文档库 最新最全的文档下载
当前位置:文档库 › 流体力学基本概念

流体力学基本概念

基本概念

22

2 基本概念

2-1

连续介质模型

1 连续介质模型

2.7×

×1016个分

空气含有2.7

在标准条件下,

在标准条件下,11mm3空气含有

子,从微观的角度而言流体并不是连续的。

cm,由

由流体分子之间的距离一般在10

10-7—10-6cm,流体分子之间的距离一般在

此可见,流体分子和分子之间的距离都是极其微小的。

17531753年欧拉年欧拉((Euler)Euler)首先采用连续介质作为首先采用连续介质作为流体宏观流动模型

流体微团(也称为流体质点)有足够数量的分子组成,连续充满它占据的空间,彼此间无任何间隙,甚至考虑到流体距离固体边壁接近零的极限状况也认为如此。这个假设叫流体连续介质假设或稠密性假设

假设。

ρ=ρ(x,y,z,t)

速度场

2 速度场

2-2

在给定时刻,速度场V是空间坐标的函数,即V=V(x,y,z)。

流场中给定点的速度也会随着时间发生变

即速度场)

)的完全表达式为:

(即速度场

速度(

化,速度

V=V(x,y,z,t)

定常流动:流场中某点的特性参数不随

,可用数学式表示为:

时间改变,

可用数学式表示为

时间改变

2 2.1 维、二维和三维流动

-2.1一维、二维和三维流动

三维流动

?三维流动:V=V(x,y,z,t)(也是非定常流场)

?一维流动:等截面长直圆管中的流动,在远离进口段的速度分布为

离进口段的速度分布为:

?二维流动

在z方向无限大的两块平板组成的流道,当其截面扩张时,速度场能被垂直于z轴的平面所确定,因此速度场是空间坐标x和y的函数,这样的流场称为二维流场。

:在给定截面上流动是均匀的,?截面均匀流假设

截面均匀流假设:

在与流动垂直截面上的速度是常数。

?均匀流场:用于描述整个流场内速度矢量的大小和方向都是常数的流动,即不取决于空间坐标。

2-2.2 2.2 迹线、脉线和流线(迹线、脉线和流线(Pathlines, Streaklines Pathlines, Streaklines Streamlines and Streamlines)

and Streamlines and Streamlines))?迹线(迹线(Pathlines Pathlines)):是某一流体质点的运动轨迹。?脉线脉线((Streaklines)Streaklines)::关注空间某一位置,在经历较短的时间后,可以标识出流动过程中经过该空间点的许多流体质点,所有这些流体质点都在一定的时间内,先后流经这个固定的空间位置,连接这些流体质点的线。

?在给定瞬时把一系列空间点流线(Streamlines Streamlines):):在给定瞬时把系列空间点连接起来的一条假想线,在该瞬时处于这条线上的所有质点的速度矢量与这条线相切。表明给定瞬时沿流线各质点的运动方向。

?流线的特征

(1)对于非定常流,流速是时间的函数,流线的形状也会随时间发生变化。

的形状也会随时间发生变化

(2)对于定常运动,由于空间点的速度不随时)对于定常运动由于空间点的速度不随时间而变,所以流线的形状保持不变。

(3)同一时刻,在空间一点上只有一个速度,也就是说,同一时刻通过一点只有一根流线。也就是说同一时刻通过一点只有一根流线

4)一般情况下,同一时刻流场中的流线不能()般情况下,同时刻流场中的流线不能相交。

?流管:由流线作为管壁所形成的管状曲面。流管

形状随时间而变。在定常运动条件下,流管形状形状随时间而变在定常运动条件下流管形状

保持不变.流体沿着流管流动。流管的断面无限

小时称为流丝。

三线””的关系:在定常流动中,流场中每一点?“三线

的速度不随时间改变,流线的形状保持不变,因的速度不随时间改变流线的形状保持不变因此,通过空间某一固定点的所有流体质点的流线都是相同的,这意味着对于定常流动情况,迹线脉线和流线相重合对非定常流动者、脉线和流线互相重合。对于非定常流动,三者般不会重合。

