文档库 最新最全的文档下载
当前位置:文档库 › 习题课 (4) 含参积分与二重积分题目_46401582

习题课 (4) 含参积分与二重积分题目_46401582

习题课 (4)   含参积分与二重积分题目_46401582
习题课 (4)   含参积分与二重积分题目_46401582

习题课 (4) 含参积分与二重积分

一. 含参积分

1. 设dt ds e x f x

x t s ????

?

???=-02)(, 求)(x f '与)(x f .

2. 求)(x f ', 其中?

-=x

x

y x

dy e x f cos sin 12

)(.

3. 求?+→++a

a a a x dx

12

201lim

4. 能否交换顺序?

dx e y

x y x y ?

-→10

20

2

2

lim

二. 二重积分

1. 将二重积分

()dx y x f D

??

,, ??

?

??≥≥-+≤-+00204:2222y ax y x ax y x D ,

化成累次积分,交换积分次序。

2.

)(t f 为连续函数, D 是由1,1,3-===x y x y 围成的区域, 则

=+??D

dxdy y x

xyf )(22

.

3. 设)(x f 在[]b a ,上连续, 利用二重积分证明:

??-≤??

????b a b a dx x f a b dx x f )()()(22

其中等号当且仅当)(x f 为常数时成立.

4. 交换积分()??π

20

sin 0

,x

dy y x f dx

的积分次序.

5. 不计算,判断二重积分??

≤+--4

3

22221y x dxdy y x 的符号.

6. 设σd y x I D

221cos +=??,()σd y x I D

222cos +=??,()

σd y x I D

2

223cos +=??,其中

{}

1),(22≤+=y x y x D ,则( )

(A )123I I I >>

(B )321I I I >>

(C )312I I I >>

(D )213I I I >>

7. 设{}

0,0,42

2≥≥≤+=y x y x D ,)(x f 为D 上的正值连续函数,b a ,

为常数,则

=+

+??

σd y f x f y f b x f a D

)

()()()( ( D )

(A)πab (B)

π2ab (C) π)(b a + (D) π2

b a +

8. 求[]??+=D

dxdy y x I , 其中10,10:≤≤≤≤y x D , []y x +为取整函数.

9. 计算??=D

ydxdy I ,22,2,0,2y y x y y x D --

===-=由围成.

6.(92)计算??

??+=1

2

121

4

12

1y

y

x

y y

x

y dx e dy dx e dy I

10. 求二重积分

??-D

dxdy y x ,)(其中

{}

x y y x y x D ≥≤-+-=,2)1()1(),(22

11. 计算二重积分 .)s i n (22)

(22

d x d y y x

e I D

y x +=

??-+-π其中积分区域

D=}.),{(2

2π≤+y x y x

12. 设函数()f u 连续, 区域{}

22(,)2D x y x y y =+≤, 则()D

f xy dxdy ??等于

(A

)11()dx f xy dy -??

. (B

)20

2()dy f xy dx ??.

(C )2sin 20

0(sin cos )d f r dr πθθθθ??

.

(D )2sin 20

(sin cos )d f r rdr π

θθθθ??

13. 设区域}

{,0,1),(22≥≤+=x y x y x D 计算二重积分

??

+++=D

dxdy y

x xy

I 2

211。

14. 设),(y x f 为连续函数,则

rdr r r f d ?

?40

1

)sin ,cos (π

θθθ等于【 】

(A )

?

?

-220

12),(x x

dy y x f dx

(B )

??

-220

10

2

),(x dy y x f dx

(C )

?

?

-2

20

12),(y y

dx y x f dy

(D )

?

?

-220

10

2),(y dx y x f dy

15. 设()f x 为连续函数,?

