文档库 最新最全的文档下载
当前位置:文档库 › 高中数学学案-导数的概念及计算

高中数学学案-导数的概念及计算

高中数学学案-导数的概念及计算
高中数学学案-导数的概念及计算

高中数学学案

导数及其应用

第1讲导数的概念及计算

考点导数的概念及其几何意义

知识点

1 导数的有关概念

(1)导数:如果当Δx→0时,Δy

Δx有极限,就说函数

y=f(x)在x=x0处可导,并把这个极限叫

做f(x)在x=x0处的导数(或瞬时变化率).记作f′(x0)或y′|x=x

,即f′(x0)=lim

Δx→0Δy

Δx=lim

Δx→0

f x0+Δx-f x0

Δx.

(2)导函数:如果函数f(x)在开区间(a,b)内每一点都可导,那么其导数值在(a,b)内构成一个新的函数,我们把这个函数叫做f(x)在开区间(a,b)内的导函数.记作f′(x)或y′.

注意点

如果函数f(x)在x=x0处可导,那么函数y=f(x)在x=x0处连续.

2 导数的几何意义

函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).

3 几种常见函数的导数

原函数导数

y=C(C为常数)y′=0

y=x n(n∈Q*)y′=nx n-1

y=sin x y′=cos x

y=cos x y′=-sin x

y=e x y′=e x

y=ln x y′=1 x

y=a x(a>0,且a≠1)y′=a x ln_a

y =log a x (a >0,且a ≠1)

y ′=

1

x ln a

4 导数的四则运算法则

若y =f (x ),y =g (x )的导数存在,则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③??

??

??f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0). 注意点 “过某点”和“在某点”的区别

曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,

y 0)为切点,而后者P (x 0,y 0)不一定为切点.

入门测

1.思维辨析

(1)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (2)曲线的切线不一定与曲线只有一个公共点.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1

x

.( )

答案 (1)× (2)√ (3)× (4)√

2.(1)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2 B .e C.ln 2

2

D .ln 2

(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2

D .0

答案 (1)B (2)B

解析 (1)由f (x )=x ln x 得f ′(x )=ln x +1.

根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. (2)f ′(x )=4ax 3+2bx ,

∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.

3.曲线y =sin x+e x在点(0,1)处的切线方程是( )

A.x-3y+3=0 B.x-2y+2=0

C.2x-y+1=0 D.3x-y+1=0

答案 C

解析y′=cos x+e x,故在点(0,1)处的切线斜率为2,切线方程为y=2x+1,即2x-y +1=0.

[考法综述] 导数的运算是所有导数问题的基础,高考中凡是涉及导数的问题必然会用到运算法则.导数的几何意义也是常考内容,主要有两种命题角度:①知切点求切线方程(斜率);

②知切线方程(或斜率)求切点参数值或曲线方程等.一般难度不大,选择、填空、解答题的形式都有.

命题法导数的概念和几何意义

典例(1)已知函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则lim

h→0 f x0+h-f x0-h

h等于( )

A.f(x0) B.-2f′(x0)

C.2f′(x0) D.0

(2)已知函数f(x)的导函数f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=( )

A.-e B.-1

C.1 D.e

(3)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.

[解析] (1)lim

h→0

f x0+h-f x0-h

h

=lim

h→0

f x0+h-f x0-[f x0-h-f x0]

h

=lim

h→0

f x0+h-f x0

h+lim

h→0

f x0-h-f x0

-h

=2f′(x0).

(2)∵f(x)=2xf′(1)+ln x,

∴f′(x)=[2xf′(1)]′+(ln x)′=2f′(1)+1 x,

∴f′(1)=2f′(1)+1,即f′(1)=-1.

(3)f′(x)=3ax2+1,f′(1)=3a+1,f(1)=a+2,故f(x)在点(1,f(1))处的切线方程为y -(a+2)=(3a+1)(x-1),代入点(2,7)得,a=1.

[答案] (1)C (2)B (3)1

【解题法】导数运算的原则和方法以及导数几何意义问题的解题策略

(1)①原则:先化简解析式,再求导.

②方法:

a.连乘积形式:先展开化为多项式的形式,再求导;

b.分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;

c.对数形式:先化为和、差的形式,再求导;

d.根式形式:先化为分数指数幂的形式,再求导;

e.三角形式:先利用三角函数公式转化为和或差的形式,再求导.

(2)①已知切点求切线方程.解决此类问题的步骤为:

a.求出函数y=f(x)在点x=x0处的导数,即曲线y=f(x)在点P(x0,f(x0))处切线的斜率;

b.由点斜式求得切线方程为y-y0=f′(x0)·(x-x0).