一般不会重合。

迹线、条纹线和流线的区别

2.1

例题2.1

例题

2-3应力场

力和面积都是矢量,都带有方向性,一般需要9个量才能确定流体的应力状态,应力是一个二阶张量。

2-3.1表面力和质量力

表面力

表面力(()微团周围的流体或物

Surface Forces):

?Surface Forces)

体作用在流体微团表面上的力,它与力的作用面大小成正比。

?质量力(质量力(Body Forces)Body Forces)::作用在流体微团内均布质量的质心上这种力通常和微团内均布质量的质心上,这种力通常和微团的质量成正比,一般用单位质量的质量力来表示,重力、惯性力、电磁力等都是质量力。

?微元体上的重力为,单位体积

的重力为ρg ,单位质量的重力为g 。

点应力

3.2 点应力

2-3.2

应力是两个矢量δF和δA的比值。

9个方程

作用于每个面积分量δA

x 、δA

y

和δA

z

上分别有

上分别有33个应

每个面积分量上的

力分量每个面积分量上的3

力分量,每个面积分量上的

力分量,每个面积分量上的33个应力分量分别是由三

个力分量δF、δF和δF所产生的。

x y z

表采用双下标符号来表述应力:T

ij 示作用于i平面沿着j方向的应力

平面的命名用标轴?平面的命名:用坐标轴

来对各个面进行命名,平面的正方向规定为沿

着该面正法线的方向着该面正法线的方向。

?应力的符号:应力分量

的方向和它的作用面同时为正或同时为负时,时为正或同时为负时

应力分量的符号为正。

τ

=1kN/m2表示?

yx

4 牛顿型流体:粘性

牛顿型流体:粘性

2 4

-4

牛顿型流体

4.1 牛顿型流体

2-4.1

流体所受到的剪应力与变形速率成正比的流体称为牛顿型流体。

所受到的剪应力与变形速率不成比的其它所有流体统称为非牛顿型正比的其它所有流体统称为非牛顿型流体。

流体

《流体力学》教学大纲

《流体力学》教学大纲 一、基本信息 二、教学目标及任务 “流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。 本课程支撑环境工程专业毕业要求、、、、和。 三、学时分配 教学课时分配

四、教学内容及教学要求 绪论 第一节流体力学的任务和发展简史 第二节连续介质假定与流体的主要物理性质 . 连续介质假设 .流体的主要物理性质 习题要点:牛顿内摩擦定律的理解与应用 第三节作用在流体上的力 习题要点:质量力与表面力的概念 第四节流体力学的研究方法 本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。 第一章流体静力学 第一节流体静压强特性 第二节流体平衡微分方程 . 流体平衡微分方程 . 流体平衡微分方程的积分 . 等压面 习题要点:流体平衡微分方程的推导 第三节流体静力学基本方程 . 流体静力学基本方程

. 压强的表示方法 3.测压计 习题要点:流体静力学基本方程的应用,压强表示与计算 第四节液体的相对平衡 . 液体的相对平衡 . 液体的相对平衡在生产中的应用 习题要点:等压面方程,压强分布规律 第五节作用在平面上的液体总压力 . 图解法 . 解析法 习题要点:平面静水总压力的计算 第六节作用在曲面上的液体总压力 习题要点:曲面静水总压力的计算 本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。 本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。 第二章流体动力学基础 第一节描述流体运动的二种方法 . 拉格朗日法 . 欧拉法 .流线迹线脉线 习题要点:流线与迹线方程求解 第二节描述流体运动的概念 习题要点:掌握流体运动的概念 第三节流体运动的类型 习题要点:掌握流体运动类型及其特性