?=

t

t

y

dx x f dy t F 1

)()(,则)2(F '等于

(A) 2()2f (B) ()2f (C) –()2f (D) 0

16. 设}0,0,2),{(2

2

≥≥≤

+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最

大整数. 计算二重积分??++D

dxdy y x

xy .]1[22

17. 求二重积分()??D

dxdy xy ,1,max 其中D=(){}20,20,≤≤≤≤y x y x

18. 设函数)(x f 连续,()(),,2

222dxdy y x y x f v u F uv

D ??

++=

其中区域uv D 为图中阴影部分,则

u F ?

?=( )。

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

第十五章 含参变量的积分(数学分析)课件

第十五章含参变量的积分 教学目的与要求 1 掌握含参变量的常义积分的定义及分析性质; 2 能应用含参变量的常义积分的分析性质证明某些理论问题. 3 理解含参变量的反常积分的一致收敛的定义; 4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 能利用参变量的反常积分的分析性质求函数的导数、积分等; 6 掌握Beta函数和Gamma函数的定义及其相互关系; 7 掌握Beta函数和Gamma函数的性质。 教学重点 1 应用含参变量的常义积分的分析性质证明某些理论问题; 2 求含参变量的常义积分的极限、导数、积分; 3 含参变量的反常积分的一致收敛的定义; 4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 利用参变量的反常积分的分析性质求函数的导数、积分等 6 Beta函数和Gamma函数的性质。 教学难点 1 应用含参变量的常义积分的分析性质证明某些理论问题; 2 含参变量的反常积分的一致收敛的定义; 3 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;

§1 含参变量的常义积分 教学目的 1 掌握含参变量的常义积分的定义及分析性质; 2 能应用含参变量的常义积分的分析性质证明某些理论问题. 教学过程 1 含参变量的常义积分的定义 (P373) 2 含参变量的常义积分的分析性质 2.1 连续性定理P374 T h e o r e m 1 若函数),(y x f 在矩形域] , [ ] , [d c b a D ?=上连续 , 则函数 ?=d c dy y x f x I ),()(在] , [b a 上连续 . Theorem 2 若函数),(y x f 在矩形域] , [ ] , [d c b a D ?=上连续, 函数)(1x y 和 )(2x y 在] , [b a 上连续 , 则函数? =)() (21),()(x y x y dy y x f x G 在] , [b a 上连续. 例 1 求下列极限 (1)dx y x y ? -→+1 1 2 20lim (2) dx n x n n ? ++∞→1 )1(11lim 2.2 积分次序交换定理P375 例2 见教材P375. 2.3 积分号下求导定理P375—376 T h e o r e m 3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ?=上连续, 则函数? = d c dy y x f x I ),()(在] , [b a 上可导 , 且 ??=d c d c x dy y x f dy y x f dx d ),(),(. ( 即积分和求导次序可换 ) . Theorem 4设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ?=上连续, 函 数)(1x y 和)(2x y 定义在] , [b a , 值域在] , [d c 上, 且可微 , 则含参积分

第十八章 含参变量的广义积分

第十八章 含参变量的广义积分 1. 证明下列积分在指定的区间内一致收敛: (1) 220cos() (0)xy dy x a x y +∞≥>+? ; (2) 20 cos() ()1xy dy x y +∞ -∞<<+∞+?; (3) 1 ()x y y e dy a x b +∞-≤≤?; (4) 1 cos (0,0)xy p y e dy p x y +∞->≥?; (5) 20sin (0)1p x dx p x +∞ ≥+?. 2. 讨论下列积分在指定区间上的一致收敛性: (1) 20 (0)x dx αα-<<+∞?; (2) 0 xy xe dy +∞-?, (i )[,] (0)x a b a ∈>,(ii )[0,]x b ∈; (3) 2 ()x e dx α+∞ ---∞?, (i )a b α<<,(ii )α-∞<<+∞; (4) 22(1)0sin (0)x y e xdy x +∞ -+<<+∞?. 3. 设()f t 在0t >连续,0()t f t dt λ+∞ ?当,a b λλ==皆收敛,且a b <。求证: 0()t f t dt λ+∞ ?关于λ在[,]a b 一致收敛. 4. 讨论下列函数在指定区间上的连续性: (1) 22 0()x F x dy x y +∞ =+?,(,)x ∈-∞+∞; (2) 20()1x y F x dy y +∞ =+?,3x >; (3) 20sin ()()x x y F x dy y y π π-=-?,(0,2)x ∈.

