文档库 最新最全的文档下载
当前位置:文档库 › 微分方程的零解稳定性在控制理论中的应用

微分方程的零解稳定性在控制理论中的应用

微分方程的零解稳定性在控制理论中的应用
微分方程的零解稳定性在控制理论中的应用

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 在19世纪中叶,通过刘维尔的工作,人们已经知道绝大多数的微分方程不能用初等积分方法求解.这个结果对于微分方程理论的发展产生了极大影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而是从微分方程本身来推断其解的性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家庞加莱(Poincar é,1854-1912)在19世纪80年代所创立,后者由俄国数学家李雅普罗夫(Liapunov,1857-1918)在同年代所创立.它们共同的特点就是在不求出方程的解的情况下,直接根据微分方程本身的结构和特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. §6.1 引言 考虑微分方程 (,)d f t dt =x x (6.1) 其中函数(,)f t x 对n D R ∈?x 和t ∈(-∞,+∞)连续,对x 满足局部李普希兹条件. 设 方程(5.1)对初值(t 0,x 1)存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x =.现在的问题是:当01x x -很小时,差0001(,,)(,,)x t t x t t x ?-的变化是否也很小?本章向量1(,...,)T n x x =x 的范数取1 221 ()n i i x ==∑x . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性,第2章的定理2.7已有结论.现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性(见下面的例3),这就产生了李雅普诺夫意义下的稳定性概念. 如果对于任意给定的0ε>和00t ≥都存在0(,)0t δδε=>,使得只要0x 满足

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

4微分方程的解及解的稳定性

第四讲 微分方程解的稳定性 上一讲,我们利用最大值原理讨论了新古典经济增长模型,得到了两个方程,一个是状态变量的转移方程,另一个是欧拉方程。这两个方程构成了包含状态变量和控制变量的二元一次方程组。 []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 这个方程组是一个非线性微分方程组,一般情况下,非线性方程组不存在解析解,即方程组的解不能用初等函数来表示。因此,他们的性质需要借助其他方法来了解。 微分方程:变量为导数的方程叫做微分方程。 常微分方程:只有一个自变量的微分方程叫做常微分方程。 偏微分方程:有两个或两个以上自变量的方程叫做偏微分方程。 微分方程的阶:微分方程中变量的导数最高阶叫做方程的阶。 线性方程:方程的形式是线性的。 例如,方程0)()()()(321=+++t x t y a t y a t y a 是一个二阶线性常微分方程。 又如,索洛-斯旺模型的基本方程是一个非线性方程: ())()()(t k t k s t k ?-=δα 再如,拉姆齐模型的动态是下列微分方程组的解: []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 一、 一阶微分方程 一阶微分方程可以用下面的方程表示 ),(y x f dx dy = (1.1) 其中,函数R R R f →?:是连续可微函数。 最简单的微分方程是

)(x f dx dy = (1.2) 它的解可表示为不定积分: ?+=c dx x f y )( (1.3) 其中,?dx x f x F )()(=表示任意一个被被积函数,c 为任意常数。当然,我们也可以确定任意一个被积函数,例如,令??x dt t f dx x f x F 0)()()(==, 则(2.2)的不定 积分可表示为 ?+x c dt t f y 0)(= 这时,不定积分仍然代表无穷多条曲线,如果给出初始条件0)0(y y =, 则,上面微分方程的解就是 ?+x y dt t f y 00)(= (1.4) 二、 常见的一阶微分方程解法 1. 一阶线性微分方程 一阶线性微分方程的一般形式为 )()(x g y x p dx dy =+ (2.1) 边界条件(即初始条件)0)0(y y =。 为求解线性微分方程,在方程的两边同乘以?x dt t p 0)(ex p , 则方程的左边为 dx dt t p y d y dt t p x p dt t p dx dy x x x ??? ???= ?+???0 00)(exp )(exp )()(exp 所以 ??? ??=??? ?????x x dt t p x g dx dt t p y d 00)(exp )()(exp (2.2) 方程(2.2)的解为 ?? ????+? ?? ????? ??-=???c dt t p x g dt t p y x x x 000)(exp )()(exp (2.3) 2. 可分离变量的微分方程

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

第三讲微分方程的理论与数学建模

第三讲 微分方程的理论与数学建模 一、微分方程模型的建立 函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。在许多实际问题中,往往不能直接找出变量之间的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式。这就是所谓的微分方程,从而得出微分方程模型。 例1 物体冷却过程的数学模型 将物体放置于空气中,在时刻0=t 时,测量得它的温度为1500=u C ,10分钟后测量得温度为 C u 1001=。我们要求此物体的温度u 和时间t 的关系,并计算20分钟后物体的温度。这里我们假定 空气温度保持为C u a 24=。 解 为了解决上述问题,需要了解有关热力学的一些基本规律。例如,热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这一物体的温度和其所在介质温度的差值成正比。这是已为实验证实了的牛顿(Newton )冷却定律。 设物体在时刻t 的温度为)(t u u =,则温度的变化速度以 dt du 来表示。注意到热量总是从温度高的物体向温度低的物体传导的,因而a u u >0。所以温度差a u u -恒正;又因物体将随时间而逐渐冷却,故温度变化速度dt du 恒负。故有: dt du )(a u u k --= (1.1) 这里0>k 是比例常数。方程(1.1)就是物体冷却过程的数学模型,它含有未知函数u 及它的一阶导数dt du ,这样的方程称为一阶微分方程。 为了解出物体的温度u 和时间t 的关系,我们要从方程(1.1)中解出u 。注意到a u 是常数,且0>-a u u ,可将(1.1)改写成 kdt u u u u d a a -=--)( (1.2) 这样u 和t 就被分离开了。两边积分,得到 c kt u u a ~)ln(+-=- (1.3) 这里c ~是任意常数。上式可写成 c kt a e u u ~+-=- 令c e c ~=,则有 kt a ce u u -+= (1.4) 再根据初始条件: 当0=t 时,0u u = (1.5) 可得a u u c -=0,于是 kt a a e u u u u --+=)(0 (1.6) 如果k 的数值确定了,(1.6)就完全决定了温度u 和时间t 的关系。 根据条件10=t 时,1u u =,得到 k a a e u u u u 1001)(--+= 由此得到a a u u u u k --=10ln 101051.066.1ln 10 1≈=。从而 t e u 051.012624-+= (1.7)