工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

第1章 流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 1.1 连续介质与流体物理量 1.1.1 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022个水分子,相邻分子间距离约为3×10-8 厘米。因而, 从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 1.1.2 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、就是非题。 1.流体静止或相对静止状态的等压面一定就是水平面。 ( ) 2.平面无旋流动既存在流函数又存在势函数。 ( ) 3.附面层分离只能发生在增压减速区。 ( ) 4.等温管流摩阻随管长增加而增加,速度与压力都减少。 ( ) 5.相对静止状态的等压面一定也就是水平面。 ( ) 6.平面流只存在流函数,无旋流动存在势函数。 ( ) 7.流体的静压就是指流体的点静压。 ( ) 8.流线与等势线一定正交。 ( ) 9.附面层内的流体流动就是粘性有旋流动。 ( ) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。( ) 11.相对静止状态的等压面可以就是斜面或曲面。 ( ) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。( ) 13.壁面静压力的压力中心总就是低于受压壁面的形心。 ( ) 14.相邻两流线的函数值之差,就是此两流线间的单宽流量。 ( ) 15.附面层外的流体流动时理想无旋流动。 ( ) 16.处于静止或相对平衡液体的水平面就是等压面。 ( ) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 ( ) 18.流体流动时切应力与流体的粘性有关,与其她无关。 ( ) 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有与。 3、流体的主要力学模型就是指、与不可压缩性。 4、雷诺数就是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。 5、流量Q1与Q2,阻抗为S1与S2的两管路并联,则并联后总管路的流量Q

大学工程流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室二○○六年静水压强实验1.同一静止液体内的测压管水头线是根什么线?测压管水头指z p ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当p B 0 时,试根据记录数据,确定水箱内的真空区域。 p B 0 ,相应容器的真空区域包括以下三个部分: (1)过测压管2 液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而 言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管 4 中,该平面以上的水体亦为真 空区域。 (3)在测压管5 中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4 液面高于小水杯液面高度相等。3.若再备一根直尺,试采用另外最简便的方法测定0 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5 油水界面至水面和油水界面至油面的垂直高度h和h0 ,由式w h w 0h0 ,从而求得0 。4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体容量;d 为测压管的内径;h 为毛细升高。常温的水, 0.073N m ,0.0098N m3。水与玻璃的浸润角很小,可以认为cos 1.0。 于是有 h 29.7 d (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10 mm时,毛细影响可略而不计。另外,当水质 不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角较大,其h 较普通玻璃管小。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5 及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2 及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5 个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5 与水箱之间不符合条件(4),相对管5 和水箱中的液体而言,该水平面不是水平面。

流体力学课程

量纲分析和相似原理在流体力学的应用 钟文 车辆1003 摘要:量纲分析法是研究较为复杂的自然现象中各物理量之间的关系及内在规律性的有效工具,也是相似理论的理论基础.量纲分析法的理论和应用,在科学研究和物理学领域中有着十分重要的地位.而对于设计制造复杂庞大的机械,往往要根据相似原理,进行模拟实验,将实验结果推广到同类型中,以相似原理为基础的模型试验方法在流体中有广发的应用。 关键词:量纲分析法;相似原理;流体力学;应用 0 前言 本文在充分研读[1] 《工程流体力学》(莫乃容)第九章节及相关书籍后,对量纲分析和相似原理有了一个深刻的认识,在对量纲分析和相似原理实际操作上做了一些范例,同时在了解的基础上继续做了一些实际的推广,将量纲分析的基本原理,相似原理引入相似结构大变形非线性动态响应分析。对车身典型薄壁件进行了轴向冲击响应与压溃变形的相似分析,得到模型与原型之间的相似比,并进一步得出了由缩比模型预测相似模型碰撞响应。 实验可分为两类,即直接试验和模拟实验。直接实验就是在所研究的对象即原型上直接进行实验,这种方法具有很大的局限性:实验结果只能用于特定的实验条件,或只能推广到与实验条件完全相同的现象上去:对于某些设备,由于实验条件的限制,如高温高压或者设备尺寸太大或者太小,都可能使实验难以进行;对于那些尚未建造的设备,如要设计一座新的水坝,则根本谈不上用实验方法探索其规律性;直接实验的方法不适用于大型设备的破坏性实验。 模拟实验即模化实验克服乐山直接实验的缺点,根据相似原理,按一定原则把流动实物原型缩小或放大,或者把复杂的、苛刻的工况条件转化为简单 的实验条件,或者更换为流体介质,把易燃、易爆、有毒、昂贵的流体介质更换为空气或水,制成模拟试验台,把模型试验台上测定流动参数,找出模型中流体的运动规律,然后将这些规律运用于与模型相似的各种实验设备上去。用模型试验方法解决流体力学所依据的基本理论和方法是量纲分析和 相似原理。 1量纲分析 1.1量纲和单位 物理量单位的种类称为量纲,表示物理量的本质属性,用dim 表示。一个物理量可以用不同的单位度量,但量纲却是唯一的。例如长度、宽度、高度、厚度、深度都可以用米、英尺等长度单位来度量,但是它们的量纲都是长度量纲L 。 由于许多物理量的量纲之间都有一定的联系,在量纲分析时选少数几个物理量的量纲作为基本量纲,其他物理量的量纲都可以由这些基本量纲导出,称为导出量纲。基本量纲是相互独立的,而不能由其他量纲的组合来表示,在工程流体力学中常用质量、长度、时间(M 、 L 、T )作为基本量纲。 在一般的力学问题中,任意一个物理量B 的量纲都可以用M , L ,T 这三个基本量纲的指数乘积来表示 dim B =M αL βT γ 在量纲分析中,有一些物理量的量纲为1 ,称为无量纲量,用M 0L 0T 0表示。无量纲量就 是一个数,但可以把它看成由几个物理量组合而成的综合表达。例如雷诺相似准数的量纲 dim Re = dim (υvl )=000121T L M T L L LT =--