②已知斜率求切点:已知斜率k,求切点(x1,f(x1)),即解方程f′(x1)=k.

③求切线倾斜角的取值范围:先求导数的取值范围,即确定切线斜率的取值范围,然后利用正切函数的单调性解决.

1.函数f(x)=e x cos x的图象在点(0,f(0))处的切线的倾斜角为( )

A.π

4

B.0

C.3π

4

D.1

答案 A

解析由f′(x)=e x(cos x-sin x),则在点(0,f(0))处的切线的斜率k=f′(0)=1,故倾斜

角为π

4

,选A.

2.下列四个图象中,有一个是函数f(x)=

1

3

x3+ax2+(a2-4)x+1(a∈R,a≠0)的导函数y

=f′(x)的图象,则f(1)=( )

A.10

3

B.

4

3

C.-2

3

D.1

答案 C

解析f′(x)=x2+2ax+(a2-4),由a≠0,结合导函数y=f′(x)的图象,知导函数图象

为③,从而可知a2-4=0,解得a=-2或a=2,再结合-2a

2

>0知a<0,所以a=-2,代入

可得函数f(x)=1

3

x3-2x2+1,可得f(1)=-

2

3

,故选C.

3.已知t为实数,f(x)=(x2-4)·(x-t)且f′(-1)=0,则t等于( ) A.0 B.-1

C.1

2

D.2

答案 C

解析依题意得,f′(x)=2x(x-t)+(x2-4)=3x2-2tx-4,∴f′(-1)=3+2t-4=0,

即t=1 2 .

4.设曲线y=e x在点(0,1)处的切线与曲线y=1

x(

x>0)上点P处的切线垂直,则P的坐标为

________.

答案(1,1)

解析y′=e x,则y=e x在点(0,1)处的切线的斜率k切=1,又曲线y=1

x(

x>0)上点P处的

切线与y=e x在点(0,1)处的切线垂直,所以y=1

x(

x>0)在点P处的切线的斜率为-1,设P(a,

b),则曲线y=1

x(

x>0)上点P处的切线的斜率为y′|x=a=-a-2=-1,可得a=1,又P(a,b)

在y =1

x

上,所以b =1,故P (1,1).

5.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)

解析 由题意得y ′=ln x +x ·1

x

=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),

则1+ln m =2,解得m =e, 所以n =eln e =e ,即点P 的坐标为(e ,e).

6.若对于曲线f (x )=-e x -x (e 为自然对数的底数)的任意切线l 1,总存在曲线g (x )=ax +2cos x 的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为________.

答案 [-1,2]

解析 易知函数f (x )=-e x -x 的导数为f ′(x )=-e x -1,设l 1与曲线f (x )=-e x -x 的切点为(x 1,f (x 1)),则l 1的斜率k 1=-e x 1-1.易知函数g (x )=ax +2cos x 的导数为g ′(x )=a -2sin x ,设l 2与曲线g (x )=ax +2cos x

的切点为(x 2,g (x 2)),则l 2的斜率k 2=a -2sin x 2.由题设可知k 1·k 2=-1,从而有(-e x 1

-1)(a -2sin x 2)=-1,∴a -2sin x 2=

1

e x 1+1

,故由题意知对任意x 1,总存在x 2使得上述等式

成立,则有y 1=1

e x 1+1

的值域是y 2=a -2sin x 2值域的子集,则(0,1)?[a -2,a +2],则

??

?

a -2≤0,

a +2≥1,

∴-1≤a ≤2. 7.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.

(1)求a 的值;

(2)是否存在实数k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.

解 (1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.

(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).

∵g ′(x 0)=6x 0+6,

∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1.

当x0=-1时,切线方程为y=9;

当x0=1时,切线方程为y=12x+9.

由(1)知f(x)=-2x3+3x2+12x-11,

①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.

在x=-1处,y=f(x)的切线方程为y=-18;

在x=2处,y=f(x)的切线方程为y=9,

∴y=f(x)与y=g(x)的公切线是y=9.

②由f′(x)=12得-6x2+6x+12=12,

解得x=0或x=1.

在x=0处,y=f(x)的切线方程为y=12x-11;

在x=1处,y=f(x)的切线方程为y=12x-10;

∴y=f(x)与y=g(x)的公切线不是y=12x+9.

综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.

微型专题导数几何意义应用的创新题型

创新考向

导数几何意义的应用中的创新问题是近几年高考命题的一个增长点,此类问题以新定义、新情境为依托,考查学生理解问题、解决创新问题的能力.