5. 若(,)f x y 在[,][,)a b c ?+∞上连续,含参变量广义积分 ()(,)c I x f x y dy +∞ =? 在[,)a b 收敛,在x b =时发散,证明()I x 在[,)a b 不一致收敛. 6. 含参变量的广义积分()(,)c I x f x y dy +∞ =?在[,]a b 一致收敛的充要条件是:对任一 趋于+∞的递增数列{}n A (其中1A c =) ,函数项级数 111(,)()n n A n A n n f x y dy u x +∞∞ ===∑∑? 在[,]a b 上一致收敛. 7. 用上题的结论证明含参变量广义积分()(,)c I x f x y dy +∞ =?在[,]a b 的积分交换次序 定理(定理19.12)和积分号下求导数定理(定理19.13). 8. 利用微分交换次序计算下列积分: (1) 210()() n n dx I a x a +∞ +=+? (n 为正整数,0a >); (2) 0sin ax bx e e mxdx x --+∞ -?(0,0a b >>); (3) 20sin x xe bxdx α+∞-? (0α>). 9. 用对参数的积分法计算下列积分: (1) 220ax bx e e dx x --+∞-? (0,0a b >>); (2) 0 sin ax bx e e mxdx x --+∞ -?(0,0a b >>). 10. 利用2(1)2011y x e dy x +∞-+=+?计算拉普拉斯积分 20cos 1x L dx x α+∞=+? 和 120sin 1x x L dx x α+∞=+? . 11. 2 0(0)xy e dy x +∞ -=>计算傅伦涅尔积分

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 122),(x x dy y x f dx B .??-212 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+1 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 412),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

含参变量反常积分的几种计算方法

含参变量反常积分的几种计算方法 摘 要:含参变量反常积分是一类比较特殊的积分,由于它是函数又是以积分形式给出,所以它在积分计算中起着桥梁作用,并且计算难度较大,本文主要总结含参变量反常积分的几种方法,利用这几种方法,可以进行一系列的积分运算,这样可使含参变量反常积分运算更易理解和掌握。 关键词:含参变量反常积分 积分号下积分法 积分号下微分法 收敛因子 留数定理 在进行含参变量反常积分的运算时,首先要验证条件(包括确定含参变量及其变化范围,把问题归结为能利用含参变量反常积分运算性质的某一种,还要验证所用性质应满足的条件),在验证条件时,判别一致收敛至关重要,判别法通常采用魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法、柯西判别准则或用定义判别,然而在验证一致收敛时并不简单,这使得含参变量反常积分的计算有一定的难度,经过验证后,就可以利用含参变量反常积分的性质具体进行运算。本人在学习过程中,通过大量的、不断的练习,进行探索和归纳,总结出几种含参变量反常积分的计算方法,这几种方法运算技巧强,便于理解和掌握,下面分述于后。 一 积分号下积分法 要对含参变量反常积分()(),y a g f x y dx +∞=? 实现积分号下求积分,须验证以下条件: (1) (),f x y 在,x a y c ≥≥上连续; (2) (),a f x y dx +∞? 在[),y c ∈+∞上内闭一致收敛,(),c f x y dx +∞ ? 在[),x a ∈+∞上内闭一致收敛; (3) (,)c a dy f x y dx +∞ +∞?? 及(),a c dx f x y dy +∞+∞ ?? 至少有一个收敛, 则 ()(),,a c c a dx f x y dy dy f x y dx +∞+∞ +∞ +∞ =?? ?? 例1 利用2 u e du +∞ -?u=x α令2 ()0 (0)x e dx ααα+∞ -?>?,求2 e d αα+∞ -?的值。 分析:2 x e dx +∞ -?这个积分在概率论中非常有用,它的值可以用多种方法求出,但在这里利用积 分号下积分法求解,是很值得借鉴的,而且须验证的条件又显然成立。 解:由已知,得()g α=2 ()0 x e dx αα+∞ -?是取常值的函数,记I=2 e d αα+∞ -?, 则 I 2=I 2 e d αα+∞ -?=2 Ie d αα+∞ -? =22 ()0 ()x e dx e d αααα+∞+∞ --??=2 2(1) x d e dx α αα+∞+∞ -+?? =2 2(1) x dx e d α αα+∞+∞ -+??= 201121dx x +∞+?=4π 故 二 积分号下微分法