常微分方程平衡点及稳定性研究38112

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程理论在数学建模中的简单应用

常微分方程理论在数学建模中的简单应用摘要:众所周知,自然界中一切物质都按照自身的规律在运动和演变,不同物质的运动规律总是在时间和空间中运动着的,虽然物质的运动形式千差万别,但我们总可以找到它们共性的一面,即具有共同的量的变化规律。为了能够定性和定量的研究一些特定的运动和演变过程,就必须将物质运动和演变过程中相关的因素进行数学化。这种数学化的过程就是数学建模的过程,即根据运动和演变规律找出不同变量之间互相制约、互相影响的关系式。由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程。微分方程描述的是物质运动的瞬时规律。将常微分方程应用于数学建模是因为常微分方程理论是用数学方法解决实际问题的强有力的工具,是一门有着重要背景应用的学科,具有悠久的历史,系统理论日臻完善,而且继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题中。 关键词:常微分方程,常微分方程模型,稳定性,数学建模 正: 1数学建模简介 对复杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模…。与数学不同,构建数学模型的过程不仅

要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。 2常微分方程和数学建模结合的特点 通常在建立对象的动态模型时,应对不同的实际对象建立不同的并与之相适合的数学模型。首先要具体的问题具体分析对建模的目的应该做出简化的假设,而后还要依照对可以类比的其它对象的规律或者其对象内在的微分方程进行解题并求出这一方程的解,这样才能将其结果反馈回实际的对象,然后再进行预测或控制,描述与分析。 数学建模也是一个分析问题、解决问题的创造性思维过程,它的内容来自于实践、结果应用于实践、方法结合于实践【2J,因此要选准切人点,才能有机地结合常微分方程的内容,充分体现数学建模的思想意图。数学建模思想的培养不可能立竿见影,而是一个长期的过程。而要我们脚踏实地认真去工作和钻研,纯粹数学的能力和数学建模能力是截然不同的,数学建模能力需要长期培养和锻炼才能形成。应用微分方程理论在实际解决问题的过程中建立的数学模型,一般是动态数学模型,其结果极其简明,但整个推导过程却有点繁杂,不过还是能给人们以合理的解释。由此笔者认为有机地将数学建模与常微分方程结合,必定能使常微分方程在实际应用过程中发挥更多更

最新常微分方程解的稳定性(修改)

常微分方程解的稳定 性(修改)

常微分方程解的稳定性 摘要本文简要介绍了常微分方程解的稳定性理论的相关概念及其在解决微分方程相关问题的重要意义。最后,介绍用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。 关键字:常微分方程稳定性李雅普诺夫函数 V函数构造方法

引言 常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法 ,开创了常微分方程定性理论 , 同时在分析中引入几何方法 ,搭建起分析与几何之间的沟通桥梁 ,带来了微分方程研究的新突破。李雅普诺夫则在庞加莱定性分析的基础上 ,转而进入了新的稳定性研究。 如今 ,李雅普诺夫稳定性理论被普遍认为是微分方程定性理论的基本成就之一。不仅有精确的定义 ,更有严格的分析证明 ,将微分方程及稳定性理论的研究推向了新的高度。 本文论述常微分方程解的稳定性的定义及其研究常微分方程相关问题的重要思想,并用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。

1、常微分方程稳定性 微分方程自诞生以来就一直以微分方程解的求法为研究中心。数学家在微分方程求解过程中进行了不懈的努力 ,但始终没有从根本上摆脱求确定解的桎梏 ,致使研究的道路越来越窄。 此时单纯的定量分析已不能解决问题 ,必须用一种综合化、整体化的思想加以考虑. 避开微分方程求精确解的定量方法 ,转向运用稳定性方法探求解的性质 ,从而解决常微分方程(组)的解的问题. 考虑微分方程组 (2.1) 其中函数对和连续,对 满足局部利普希茨条件。 设方程(2.1)对初值存在唯一解 , 而其他解记作 . 本文中向量的范数取 . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生的李雅普诺夫意义下的稳定性概念。 如果对于任意给定的和都存在 , 使得只要 就有 对一切成立,则称(2.1)的解是稳定的,否则是不稳定的。 假设是稳定的,而且存在, 使得只要

相关文档
相关文档 最新文档