国内外流体力学研究机构

国内外流体力学研究机构 分类:标签:字号大中小订阅 .北京航空航天大学流体力学研究所 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 . 美国布朗大学流体机械研究中心 了解流体机械的诸多方面 .美国公司技术服务中心 美国一个著名的计算流体服务机构,解决计算和工程问题的专家 .英国大学研究中心 主要介绍的在各个领域的应用。 .欧洲流体湍流及燃烧研究协会(, ) 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 .美国国家航空和宇宙航行局 的各项动态和进展,信息很多。 . 加拿大计算流体力学学会( ) 介绍计算流体力学的进展和应用 . 免费软件下载中心( ) 免费软件下载() . 美国普林斯顿大学空气动力学实验室( ) 进行流体力学的前沿研究 . 澳大利亚大学湍流研究所( ) 进行湍流的理论和实验研究及应用 . 美国大学超音速中心( )

介绍超音速材料,实验测量及超音速的计算 . 美国流体动力学研究中心( () ) 流体力学研究中心 . 美国大学流体力学研究实验中心(教授领导)( ) 主要研究涡,湍流和分离流动及其应用 . 荷兰科技大学流体力学实验室( ) 流体力学和热传导的科研和教育机构,主要研究涡,湍流及空气动力学 . 美国公司() 研究流体力学,热力学,自动控制和测量设备的工业公司研究领域包括,实验,理论及流体机械设备 .瑞士机械及机械处理工程能源系统试验室( , , ) 内容:研究建筑物内的空气流动,燃烧,能源和环境问题。 .瑞士机械及机械处理工程涡轮机械试验室( , , ) 提供研究及人员信息的摘要。 .瑞士机械工程压力机械及流体力学实验室(, , ) 介绍流体力学实验室()在方面的工作。 .瑞士机械及机械处理工程实验室( , ) 流体力学,能源系统,燃烧,涡轮机械等。 .英国大学航空学院计算中心, , 算法研究,类牛顿方法,加速收敛,跨音速激波控制,高超音速加热,激波边界层干扰,湍流模型,超音速涡流等。 提供,超级计算机或高性能机的计算软件 .美国航空软件开发公司( )

