数解决距离、利润最值问题练习(含答案) 一、选择题 1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最大的是( ) A.第8秒 B.第10秒 C.第12秒 D.第15秒 2.某民俗旅游村为解决游客的住宿需求,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则租出床位相应地减少10张.如果每张床位每天以20元为单位提高收费,为使租出的床位少且所获租金高,那么每张床位每天最合适的收费是( ) A.140元 B.150元 C.160元 D.180元 二、填空题 3.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.4.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润. 5.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:

科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃. 三、解答题 6.小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9-x; ②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克. (1)求该二次函数的表达式; (2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大,最大平均利润是多少.(注:平均利润=销售价-平均成本) 7.如图K-7-1所示,甲船从A处起以15海里/时的速度向正北方向航行,这时乙船从A 的正东方20海里的B处以20海里/时的速度向正西方向航行,多长时间后,两船的距离最小?最小距离是多少?

二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. 解:4)1(2-+=x y 当1-=x 时,y 有最小值4-,无最大值. (2)求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y ∵30≤≤x ,对称轴为1-=x ∴当12330有最大值时;当有最小值时y x y x =-=. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 解:设涨价(或降价)为每件x 元,利润为y 元, 1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-= )60010(102---=x x 6250)5(102 +--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--= )15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大. [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202 +--=x 当5=x ,4500max =y (元) 答:价格提高5元,才能在半个月内获得最大利润.

最新二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案) 二次函数y = ax 2 bx c (a = 0) 是初中函数的主要内容,也是高中学习的重要基础. 在初 x取任意实数时的最值情况(当a ■ 0时,函数在 本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时 还将学习二次函数的最值问题在实际生活中的简单应用. 2 【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值. 解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5. 【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值. X = 1 时,y min = T ,当X = 2 时,y max = 一5 . 由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常 见情况: 【例3】当x - 0时,求函数y = -x(2 - x)的取值范围. 中阶段大家已经知道:二次函数在自变量 b 2a 处取得最小值 4ac - b2 4a ,无最大值;当 a c 0时,函数在x = -亠-处取得最大值 2a 4ac -b2 4a 无最小值. 解:作出函数的图象.当

解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象. 可以看出:当x = 1时,ymin - -1,无最大值. 所以,当X _ 0时,函数的取值范围是y _ -1 . 1 25 【例4】当t

二次函数的应用题 利润问题、面积问题、最值问题 知识点+例题+练习 (非常好 分类全面)

三.二次函数应用题 题型一.(10分)(2015?南充一模)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个. (1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元? (2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润? 2.(12分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图: (1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少? (2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?

3.(12分)某企业信息部进行市场调查发现: 信息一、如果单独投资A种产品,所投资利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表: x(万元)12 2.535 y A(万元)0.40.81 1.22 信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润 3.2万元. (1)从所学过的函数中猜想y A与x之间的关系,并求出y A与x的函数关系式; (2)求出y B与x的函数关系式,并求想利润y B为3(万元)应投资金额; (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? 例2、如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x米. (1)要使鸡场面积最大,鸡场的长度应为多少m? (2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?

利用二次函数解决有关利润问题

利用二次函数解决有关利润问题 一、学习目标:姓名:_____________ 1、知识与能力: 能够分析和表示有关利润问题中变量之间的二次函数关系,把实际问题转化为数学问题,正确建立函数关系,并能运用二次函数性质解决问题。 2、过程与方法: 通过对典型例题的分析解答和具体练习,强化知识的探究。 3、情感态度与价值观: 体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值,体会到学习数学的乐趣。 二、教学重难点: 教学重点:会通过情境问题确定二次函数的表达式。 教学难点:运用函数性质解决实际问题。 三、教学过程: ㈠、复习回顾: 1、求下列二次函数的最大值或最小值: ⑴y=-x2+2x-3;⑵y=x2+4x 2、图中所示的二次函数图像的解析式为: ⑴若-4≤x≤-3,图像位于对称轴的___侧,y随x的增大而____, 当x=____时,y有最大值为_____、当x=___时,y有最小值为_____。 ⑵若0≤x≤3,图像位于对称轴的____侧,y随x的增大 而______,当x=____时,y有最大值为_____、当x=___时, y有最小值为_____。 ⑶若-3≤x≤3,当x=____时,y有最大值为_____、 当x=___时,y有最小值为_____。 可见求函数的最值问题,应注意什么? ㈡、新授: 例1来到商场: 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?思考:(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化? 分析:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x 的函数关系式。涨价x元时每星期少卖___件,实际卖出_______件,此时每件的利润为______元,因此,所得利润为_________________元。 所以得: 在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。 (2)、设每件降价x元,则每星期多卖___件,实际卖出_______件,此时每件的利润为______元,因此,所得利润为: 归纳小结: 运用二次函数的性质求实际问题的最大值和最小值的一般步骤: 三、练一练: 1、某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。设每件涨价x元(x为非负整数),每星期的销量为y件. ⑴求y与x的函数关系式及自变量x的取值范围; ⑵如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少? 13 x8 x2 y2+ + =

二次函数最大利润求法经典

分析:本题用到的数量关系是: (1)利润=售价-进价 (2)销售总利润=单件利润×销售数量 问题1:售价为x 元时,每件的利润可表示为 (x-40) 问题2:售价为x 元,售价涨了多少元?可表示为 (x-60) 问题3:售价为x 元,销售数量会减少,减少的件数为 -60202 x ? (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 -60300202x y =- ?= 30010(60)x --= 10900x -+ 因为0600 x x ??-≥?f 自变量x 的取值范围是 60x ≥ 问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为 (40)W x y =-? = (40)(10900)x x --+ = 210130036000x x -+- 问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少? 因为 (40)W x y =-? = (40)(10900)x x --+ = 210130036000x x -+- =2 10(130)36000x x --- =22210(13065)6536000x x ??--+--?? =2 10(65)4225036000x --+- =210(65)6250x --+ 所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元

分析:本题用到的数量关系是: (1)利润=售价-进价 (2)销售总利润=单件利润×销售数量 问题1:售价为x 元时,每件的利润可表示为 (x-40) 问题2:售价为x 元,售价降了多少元?可表示为 (60-x ) 问题3:售价为x 元,销售数量会增加,增加的件数为 60402 x -? (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+ ?= 30020(60)x +-= 201500x -+ 因为0600 x x ??-≥?f 所以,自变量x 的取值范围是 060x ≤≤ 问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为 (40)W x y =-? = (40)x -(201500x -+) = 220230060000x x -+- 问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少? 因为 (40)W x y =-? = (40)x -(201500x -+) = 220230060000x x -+- =2 20(115)60000x x --- =22211511520115)6000022x x ??????--+--?? ? ????????? =211520()66125600002 x --+- =220(57.5)6612560000x --+- =2 20(57.5)6125x --+ 所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元 三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?

相关文档
相关文档 最新文档