命题形式:常见的有新概念、新情境、新法则等.

创新例题

如图,某飞行器在4千米高空水平飞行,从距着陆点A的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为( )

A.y=

1

125

x3-

3

5

x B.y=

2

125

x3-

4

5

x

C.y=

3

125

x3-x D.y=-

3

125

x3+

1

5

x

解析根据题意知,所求函数在(-5,5)上单调递减.对于A,y=

1

125

x3-

3

5

x,∴y′=

3

125

x2-3

5

3

125

(x2-25),∴?x∈(-5,5),y′<0,∴y=

1

125

x3-

3

5

x在(-5,5)内为减函数,同理

可验证B、C、D均不满足此条件,故选A.

创新练习

若直线l与曲线C满足下列两个条件:

(1)直线l在点P(x0,y0)处与曲线C相切.

(2)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.

下列命题正确的是________(写出所有正确命题的编号).

①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;

②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2;

③直线l:y=x在点P(0,0)处“切过”曲线C:y=sin x;

④直线l:y=x在点P(0,0)处“切过”曲线C:y=tan x;

⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x.

答案①③④

解析对于①,y′=3x2,y′|x=0=0,所以l:y=0是曲线C:y=x3在点P(0,0)处的切线,画图可知曲线C:y=x3在点P(0,0)附近位于直线l的两侧,①正确;对于②,因为y′=2(x+1),y′|x=-1=0,所以l:x=-1不是曲线C:y=(x+1)2在点P(-1,0)处的切线,②错误;对于③,y′=cos x,y′|x=0=1,所以l:y=x是曲线C:y=sin x在点P(0,0)处的切线,画图可知曲线C:y=sin x在点P(0,0)附近位于直线l的两侧,③正确;对于④,y′

1

cos2x

,y′|x=0=1cos20=1,所以l:y=x是曲线C:y=tan x在点P(0,0)处的切线,画

图可知曲线C:y=tan x在点P(0,0)附近位于直线l的两侧,④正确;对于⑤,y′=1

x,y′|x=1

=1,所以l:y=x-1是曲线C:y=ln x在点P(1,0)处的切线,令h(x)=x-1-ln x(x>0),

可得h′(x)=1-1

x=

x-1

x,所以

h(x)min=h(1)=0,故x-1≥ln x,可知曲线C:y=ln x在

点P(1,0)附近位于直线l的下方,⑤错误.

1.准确转化:解决此类问题时,一定要读懂题目的本质含义,紧扣题目所给条件,结合题目要求进行恰当转化,切忌同已有概念或定义相混淆.

2.方法选取:对于导数几何意义的应用中的创新问题,可恰当选用图象法、特例法、一般逻辑推理等方法,同时结合导数的几何意义求解,以此培养学生领悟新信息、运用新信息的能力.

若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值是( )

A.1 B.

1 64

C.1或

1

64

D.1或-

1

64

[错解]

[错因分析] (1)片面理解“过点O(0,0)的直线与曲线f(x)=x3-3x2+2x相切”.这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中忽视后面情况.

(2)本题还易出现以下错误:一是当点O(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻.

[正解] 易知点O(0,0)在曲线f(x)=x3-3x2+2x上,

(1)当O(0,0)是切点时,同上面解法.

(2)当O(0,0)不是切点时,设切点为P(x0,y0),则y0=x30-3x20+2x0,且k=f′(x0)=3x20-6x0+2.①

又k=y0

x0=

x20-3x0+2,②

由①,②联立,得x0=3

2

(x0=0舍),所以k=-

1

4

∴所求切线l的方程为y=-

1

4

x.

??

?

??y=-

1

4

x,

y=x2+a,

得x2+

1

4

x+a=0.

依题意,Δ=

1

16

-4a=0,∴a=

1

64

.

综上,a=1或a=

1

64

.

[答案] C

[心得体会]

课时练

基础组

1.[武邑中学模拟]已知奇函数f(x)满足f′(-1)=1,则lim

Δx→0

fΔx-1+f1

Δx=( ) A.1 B.-1

C.2 D.-2

答案 A

解析由f(x)为奇函数,得f(1)=-f(-1),所以lim

Δx→0

fΔx-1+f1

Δx=lim

Δx→0 f-1+Δx-f-1

Δx=

f′(-1)=1,故选A.

2.[枣强中学一轮检测]已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(e为自然对数的底数),则f′(e)=( )

A.