经济数学(二重积分习题及答案)

第九章二重积分 习题 9-1 1.设0),(≥y x f ,试阐述二重积分(,)d D f x y σ ??的几何意义. 解 当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底, 以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积. 2.试确定下列积分的符号并说明理由: 221 (1) ln()d d x y x y x y +<+?? 224 (2) d x y x y *+≤?? 解 (1) 因 1x y +<, 则将此式两边平方,得 220121 x y xy ≤+<-< 于是 0)ln(2 2 <+y x 故 221 ln()d d 0. x y x y x y +<+

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

含参变量的积分

含参变量的积分 1 含参变量的正常积分 1. 求下列极限: (1) 1 0lim a -→? ; (2) 2 20 0lim cos a x ax dx →? ; (3) 122 0lim 1a a a dx x a +→++? . 2.求'()F x ,其中: (1) 2 2 ()x xy x F x e dy -=?; (2) cos sin ()x x F x e =? ; (3) sin() ()b x a x xy F x dy y ++= ? ; (4) 2 2 (,)x x t f t s ds dt ?????? ? ?. 3.设()f x 为连续函数, 2 01 ()()x x F x f x d d h ξηηξ??=++???? ? ?, 求'' ()F x . 4.研究函数 1 22 () ()yf x F y dx x y =+? 的连续性,其中()f x 是[0,1]上连续且为正的函数. 5.应用积分号下求导法求下列积分: (1) 2220 ln(sin ) (1)a x dx a π ->? ; (2) 20 ln(12cos ) (||1)a x a dx a π -+

(4) 20 arctan(tan ) (||1)tan a x dx a x π >? ; (2) 1 01sin ln (0,0)ln b a x x dx a b x x -??>> ??? ?. 7.设f 为可微函数,试求下列函数的二阶导数: (1) 0()()()x F x x y f y dy =+?; (2) ()()|| ()b a F x f y x y dy a b = -

二重积分练习题,DOC

二重积分自测题(一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则() A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd () A .6π B .4π C .3π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ??D d y x f ),(() A .??-+212 2 ),(x x dy y x f dx B .??-212 0),(dy y x f dx C .??-+1 22 2 ),(x x dy y x f dx D .??+1 02 2 ),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分??=4 02),(x x dy y x f dx () A .??404 12 ),(y y dx y x f dy B .?? -4 0412),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx () A .)1(212--e B .)1(314--e C .)1(214--e D .)1(3 12--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为()

