文档库 最新最全的文档下载
当前位置:文档库 › 点差法习题(有答案)

点差法习题(有答案)

点差法习题(有答案)
点差法习题(有答案)

点差法习题

【学习目标】 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。

使用说明及学法指导】

1、通过证明定理,熟悉“点差法”的运用;

2、记住点差法推导出的公式,并熟练应用;

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。

一、自主证明

1、定理 在椭圆122

22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则

22

00a b x y k MN -=?. 同理可证,在椭圆122

22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则

22

00b a x y k MN -=?. 2、定理 在双曲线122

22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22

00a b x y k MN =?. 同理可证,在双曲线122

22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则

22

00b a x y k MN =?. 3、定理 在抛物线

)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为

MN k ,则m y k MN =?0.

例1 设椭圆方程为1422

=+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足)(21+=,

点N 的坐标为?

?? ??21,21.当l 绕点M 旋转时,求: (1)动点P 的轨迹方程;

(2)||的最大值和最小值.

例2 已知双曲线13:2

2

=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;

(2)若P 恰为弦AB 的中点,求直线l 的方程.

例3 抛物线

x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 212-=x y D.

122-=x y 1. 已知椭圆422

2=+y x ,则以)1,1(为中点的弦的长度为( ) A. 23 B. 32 C. 330 D. 26

3

2. 已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C. 12522=-y x D. 1522

2=-y x

3. 已知直线02=--y x 与抛物线

x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 【规律总结】

同理可证,在抛物线

)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01.

一、 以定点为中点的弦所在直线的方程

例1、过椭圆14

162

2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12

2

2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

二、 过定点的弦和平行弦的中点坐标和中点轨迹

例3、已知椭圆125

752

2=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。)2

35235(0<<-=+x y x 三、 求与中点弦有关的圆锥曲线的方程

例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为

2

1,求椭圆的方程。 四、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

答 案

例1. 解:设直线与椭圆的交点为),(11y x A 、),(22y x B

)1,2(M 为AB 的中点 ∴421=+x x 221=+y y

又A 、B 两点在椭圆上,则1642121=+y x ,1642

222=+y x

两式相减得0)(4)(22212221=-+-y y x x

于是0))((4))((21212121=-++-+y y y y x x x x ∴

2

1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2

11--=-x y ,即042=-+y x 。 例2. 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B

则221=+x x ,221=+y y 122121=-y x ,122

222=-y x 两式相减,得

0))((21))((21212121=-+--+y y y y x x x x ∴22

121=--=x x y y k AB 故直线)1(21:-=-x y AB 由??

???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=?

这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

例3. 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2

10=x 12021==+x x x , 0212y y y =+

又 125752121=+x y ,125

752

222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(221210=-+-x x y y y ∴0

212123y x x y y -=-- 32

121

=--=x x y y k ∴ 3230=-y ,即210-=y ∴点M 的坐标为)2

1,21(-。 例4. 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则

x x x 221=+, y y y 221=+

又 125752121=+x y ,125

752222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(2121=-+-x x x y y y ,即y x x x y y 32121-=--

3212

1=--=x x y y k ∴33=-y

x ,即0=+y x 由?????=+=+125750

2

2x y y x ,得)235,235(-P )235,235(-Q 点M 在椭圆内

∴它的斜率为3的弦中点的轨迹方程为 例5.解:设椭圆的方程为122

22=+b x a y ,则502

2=-b a ┅┅①

设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则 210=x ,21

2300-=-=x y ∴12021==+x x x ,12021-==+y y y 又1221221=+b x a y ,122

2

222=+b x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b 即0)()(212212=-+--x x a y y b ∴ 22

2121b a

x x y

y =-- ∴ 322

=b

a ┅┅②

联立①②解得752=a ,252=b ∴所求椭圆的方程是125752

2=+x y

例 6.解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,

),(y x P 为弦21P P 的中点,则12432121=+y x ,12432222=+y x 两式相减得,0)(4)(32

2212221=-+-y y x x

即0))((4))((321212121=-++-+y y y y x x x x x x x 221=+,y y y 221=+,4

12121-=--x x y y

∴x y 3= 这就是弦21P P 中点P 轨迹方程。 它与直线m x y +=4的交点必须在椭圆内 联立???+==m x y x y 43,得

???-=-=m y m x 3 则必须满足

2

2433x y -<, 即22433)3(m m -<,解得1313

213132<<-m

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。

图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

SPSS方差分析案例实例

SPSS 第二次作业——方差分析 1、案例背景: 在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。 2、案例所需资料及数据的获取方式和表述,变量的含义以及类型: 所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分; 获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据; 变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。 表1如下: 3、分析方法: 用方差分析的方法对四个总体的平均数差异进行综合性的F 检验。 4、数据的检验和预处理: a) 奇异点的剔除:经检验得无奇异点的剔除; b) 缺失值的补齐:无; c) 变量的转换(虚拟变量、变量变换):无; d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。 正态性,用QQ 图进行分析得下图: 教师 题目 1 2 3 a 27.3 28.5 29.1 b 29.0 29.2 28.3 c 26.5 28.2 29.3 d 29.7 25.7 27.2