1

e

B.e

C.-1

e

D.-e

答案 C

解析由f(x)=2xf′(e)+ln x,得f′(x)=2f′(e)+1

x,则

f′(e)=2f′(e)+

1

e?

f′(e)=-

1

e

故选C.

3.[衡水中学周测]若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )

A.-1 B.0

C.1 D.2

答案 C

解析依题意得,f′(x)=-a sin x,g′(x)=2x+b,于是有f′(0)=g′(0),即-a sin0=2×0+b,故b=0,又有m=f(0)=g(0),则m=a=1,因此a+b=1,选C.

4.[冀州中学月考]曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为( )

A.45°B.60°

C.120°D.135°

答案 A

解析由y=x3-2x+4,得y′=3x2-2,得y′|x=1=1,故切线的倾斜角为45°.

5.[武邑中学周测]已知f(x)=x3-9

2

x2+6x-a,若对任意实数x,f′(x)≥m恒成立,则m

的最大值为( )

A.3 B.2

C.1 D.-3 4

答案 D

解析f′(x)=3x2-9x+6,因为对任意实数x,f′(x)≥m恒成立,即3x2-9x+(6-m)

≥0恒成立,所以81-12(6-m)≤0,解得m≤-3

4

,即m的最大值为-

3

4

,故选D.

6.[衡水中学月考]函数f(x)=x sin x的导函数f′(x)在区间[-π,π]上的图象大致为( )

答案 C

解析 ∵f (x )=x sin x ,∴f ′(x )=sin x +x cos x ,∴f ′(-x )=-sin x -x cos x =-f ′(x ),∴f ′(x )为奇函数,由此可排除A ,B ,D ,故选C.

7.[枣强中学猜题]若点P 在曲线f (x )=ln x +ax 上,且在点P 处的切线与直线2x -y =0平行,则实数a 的取值范围是( )

A .(-∞,2]

B .(-∞,2)

C .(2,+∞)

D .(0,+∞)

答案 B

解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=1x +a ,故f ′(x 0)=1x 0+a =2,得a =2-1

x 0

由题意,知x 0>0,所以a =2-1

x 0

<2,故选B.

8.[衡水中学期中]抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2

=1的右焦点的连

线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )

A.3

16 B.

38 C.23

3

D.

43

3

答案 D

解析 设M ? ????x 0,12p x 20,y ′=? ??

??12p x 2′=x p ,故在M 点处的切线的斜率为x 0p =33,故

M ?

???

?33p ,16p .由题意又可知抛物线的焦点为? ????

0,p 2,双曲线右焦点为(2,0),且? ????33

p ,16p ,

? ????

0,p 2,(2,0)三点共线,1

6

p -03

3

p -2

=p

2

-00-2,可求得p =4

3

3,故选D. 9.[武邑中学期中]曲线y =-5e x +3在点(0,-2)处的切线方程为________. 答案 5x +y +2=0

解析 由y =-5e x +3得,y ′=-5e x ,所以切线的斜率k =y ′|x =0=-5,所以切线方程为y +2=-5(x -0),即5x +y +2=0.

10.[衡水中学期末]若f ′(x 0)=2,则lim k →0

f x 0-k -f x 0

2k

=________.

答案 -1 解析 f ′(x 0)=lim k →0

f [x 0+-k ]-f x 0

-k

(这里Δx =-k ),

所以,lim k →0

f x 0-k -f x 0

2k

=lim k →0

????

??-12·f [x 0+-k ]-f x 0-k

=-12f ′(x 0)=-1

2

×2=-1.

11.[冀州中学期末]已知函数y =2cos x +3的导函数为G (x ),在区间????

??

-π3,π上,随机取

一个值a ,则G (a )<1的概率P 为________.

答案

78

解析 由题意,知G (x )=y ′=-2sin x ,在区间??????

-π3,π上,由G (a )=-2sin a <1,得a

∈? ????

-π6,π,故概率P =π-? ???

?-π6π-? ??

??-π3=78

. 12. [衡水中学预测]过函数y =x 1

2(0

于点P 、Q ,点N (0,1),则△PQN 面积的最大值为________.

答案

827

解析 设切点为M (t 2,t ),0

1

2x

,所以切线斜率为k =

1

2t

,切线方程为y -t =12t (x -t 2),即y =12t x +t 2,分别令x =0、y =1得P ? ??

??

0,t 2、Q (2t -t 2,1),所以△PQN

的面积S =12·? ??

??1-t 2·(2t -t 2

)=14t 3-t 2+t ,S ′=34t 2-2t +1=14(t -2)(3t -2),注意到0

27

.

能力组

13.[枣强中学热身]曲线y =x +13x 3在点? ????