流体力学教学大纲

《流体力学》教学大纲 一、课程名称 1. 中文名:流体力学 2. 英文名:Fluid Mechanics 二、课程管理院(系) 三、大纲说明 1.适用专业、层次 环境工程专业,本科。 2.学时与学分数 总学时为64学时,总学分为3学分。 3.课程的性质、目的与任务 流体力学是环境工程专业及其相近专业的一门学科基础课程,属工程科学,是用自然科学的原理考察、解释和处理工程实际问题。研究方法主要是因次论指导下的实验研究法、数学模型法、参数归并和过程分解与组合。本课程强调工程观点、定量运算、实验技能、设计能力和模拟优化能力的训练,强调在理论和实际的结合中,提高分析问题、解决问题的能力。 本课程理论教学主要研究连续性方程、能量方程和动量方程的基础理论及具体的工程应用。通过本课程的学习,使学生熟悉流体力学的基本概念和基本方程,掌握在环境工程和科学领域中的应用途径和处理方法,具备解决环境工程中流体力学问题的能力。 4. 先行、后续课程 本课程是学生在具备了必要的高等数学、物理、理论力学等基础知识之后必修的技术基础课,是水污染控制工程、大气污染控制工程、给排水工程、水控课程设计、毕业设计的基础。 5.考试方式与成绩评定 考试方式:笔试(闭卷)。 成绩评定:笔试70%,平时成绩30%。 四、纲目 (上册) 1绪论(3学时) [教学目的] 了解流体力学的研究内容及发展简史,掌握流体的主要物理性质和流体的连续介质模型,掌握流体的主要物理性质和作用在流体上的力。 [教学重点与难点] 流体的物理性质;流体的连续介质模型。 [教学时数] 3学时 [教学方法与手段] 在多媒体教室采用电子课件进行课堂讲授。本章内容是学生学习流体力学这门课的基础,是流体力学的“门槛”。因此,必须联系生产及生活实际,使学生首先在思想上明确认识,对这门课产生兴趣,使学生认识到流体力学理论在生产和生活实际中的应用是无所不在的。[教学内容] 1.1工程流体力学的任务及其发展简史 1.2连续介质假设,流体的主要物理性质 连续介质假设;流体的主要物理性质 1.3作用在流体上的力

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

工程流体力学教学大纲

本教学大纲详细说明了在学习中的重点,以及从课时可以看出其的认知程度 《工程流体力学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Hydrodynamics 2、课程类别:专业基础课程 3、课程学时:总学时88,实验学时12 4、学分:5.5 5、先修课程:《高等数学》、《大学物理》、《工程力学》 6、适用专业:油气储运工程 7、大纲执笔:油气储运教研室云萍 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务 工程流体力学是油气储运工程专业的一门主要专业基础课程。它的主要任务是通过各个教学环节,使学生掌握流体运动的基本概念、基本理论、基本计算方法和基本实验技能,提高学生分析和解决实际问题的能力,为以后学习专业知识,从事专业技术工作和科研打下必要的流体力学基础。 三、课程的基本要求 通过本课程的学习,了解流体的物理性质,掌握流体的平衡规律、流体的运动规律、流体与其接触的固体壁面间的受力特点、压力管路中的水力计算、气体动力学基础知识及非牛顿流体运动规律等容。 四、教学容要求及学时分配 1. 流体及其主要物理性质(4学时) 1)具体容 工程流体力学的研究对象 流体的特性、连续介质的假说 流体的密度和重度 流体的压缩性、膨胀性和粘性 作用在流体上的力 2)重点:流体的物性及作用在流体上的力 3)难点:粘性 4)基本要求 正确理解流体的主要物理性质,特别是粘性和牛顿摩擦定律

正确理解流体连续介质、理想流体和实际流体、不可压缩流体和可压缩流体的概念2.流体静力学(10学时) 1)具体容流体静压强及特性 流体平衡微分方程式 流体静力学基本方程式 压力的基准和计量 流体相对平衡 静止流体作用在平面上的力 静止流体作用在曲面上的力 2)重点:流体静压强的特性,流体静力学基本方程式的应用,静止流体作用在平面、曲面上的力 3)难点:静止流体作用在平面、曲面上的力 4)基本要求 掌握流体静压强的概念及其性质 掌握流体平衡微分方程式及应用,能够熟练地进行点压强和总压力的计算 3. 流体运动学与动力学基础(14学时) 1)具体容 研究流体运动的拉格朗日法及欧拉法 流体运动的基本概念 恒定流动的连续性方程 理想流体运动微分方程式 理想流体伯努利方程式 实际流体伯努利方程式及其意义 伯努利方程式的应用 泵对液体能量的增加 系统与控制体 动量定理及其应用 2)重点:流体运动的基本概念,伯努利方程式的应用,泵对流体能量的增加,动量定理的应用 3)难点:实际流体伯努利方程式的推导,输运公式的推导,能量方程、动量方程的灵活应用 4)基本要求 了解描述流体运动的两种方法,建立以流场为对象描述流体运动的概念 掌握连续性方程式,流体微团运动的基本形式和理想流体运动微分方程式(欧拉运动方程式) 牢固掌握流体运动的总流分析法,能够比较灵活地综合运用连续方程式,能量方程式(伯