得到近似满足正态性。 ?对方差齐性的检验: 用SPSS对方差齐性的分析得下表: Test of Homogeneity of Variances 分数 Levene Statistic df1 df2 Sig. .732 2 9 .508 易知P〉0.05,接受方差齐性的假设。 5、分析过程: a) 所用方法:单因素方差分析;方差分析中的多重比较。 b) 方法细节: ●单因素方差分析 第一步,提出假设: H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同) H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

单因素方差分析完整实例

什么是单因素方差分析 单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。 单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。 单因素方差分析相关概念 ●因素:影响研究对象的某一指标、变量。 ●水平:因素变化的各种状态或因素变化所分的等级或组别。 ●单因素试验:考虑的因素只有一个的试验叫单因素试验。 单因素方差分析示例[1] 例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。设各总体服从正态分布,且方差相同。

29.627.3 5.821.629.2 24.332.6 6.217.432.8 28.530.811.018.325.0 32.034.88.319.024.2 在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。假定除抗生素这一因素外,其余的一切条件都相同。这就是单因素试验。试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。即考察抗生素这一因素对这些百分比有无显著影响。这就是一个典型的单因素试验的方差分析问题。 单因素方差分析的基本理论[1] 与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。本节将借用上面的实例来讨论单因素试验的方差分析问题。 在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平 下进行了n j = 4次独立试验,得到如上表所示的结果。这些结果是一个随机变量。表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设

方差分析选择题及答案

第10章方差分析与试验设计 三、选择题 1.方差分析的主要目的是判断()。 A. 各总体是否存在方差 B. 各样本数据之间是否有显著差异 C. 分类型自变量对数值型因变量的影响是否显著 D. 分类型因变量对数值型自变量的影响是否显著 2.在方差分析中,检验统计量F是()。 A. 组间平方和除以组内平方和B. 组间均方除以组内均方C. 组间平方除以总平方和D. 组间均方除以总均方 3.在方差分析中,某一水平下样本数据之间的误差称为()。A. 随机误差B. 非随机误差C. 系统误差D. 非系统误差 4.在方差分析中,衡量不同水平下样本数据之间的误差称为()。A. 组内误差B. 组间误差C. 组内平方D. 组间平方 5.组间误差是衡量不同水平下各样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 6.组内误差是衡量某一水平下样本数据之间的误差,它()。A. 只包括随机误差 B. 只包括系统误差 C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差 7.在下面的假定中,哪一个不属于方差分析中的假定()。 A. 每个总体都服从正态分布B. 各总体的方差相等

C. 观测值是独立的 D. 各总体的方差等于0 8.在方差分析中,所提出的原假设是210:μμ=H = ···=k μ,备择假设是( ) A. ≠≠H 211:μμ···k μ≠ B. >>H 211:μμ···k μ> C. <

1.中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题:④圆锥曲线的相关最值(范围)问 题;⑤求曲线的方程问题:⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题 ——点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是: 联立直线和圆锥曲线的方程,借助于一元二次 方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策 具有斜率的弦中点问题,常用设而不求法( 点差法):若设直线与圆锥曲线的交 点(弦的端点)坐标为 A(x i ,yj 、B(X 2,y 2),将这两点代入圆锥曲线的方程,然后两方程 相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论) 个参数。 (3)y 2=2px( p>0)与直线 I 相交于 A 、B 设弦 AB 中点为 M(x o ,y o ),则有 2y o k=2p,即 y o k=p. 经典例题讲解 一、求以定点为中点的弦所在直线的方程 2 2 例1、过椭圆x 匚 1内一点M(2,1)引一条弦,使弦被 M 点平分,求这条弦所在直线 16 4 的方程。 解:设直线与椭圆的交点为 A(x 1, y 1)、B(x 2,y 2) M (2,1)为 AB 的中点 x 1 x 2 4 y 1 y 2 2 2 2 2 2 ,消去四 如: 2 (1)笃 a 2 y b 2 1( a x o 2 阶 o 。 a b 2 2 (2)笃 y 2 1( a a b X o yo, o 2 a b 严 b 0)与直线相交于A 、B ,设弦AB 中点为M(x o ,y o ),则有 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为M(x o ,y o )则有

最新方差分析实例

让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异? 1、确定类型 由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。 2、用方差分析方法对三个总体平均数差异进行综合性地F检验 检验步骤如下: 第一步,提出假设: 第二步,计算F检验统计量的值: 因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。 ①根据表6.4的数据计算各种平方和为: 总平方和: 组间平方和: 区组平方和: 误差平方和:

②计算自由度 总自由度: 组间自由度: 区组自由度: 误差自由度: ③计算方差 组间方差: 区组方差: 误差方差: ④计算F值 第三步,统计决断 根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的值为,即P(F >10.9)<0.01, 样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。 3、用q检验法对逐对总体平均数差异进行检验 检验步骤如下: 第一步,提出假设: 第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:

在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即: 以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示: 第三步,统计决断 为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为: A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。 根据,得到当a=2时,q检验的临界值为 ; 当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.6 3次测试各对样本平均数之差q值的比较结果