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

含参变量的积分

§12.3 .含参变量的积分 教学目的 掌握含参变量积分的连续性,可微性和可积性定理,掌握含参变量正常积分的求导法则. 教学要求 (1)了解含参变量积分的连续性,可微性和可积性定理的证明,熟练掌握含参变量正常积分的导数的计算公式. (2)掌握含参变量正常积分的连续性,可微性和可积性定理的证明. 一、含参变量的有限积分 设二元函数(,)f x u 在矩形域(,)R a x b u αβ≤≤≤≤有定义,[,],u αβ?∈一元函数(,)f x u 在[,]a b 可积,即积分 (,)b a f x u dx ? 存在.[,]u αβ?∈都对应唯一一个确定的积分(值)(,)b a f x u dx ?.于是,积分(,)b a f x u dx ?是定义在区间[,]αβ的函数,表为 ()(,), [,]b a u f x u dx u ?αβ=∈? 称为含参变量的有限积分,u 称为参变量. 定理1.若函数(,)f x u 在矩形域(,)R a x b u αβ≤≤≤≤连续,则函数()(,)b a u f x u dx ?=?在区间 [,]αβ也连续. ★说明:若函数(,)f x u 满足定理1的条件,积分与极限可以交换次序. 定理2 .若函数(,)f x u 与f u ??在矩形域(,)R a x b u αβ≤≤≤≤连续,则函数()(,)b a u f x u dx ?=?在 区间[,]αβ可导,且[,]u αβ?∈,有 (,)()b a d f x u u dx du u ??=??, 或 (,)(,)b b a a d f x u f x u dx dx du u ?=???. 简称积分号下可微分.

二重积分习题答案

第 八 章 二 重 积 分 习 题 答 案 练习题8.1 1.设D : 0y ≤,0x a ≤≤,由二重积分的几何意义 计算 d x y 1.D ??2D 解:σd y x D 341(--??= 22 1 21 1212(1[(1]4346x y x y dx dy y dx ------=--??? =2 22(1)84 x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.

解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222 2 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 1.D ??2.1.2. 3.二重积分0 (,)dy f x y dx ?? 交换积分次序后为 (,)x dx f x y dy ?? . (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序 1 d (,)y f x y dx ? = 2 1 1 (,)(,)x dx f x y dy f x y dy +?? .

2 1 1 (,)(,)x dx f x y dy f x y dy +?? 6.设D 是由221x y +≤所确定的区域。则22 1D dxdy x y ++?? =_ln 2πln2π 三. 选择题 1. 20x =, ). 2.3. ). 4.设D 是由22x y a +≤所确定的区域,当a =( B )时D π= A 1 B C . D 四 计算二重积分

第十讲含参变量的积分

第十讲含参变量的积分 10 . 1 含参变量积分的基本概念 含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义 设()y x f ,定义在平面区域[][]d c b a D ,,?=上的二元函数,对任意取定的[]b a x ,∈. ()y x f ,关于 y 在[]d c ,上都可积,则称函数 ()()[]b a x dy y x f x I d c ,,,∈=? 为含参量二的正常积分. 一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称 ()()() () []b a x dy y x f x I x d x c ,,,∈=? 为含参量x 的正常积分. 同样可定义含参量 y 的积分为 ()()[]d c y dx y x f y J b a ,,,∈=?或()()() () []d c y dx y x f y J y b y a ,,,∈=? 2 .性质(以 I ( x )为例叙述) ( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈?,()()( ) () ?= →000 ,lim 0x d x c x x dy y x f x I ( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有 ()()()? ????==b a b a d c b a d c dx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, · ( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()() ()()()()()()x c x c x f x d x d x f dy y x f x I x d x c x ' ' ' ,,,-+= ?· 以上性质的证明见参考文献[ 1 ] ,这里从略, 例10. l 求积分?>>-? ?? ??1 0,ln 1ln sin a b dx x x x x a b 解法 1 (用对参量的微分法):设()?>>-? ? ? ??=1 00,ln 1ln sin a b dx x x x x b I a b ,

第09篇二重积分(习题)

第九章 二重积分 习题9-1 1、设??+= 1 322 1)(D d y x I σ, 其中}22,11|),{(1≤≤-≤≤-=y x y x D ; 又??+= 2 322 2)(D d y x I σ, 其中}20,10|),{(2≤≤≤≤=y x y x D , 试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明: (1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即 ),(),(y x f y x f -=-时,有0),(=??D d y x f σ; (2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即 ),(),(y x f y x f =-时,有 ????=1),(2),(D D d y x f d y x f σ σ,其中1D 为D 在 0≥x 的部分. 并由此计算下列积分的值,其中}|),{(2 2 2 R y x y x D ≤+=. (I)??D d xy σ4 ; (II)??--D d y x R y σ2 2 2 ; (III)??++D d y x x y σ2 231cos . 解:令??= D d y x f I σ),(,??=1 ),(1 D d y x f I σ,其中1 D 为D 在0≥x 的部分, (1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0