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。() 2.平面无旋流动既存在流函数又存在势函数。() 3.附面层分离只能发生在增压减速区。() 4.等温管流摩阻随管长增加而增加,速度和压力都减少。() 5.相对静止状态的等压面一定也是水平面。() 6.平面流只存在流函数,无旋流动存在势函数。() 7.流体的静压是指流体的点静压。() 8.流线和等势线一定正交。() 9.附面层内的流体流动是粘性有旋流动。() 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。() 11.相对静止状态的等压面可以是斜面或曲面。() 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。() 13.壁面静压力的压力中心总是低于受压壁面的形心。() 14.相邻两流线的函数值之差,是此两流线间的单宽流量。() 15.附面层外的流体流动时理想无旋流动。() 16.处于静止或相对平衡液体的水平面是等压面。() 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 () 18.流体流动时切应力与流体的粘性有关,与其他无关。() 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有和。 3、流体的主要力学模型是指、和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。

《流体力学》教学大纲

《工程流体力学》课程教学大纲 适用专业层次 理论课 学时实践课 学时 总学时学分课程性质 环境工程方向本科48 48 3 专业基础课 先修课程高等数学 一、课程性质、目的与任务 1. 性质:《流体力学》学科的渗透性很强,几乎与所有的基础和技术学科形成交叉学科,环境方向当然也包括在内的,该课程是环境工程专业的一门专业基础核心课程,是从事环境实验与理论研究、环境工程设计与管理、环境应用与开发等专业的一门重要的基础课。 2. 目的与任务:通过对该课程的学习,要求学生掌握有关流体力学的基本概念、基本定律、基础理论、重要应用等,同时注意培养学生正确逻辑思维的能力,从而为学生学习后继相关专业课程提供必要的基础理论知识和有关流体和传热计算的基本方法。 二、课程的总体安排和各部分的课时分配 总学时:48学时,其中理论教学40学时,课堂讨论与习题讲解8学时 理论课教学的内容及学时分配 课程目录教学内容学时数 第一章绪论 2 第二章流体静力学 6 第三章流体运动学8 第四章理想流体动力学8 第七章粘性流体动力学8 第八章圆管中的流动8 第九章边界层理论 6 期末复习 2 三、课程教学内容和教学基本要求 第一章绪论 理论教学2学时 内容:流体力学发展简史;流体力学的研究内容、研究方法和应用;流体的定义和特征、

连续介质模型;作用在流体上的力;流体的主要物理性质。 重点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 难点:牛顿内摩擦定律的具体应用。 第二章流体静力学 理论教学6学时 内容:流体静压强及其特性;流体平衡微分方程式;重力场中流体的绝对平衡和相对平衡;静止液体作用在固体壁面上的总压力。 重点:静压强及其特性,点压强的计算,静压强分布图,作用于平面壁和曲面壁上的液体总压力,压力体图。 难点:流体平衡微分方程的建立与应用。 第三章流体运动学 理论教学6学时,课堂讨论和习题2学时 内容:研究流体运动的两种方法及描述流体流动的一些基本概念;连续性方程;流动势函数和流函数的求解。 重点:流体流动中的几个基本概念,连续性方程、速度势函数和流函数的推导依据。 难点:连续性方程、流线方程和迹线方程的求解和二者的关系。 本章是全书的重点章节。 第四章理想流体动力学 理论教学8学时 内容:运动微分方程及有关概念,伯努利方程及其应用,动量定理和动量矩定理。 本章是全书的重点章。 重点:运动微分方程及有关概念,总流的伯努利方程的推导。 难点:动量定理和动量矩定理。 第七章粘性流体动力学 理论教学:6学时,课堂讨论和习题2学时 本章是全书的难点章节。 内容:粘性流体运动微分方程,量纲分析和相似理论。 重点:动量方程及其应用。 难点:量纲分析和相似理论。 第八章圆管中的流动 理论教学:6学时,课堂讨论和习题2学时 本章是全书的重点章节。 内容:层流和湍流的概念,圆管层流流动,圆管湍流流动,管道沿程水头损失和局部阻力损失。 重点:层流和湍流的概念,圆管层流流动,水头损失的计算。 难点:圆管湍流流动,水头损失的计算。 第九章边界层理论基础 理论教学:6学时