1,43处的切线和坐标轴围成的三角形的面积为

( )

A .3

B .2 C.1

3 D.19

答案 D

解析 由题意,知y ′=1+x 2,∴曲线在点?

??

??

1,

43处的切线的斜率k =y ′| x =1=2,又切线过点? ????

1,43,∴切线方程为y -43=2(x -1),即y =2x -23.∴切线与x 轴和y 轴的交点分别为? ????13,0和? ?

?

??0,-23.∴所求三角形的面积为12×13×23=19,故选D. 14.[衡水中学猜题]已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2)处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.

答案 -7

解析 由题意得f (1)=-2?a -2b =-3,又∵f ′(x )=3x 2+a ,∴f (x )的图象在点(1,-2)处的切线方程为y +2=(3+a )(x -1),即(3+a )x -y -a -5=0,∴|3+a ×2+4-a -5|

3+a

2

+1

=5?a =-52,∴b =1

4

,∴3a +2b =-7.

15.[衡水中学一轮检测]设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.

答案-2

解析∵y′| x=1=n+1(n∈N*),∴曲线在点(1,1)处的切线为y-1=(n+1)(x-1)(n∈

N*),令y=0,得x=x n=

n

n+1(

n∈N*),∴a n=lg

n

n+1(

n∈N*),∴a1+a2+…+a99=lg

1

2

+lg

2 3+…+lg

99

100

=lg

?

?1

2

3

×…×

?

?

?

99

100=lg

1

100

=-2.

16. [冀州中学模拟]已知点P在曲线y=

4

e x+1

(其中e为自然对数的底数)上,α为曲线在点P

处的切线的倾斜角,则tanα的取值范围是________.答案[-1,0)

解析易知y′=-4e x

e x+12

,显然y′<0,又

-4e x e x+12=

-4

e x+

1

e x

+2

-4

2 e x·

1

e x

+2

=-1

(当且仅当e x=1

e x

时取“=”),∴tanα的取值范围是[-1,0).

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

《导数的概念与基本运算》教案1

导数的概念与基本运算 1.导数的概念 设函数y =f (x )在x 0附近有定义,自变量x 在点x 0有增量△x ,函数y =f (x )相应有增量 △y =f (x 0+△x )-f (x 0),比值 x x f x x f x y ?-?+= ??) ()(00是函数y =f (x )在x 0到x 0+△x 的平均变化率。如果当0→?x 时, x y ??有极限,则称函数y =f (x )在点x 0处有导数(又称可导),而这个极限值就叫做函数y =f (x )在点x 0处的导数(或变化率),记作f ' (x 0)或y'|0x x =,即 )(x f '=x y x ??→?0lim =x x f x x f x ?-?+→?)()(lim 000。 2.导数概念的某些实际背景 瞬时速度是导数概念的一个物理背景,切线的斜率是导数概念的一个几何背景。 3.求导数的方法 导数应用很广泛,经常需要求导,如果都用定义求一遍,不胜其烦,人们就用定义推导出一些常见函数的导函数,并作为公式加以应用。教科书上只介绍了两个求导公式:C'=0, 及()n x '= (n 为正整数);两个法则:[f(x)±g(x)]'=f '(x)±g '(x), [Cf (x )]'=C f '(x) 。 根据定义不难证明上述两个法则: [f(x)±g(x)]'= = = ±= ()f x '()g x '±; ()Cf x '????0 lim x C ?→==()Cf x ' 。 有了这些工具,我们就能求出一切多项式函数的导数了。 另外,∵=≈, ∴当△x 很小时,可把它作为一个简单易记的近似计算公式。 (1)几种常用函数的导数公式如下:

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

人教版高中数学《导数》全部教案

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时, t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做 瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间 内的平均速度为t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.

2012届高考数学复习 第95课时 第十三章 导数-导数的概念及运算名师精品教案

第95课时:第十三章 导数——导数的概念及运算 课题:导数的概念及运算 一.复习目标: 理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程. 二.知识要点: 1.导数的概念:0()f x '= ; ()f x '= . 2.求导数的步骤是 3.导数的几何意义是 . 三.课前预习: 1.函数2 2 (21)y x =+的导数是 ( C ) ()A 32164x x + ()B 348x x + ()C 3168x x + ()D 3164x x + 2.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可( A ) ()A )1(3)1()(2-+-=x x x f ()B )1(2)(-=x x f ()C 2)1(2)(-=x x f ()D 1)(-=x x f 3.曲线2 4y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为 ( B ) ()A (1,3) ()B (3,3) ()C (6,12)- ()D (2,4) 4.若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( A ) 5.已知曲线()y f x =在2x =-处的切线的倾斜角为 34 π ,则(2)f '-=1-,[( 2)]f '-=0.