高等数学不定积分例题及答案

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)

思路:52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。

最新192含参变量的反常积分汇总

192含参变量的反常 积分

幻灯 片 1 ?Skip Record If...? 幻灯片 2 ?Skip Record If...?板书积分(1)收敛的分析 定义. 幻灯片 3 ?Skip Record If...?在积分(1)收敛的分析定 义基础上,对比地,板书出 积分(1)一致收敛的分析 定义. 下面首先引入含参变量广 义积分的一致收敛概念及 Cauchy准则. 仅供学习与交流,如有侵权请联系网站删除谢谢2

幻灯片 4 ?Skip Record If...?证明方法,由定义,分析法 证. 幻灯片 5 ?Skip Record If...?证明方法,由定义1的否 定判断,分析法证.此证明 过程与教材上的证明略的 不同. 幻灯片 6 ?Skip Record If...?含参变量广义积分与函数 项级数的关系,由此关 系,我们容易把函数项级 数的性质与一致收敛性判 别法,移植给含参变量广 义积分。 仅供学习与交流,如有侵权请联系网站删除谢谢3

幻灯片 7 ?Skip Record If...?由柯西收敛准则,分析法 来证. 幻灯 片 8 ?Skip Record If...? 幻灯 片 9 ?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢4

幻灯片 10 ?Skip Record If...?下面我们把函数项级数的 一致收敛性判别法,移植 给含参变量广义积分。给 出含参变量广义积分的一 致收敛性的判别法,它们 的证明相仿。 幻灯 片 11 ?Skip Record If...? 幻灯 片 12 ?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢5

含参变量有限积分的计算

课程论文 题目 学生毛文龙 所在院系理学院 指导教师职称 完成日期2011年6月20日

含参变量有限积分的计算 一、引言 含参变量的有限积分的计算,是数学分析学习中的难点,也是工科考研复习中的难点,其主要题型包括:含参变量有限积分的计算、含参变量积分函数的相关计算(极限、求导)等等。 二、定义及性质 1.积分限固定的情形 定义 设二元函数()u x f ,在矩形域()βα≤≤≤≤x b x a R ,有定义, []βα,∈?u ,一元函数()u x f ,在[]b a ,可积,即积分()?b a dx u x f ,存在。[]βα,∈?u 都 对应唯一一个确定的积分(值)()?b a dx u x f ,。于是,积分()?b a dx u x f ,是定义在区 间[]βα,的函数,表为()()?=b a dx u x f u ,?,称为含参变量的有限积分,u 称为参变 量。 性质1(连续性) 设函数()u x f ,在矩形域()βα≤≤≤≤x b x a R ,连续,则函数()()?=b a dx u x f u ,?在区间[]βα,也连续。 这表明,定义在矩形区域上的连续函数,其极限运算与积分运算的顺序是可交换的。即对任意[]βα,0∈u ,()()? ?→→=b a u u b a u u dx u x f dx u x f ,lim ,lim 0。 同理可证,若()u x f ,在矩形域()βα≤≤≤≤x b x a R ,上连续,则含参变量的积分()()?=d c dy y u f u ,ψ也在区间[]βα,上连续。 性质2(可微性) 若函数()u x f ,及其偏导数 u f ??在矩形区域()βα≤≤≤≤u a R ,b x 上连续,则函数()()?=b a dx u x f u ,?在区间[]βα,可导,且 []βα,∈?u ,有()()()dx u u x f u du d u b a ???== ',??。

相关文档