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

流体力学第一章答案

第一章习题简答 1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv =0.0005/℃。求膨胀水箱的最小容积V min 。 据题意, 1-4 ,温度从20解:故 () % 80841 .5166 .1841.5/841.578273287108840.52121 211213 5 222=-=-=-=-= ?=+??==ρρρρρρρm m m V V V V m kg RT P 1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中 有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。假定平板运动引起液体流动的速度分布是线性分布。当h =10mm 时,求薄平板单位宽度上受到的阻力。

解:平板受到上下两侧黏滞切力T 1和T 2作用,由dy du A T μ=可得 1 T T =u 相 反) 1-6 0.25m/s 解:1-7 3cm/s 解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay 2+c 由题意可得方程组 ?????+-=+=c a c a 2 2)001.00125.0(03.00125.00 解得a = -1250,c =0.195 则 u=-1250y 2+0.195 则y dy y d dy du 2500)195.01250(2-=+-=

Pa dy du A T 561048.4)0125.02500(1025.0103.18--?-=?-?????==∴πμ (与课本后的答案不一样。) 1-8 如图,有一底面积为0.8m×0.2m 的平板在油面上作水平运动,已知运动速度为1m/s ,平板与固定边界的距离δ=10mm ,油的动力粘度μ=1.15Pa ·s ,由平板所带动的油的速度成直线分布,试求平板所受的阻力。 题1-8图 解: 1-9 间的间隙d =0.6m , 题1-9图 解:切应力: θ πσωμμ τcos 2rdh r dA dy du dA dT ?=?=?= 微元阻力矩: dM=dT·r 阻力矩:

流体力学课程教学大纲

《流体力学》课程教学大纲 一、课程基本信息 1、课程代码:0330010 2、课程名称(中/英文):流体力学/Fluid Dynamics 3、学时/学分:48/6 4、先修课程:高等数学 (上、下)、理论力学,1110011/1110012/0610040 5、面向对象: 热能与动力工程专业和机械设计制造及其自动化专业的本科生 6、开课院(系):航海学院机械工程与自动控制系 7、教材、教学参考书: 教 材:《流体力学》、景思睿 张鸣远编著、西安交通大学出版社、2001年7月; 教学参考书:《工程流体力学》、归柯庭等编著、科学出版社、2003年7月; 《流体力学》、吴望一主著、北京大学出版社、1983年3月。 二、课程性质和任务 《流体力学》为非流体力学专业的机械制造、动力工程、能源、环境与化学工程等类专业的重要技术基础课。通过本课程讲述将使学生掌握基础的流体力学知识,并对后续专业课程的学习及相关专业工作的开展奠定初步的流体力学理论基础。 三、教学内容和基本要求 《流体力学》课程在内容设置上既着眼于本科生未来工作和高技术发展的需要,也兼顾到本科生急需掌握的基础理论和基础专业知识。主要讲述内容包括:流体及其物理性质,流体静力学、流体运动力学基础、流体动力学基础、相似原理与量纲分析、理想不可压缩流体的定常流动、通道内的粘性流动、粘性不可压流体绕物体流动等。本课程讲述总计需48学时,具体教学内容和基本要求如下: 第一章流体及其主要物理性质(4)

主要内容: 1、流体与连续介质模型; 2、流体的黏性; 3、流体的可压缩性; 4、作用在流体上的力。 基本要求:掌握流体的基本物理性质; 理解连续介质模型的含义。 第二章流体静力学(6) 主要内容: 1、流体静压强及其特性; 2、静止流体平衡微分方程式; 3、重力场中静止流体内的压强分布及压强测量; 4、作用在平面上的流体静压力; 5、作用在曲面上的流体静压力及浮力。 基本要求:掌握流体静压强的基本特性; 掌握流体静力学的基本原理; 了解压强常用的测量方法; 掌握平面及曲面上流体静压力的计算。 第三章流体运动学基础(4) 主要内容: 1、描述流体运动的两种方法; 2、物质导数; 3、迹线、流线和染色线,流管; 4、流体微团的运动和变形。 基本要求:掌握描述流体运动的两种方法; 掌握物质导数的含义;

相关文档
相关文档 最新文档