6.曲线2122y x =- 与3124y x =-在交点处的切线的夹角是4 π. 四.例题分析: 例1.(1)设函数2 ()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32 ()25f x x x x =-++,若()0f x '=,求x 的值. (3)设函数()(2)n f x x a =-,求()f x '. 解:(1)32()61153f x x x x =+++,∴2 ()18225f x x x '=++ (2)∵32()25f x x x x =-++,∴2 ()341f x x x '=-+ 由()0f x '=得:2 03410x x -+=,解得:01x =或013 x = (3)0(22)(2)()lim n n x x a x x a f x x ?→-+?--'=? 112 210 lim[(2)24(2)2()]n n n n n n n n x C x a C x x a C x ---?→=-?+?-++?12(2)n n x a -=- 例2.物体在地球上作自由落体运动时,下落距离2 12 S gt = 其中t 为经历的时间,29.8/g m s =,若 0(1)(1) lim t S t S V t ?→+?-=?9.8/m s =,则下列说法正确的是( C ) (A )0~1s 时间段内的速率为9.8/m s (B )在1~1+△ts 时间段内的速率为9.8/m s (C )在1s 末的速率为9.8/m s (D )若△t >0,则9.8/m s 是1~1+△ts 时段的速率; 若△t <0,则9.8/m s 是1+△ts ~1时段的速率. 小结:本例旨在强化对导数意义的理解,0lim →?t t S t S ?-?+) 1()1(中的△t 可正可负 例3.(1)曲线C :3 2 y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程; (2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程. 解:(1)已知两点均在曲线C 上. ∴? ??=+++=439271 d c b a d ∵2 32y ax bx c '=++ / (0)f c = / (3)276f a b c =++

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

配套学案:导数的计算

导数的计算(复习课) 【学习目标】 1.掌握基本初等函数的导数公式以及导数的运算法则; 2.会求含有加、减、乘、除运算的函数导数; 3.会求简单复合函数的倒数. 【知识回顾】 1.基本初等函数的导数公式: (1)c '=___________(c 为常数); (2))('α x =________(α为常数); (3))('x a =________(0a >且1a ≠); (4))(log 'x a =______(0a >且1a ≠); (5))('x e =_____________; (6))(ln 'x =_____________; (7)=')(sin x ___________; (8))(cos 'x =____________. 2.设两个函数分别为f(x)和g(x), (1)=')]([x f c _____________; (2)[]='±)()(x g x f ___________; (3)[]='?)()(x g x f __________________; (4)='?? ????)()(x g x f ____________)0)((>x g . 3. 复合函数()[]x f y ?=,设u φ=(x ), 则))((x f ?'=_________________. (复合函数求导的基本步骤是:分解——求导——相乘——回代) 【典例精析】 例1. 求曲线2 y x =过下列点的切线方程:(1)P (-1,1);(2)Q(0,-1).联合例5后置处理

例2.求下列函数的导数: (1)y=3x ·lnx ; (2)y=lgx- 2x 1; (3)y= x x -1cos ; (4)2)2(-=x y .

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

《导数的概念》说课稿(完成稿)

实验探究,让数学概念自然生长 ——《导数的概念》说课 江苏省常州市第五中学张志勇 一. 教学内容与内容解析 1、教学内容:本节课的教学内容选自苏教版普通高中课程标准实验教科书数学选修2-2第一章第一节的《导数的概念》第2课时“瞬时变化率——导数”,导数的概念包括三部分教学内容,即平均变化率、瞬时变化率、导数,其中瞬时变化率包括曲线上一点处的切线和瞬时速度、瞬时加速度,本节课之前学生已完成平均变化率的学习. 2、内容解析:导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用.对于中学阶段而言,导数是研究函数的有力工具,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.从而导数在函数研究中的应用应是整个章节的重点,但不能仅仅将导数作为一种规则和步骤来学习,导数的概念无疑是教学的起点也是关键,否则学生很难体会导数的思想及其内涵.事实上导数概念的建立基于“无限逼近”的过程,这与初等数学所涉及的思想方法有本质的不同.囿于学生的认知水平和可接受能力,教材中并没有引进极限概念(过多的极限知识可能会冲淡甚至干扰对导数本质的理解),而是从学生的生活经验出发,通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型. 3、教学设想:导数的本质在于从平均变化率到瞬时变化率的“无限逼近”,而无限逼近有三种方式:数值逼近、几何直观感知、解析式抽象;而达成学生极限思想形成之教学目标,需要以问题为背景,关键是设计活动让学生经历从平均变化率到瞬时变化率的过程.因此教学处理时,试图还 原知识建构的完整过 程,实现导数概念的“再 创造”,其中数学探究 环节采用数学实验的方

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

人教版高中数学(文科)选修导数的概念及运算教案

导数的概念及运算 【考点指津】 1.了解导数的概念,掌握函数在一点处的导数的定义和导数的几何意义. 2.熟记基本导数公式.掌握两个函数四则运算的求导法则,会求多项式的导数. 【知识在线】 1.函数y =14223++x x 的导数是 . 2.曲线y =x 4+x 2上P 处的切线的斜率为6,则点P 的坐标是 . 3.设函数f(x)= -35 x 5 - 74 x 4+8,则0 lim →?x f(x+Δx)-f(x)Δx = . 4.已知使函数y=x 3+ax 2- 43 a ,若存在0)()(,000=='∈x f x f R x 使的求常数a . 【讲练平台】 例1 函数y=(3x 2+x+1)(2x+3)的导数是 ( ) A . (6x+1)(2x+3) B . 2(6x+1) C . 2(3x 2+x+1) D . 18x+22x+5 分析 先把函数式右边展开,再用和的求导法则求导数. 解 y=(3x 2+x+1)(2x+3)=6x 3+11x 2+5x+3 ∴y'=18x 2+22x+5,故应选D 点评 要善于化归,本题函数解析式就可转化为多项式. 例2 设函数f(x)=x 3-2x 2+x+5, 若f'(x 0)=0,则x 0= . 分析 x 0是方程f'(x)=0的根,只要解方程f'(x)=0 解 f(x)=x 3-2x 2+x+5, 求f'(x)=3x 2-4x+1 由f'(x 0)=0, 得3x 2-4x+1=0 解得x 0=1或13 ∴应填写答案为1或13 点评 导数的运算法则再加上已有的导数公式(如(x n )'=n .x n -1, 其中n ∈N*)是求某些简单函数的导 数的常用工具. 例3 已知抛物线y=ax 2+bx+c 通过点(1,1),且在(2,-1)处的切线的斜率为1, 求a ,b ,c 的值. 分析 题中涉及三个未知数,而已知中有三个独立条件,故可通过解方程组来确定a ,b ,c . 解 ∵y=ax 2+bx+c 分别过(1,1)点和(2,1)点 ∴a+b+c=1 (1) 4a+2b+c=-1 (2) 又 y'=2ax+b ∴y'|x=2=4a+b=1 (3) 由(1)(2)(3)可得,a=3,b=-11,c=9. 点评 函数的导数的几何意义决定了函数的导数知识与平面解析几何中直线的知识有着密切的联系.利用导数能解决许多曲线的切线的问题,使确定曲线在某处的切线斜率变得简单易求. 【知能集成】 1.两种常见函数的导数:c'=0 (C 是常数);(x n )'= nx n - 1(n ∈N *). 导数和运算法则:若 f(x),g(x)的导数存在,则[f(x)±g(x)]' = f '(x)+g'(x), [cf(x)]' = cf '(x).(C 是常数) 2.能应用由定义求导数的三个步骤推导出常数及函数y=x n (n ∈N*)的导数公式,掌握两个函数的和与差的求导法则及常数与函数的积的求导法则,能正确运用这些求导法则及导数公式求某些简单函数的导数.

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

2021版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的计算教学案理北师大版

第1讲变化率与导数、导数的计算 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx =lim Δx→0 Δy Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0), 即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0). (3)函数f(x)的导函数 称函数f′(x)=_lim Δx→0_ f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数y=c(c为常数) y′=0 y=xα(α为实数) y′=αxα-1 y=a x (a>0且a≠1) y′=a x ln a 特别地(e x)′=e x y=log a x (x>0,a>0,且a≠1) y′= 1 x ln a 特别地(ln x)′= 1 x y=sin x y′=cos__x

(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′= y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、教材衍化 1.函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.曲线y =1- 2 x +2 在点(-1,-1)处的切线方程为________. 解析:因为y ′=2 (x +2)2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.有一机器人的运动方程为s =t 2 +3t (t 是时间,s 是位移),则该机器人在t =2时的 瞬时速度为________. 解析:因为s =t 2 +3t ,所以s ′=2t -3t 2,

高中数学_导数的概念及运算教学设计学情分析教材分析课后反思

教学设计 【教学目标】 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 2,y =x 3,y =x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 【重点难点】 1.教学重点:①能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; ②能利用导数的几何意义求曲线的切线方程。 2.教学难点:理解导数的几何意义; 【教学策略与方法】 自主学习、学生展示、师生互动法 【教学过程】 【考纲再现】 导数的概念;基本初等函数导数公式;导数的四则运算;导数的几何意义。 【题型分析】 题型一 导数的运算 题型二 导数的几何意义 求切线方程 求切点坐标 求参数的值 【思维升华】 1.导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ; (3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0 求解. 2. 求解与切线有关的问题时,要注意分析切点的性质,切点有3个性质:①切点在曲线上;②切点在切线上;③在切点处的导数等于切线的斜率.由此可以建立方程 (组)求解参数的取值问题. 【方法与技巧】

1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导. 2.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 【课后作业】 高考真题 学情分析 1.学生的情感特点和认知特点:学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础 2.已具备的与本节课相联系的知识、生活经验:学生已较好地在物理中学过平均速度、瞬时速度,并学习了一些的关于函数变化率的知识,为本节课学习瞬时变化率、导数做好铺垫。 3.学习本课存在的困难:导数概念建立在极限基础之上,极限是文科学生没有学习过的新知,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度. 效果分析 学生通过基本问题的解决,发现自己对知识的掌握情况。通过学生板书或讲述锻炼学生表达能力。 教材分析 导数是高考的热点,一般不单独出题,往往和导数的几何意义结合,既有选择题,填空题,又有解答题,难度中档左右,解答题作为把关题存在.导数重点考查一次函数,二次函数,反比例函数,指数函数,对数函数,与三角函数等的求导公式,导数运算重点是高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商的运算方

导数的运算法则及基本公式应用

120 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(] sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·2 1v -21·2x =f ′(12+x )·21 112+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′

2.11-变化率与导数、导数的计算学案(高考一轮复习)

2014年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

2012届高考数学一轮复习教案:13.1 导数的概念与运算

*第十三章导数 ●网络体系总览 ●考点目标定位 1.理解导数的定义,会求多项式函数的导数. 2.理解导数的物理、几何意义,会求函数在某点处切线的斜率和物体运动到某点处的瞬时速度. 3.会用导数研究多项式函数的单调性,会求多项式函数的单调区间. 4.理解函数极大(小)值的概念,会用导数求多项式、函数的极值及在闭区间上的最值,会求一些简单的实际问题的最大(小)值. ●复习方略指南 在本章的复习过程中应始终把握对导数概念的认识、计算及应用这条主线.复习应侧重概念、公式、法则在各方面的应用,应淡化某些公式、法则的理论推导. 课本只给出了两个简单函数的导数公式,我们只要求记住这几个公式,并会应用它们求有关函数的导数即可. 从2000年高考开始,导数的知识已成为高考考查的对象,特别是导数的应用是高考必考的重要内容之一,题型涉及选择题、填空题与解答题,要给予充分的重视.但是,本章内容是限定选修内容,试题难度不大,要重视基本方法和基础知识;做练习题时要控制好难度,注意与函数、数列、不等式相结合的问题.

13.1 导数的概念与运算 ●知识梳理 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy ; (2)求平均变化率 x y ??. (3)取极限,得导数f '(x 0)=0 lim →?x x y ??. 2.导数的几何意义和物理意义 几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. 物理意义:若物体运动方程是s =s (t ),在点P (i 0,s (t 0))处导数的意义是t =t 0处的瞬时速度. 3.求导公式 (c )'=0,(x n )'=n ·x n - 1(n ∈N *). 4.运算法则 如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ),[c ·f (x )]'= c f '(x ). ●点击双基 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则x y ??等于 A.4 B.4x C.4+2Δx D.4+2Δx 2 解析:Δy =2(1+Δx )2-1-1=2Δx 2+4Δx , x y ??=4+2Δx . 答案:C 2.对任意x ,有f '(x )=4x 3,f (1)=-1,则此函数为 A.f (x )=x 4-2 B.f (x )=x 4+2 C.f (x )=x 3 D.f (x )=-x 4 解析:筛选法. 答案:A 3.如果质点A 按规律s =2t 3运动,则在t =3 s 时的瞬时速度为 A.6 B.18 C.54 D.81 解析:∵s ′=6t 2,∴s ′|t =3=5 4. 答案:C 4.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________. 解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴2 6-+c =-5. ∴c =4. 答案:4 5.设函数f (x )=(x -a )(x -b )(x -c )(a 、b 、c 是两两不等的常数),则

相关文档
相关文档 最新文档