方差分析练习题

1.(20分)一研究者为了研究市场环境对企业战略行为的影响对MBA学员做了一个模拟实验。60名学员每人管理一个企业,以利润最大化为目标模拟经营。模拟一段时间后,市场环境发生变化。学员随机分为3组,其中第一组为对照组,第二组市场环境转变为恶性竞争,第三组市场环境为合作竞争。在新环境下继续模拟。研究者收集了每个学员在市场环境变化前后的市场份额和利润率数据,形成两个分析指标: Y1: 环境变化后市场份额/环境变化前市场份额*100(Y1=100意味着环境变化前后市场份额无变化) Y2: 环境变化后利润率/环境变化前利润率*100(Y2=100意味着环境变化前后该企业利润无变化) 然后,对这两个指标做多响应变量方差分析,并做LSD多重均值比较。研究者还担心MBA学员工作经历不同可能影响分析结果,特别设计了一个反映工作经历的指标EXP,作为协变量。SPSS输出结果如下。请回答下列问题: (1)解释以下各输出图表的含义 (2)从输出结果中你能得出什么结论?

2.(20分)为了帮助人们找到更好的工作,某市政府制定了一个培训计划。为了检验该计划是否达到预期目的,研究者收集了参加培训和未参加培训人员(对照组)样本数据,做了一个单因素分析。响应变量为incomes after the program,因素为培训状态变量prog,prog=0-未参加培训,prog=1-参加培训。考虑到培训前工资可能对结果产生影响,引入协变量:incbef (培训前工资)。软件分析输出结果如下: Tests of Between-Subjects Effects(协变量调 整前) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 5136.897(a) 1 Intercept 277571.145 1 prog 5136.897 1 Error 16656.454 998 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .236 (Adjusted R Squared = .235) Tests of Between-Subjects Effects(协变量调 整后) Dependent Variable: Income after the program Source Type III Sum of Squares df Corrected Model 12290.741(a) 2 Intercept 131.400 1 incbef 7153.844 1 prog 4735.662 1 Error 9502.610 997 Total 297121.000 1000 Corrected Total 21793.351 999 a R Squared = .564 (Adjusted R Squared = .563) (1)分别对协变量调整前和协变量调整后的方差分析结果做假设检验, (2)你认为在此分析中是否应该引入协变量?为什么? (3)下表是协变量调整后方差分析的参数估计表,从该表中你能得出什么结论? Parameter Estimates Dependent Variable: Income after the program Parameter B Std. Error t Sig. 95% Confidence Interval Partial Eta

双因素方差分析习题

1. 某湖水在不同季节氯化物含量测定值如表6.16所示。问不同季节氯化物含量有无差别? 若有差别,进行32个水平的两两比较。 解: 2.有三种抗凝剂(123,,A A A )对一标本作红细胞沉降速度(一小时值)测定,每种抗凝剂 3.将18名原发性血小板减少症患者按年龄相近的原则配为6个单位组,每个单位组中的3名患者随机分配到A 、B 、C 三个治疗组中,治疗后的血小板升高情况见表6.17,问3中治疗方法的疗效有无差别? 表6.17 不同人用鹿茸后血小板的升高值/(4 3 10/mm ) 解: 4.某研究人员以0.3mL/kg 剂量纯苯给大鼠皮下注射染毒,每周3次,经45天后,实验动物白细胞综述下降至染毒前的50%左右,同时设置未染毒组。两组大鼠均按照是否给予升高白

细胞药物分为给药组和不给药组,试验结果见表6.18,试作统计分析。 解: 问:(1)这三类人的该项生理指标有差别吗?() α=) (2)如果有差别,请进行多重比较分析。(0.05 解: 6.将24家生产产品大致相同的企业,按资金分为三类,每个公司的每100元销售收入的生产成本(单位:元)如表6.20所示。这些数据能否说明三类公司的市场生产成本有差异(假 α=) 定生产成本服从正态分布,且方差相同)?(0.05 解: 7.为了解三种不同配比的饲料对仔猪影响的差异,对三种不同品种的猪各选三头进行试验,分别测得其三个月间体重增加量如表6.21所示。假定其体重增加量服从正态分布,且1方 α=) 差相同。试分析不同饲料与不同品种对猪生长有无显著差异?(0.05

8.比较3种化肥(A,B两种新型化肥和传统化肥)施撒在三种类型(酸性、中性和碱性)的土地上对作物的产量情况有无差别,将每块土地分成6块小区,施用A,B两种新型化肥和传统化肥,收割后,测量各组作物的产量,得到的数据如表6.22所示、化肥、土地类型 α=) 及其它们的交互作用对作物产量有影响吗?(0.05 -

方差分析几个案例

方差分析方法 方差分析是统计分析方法中,最重要、最常用的方法之一。本文应用多个实例来阐明方差分析的应用。在实际操作中,可采用相应的统计分析软件来进行计算。 1. 方差分析的意义、用途及适用条件 1.1 方差分析的意义 方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),按设计和需要分为二个或多个组成部分,再作分析。即把全部资料的总的离均差平方和(SS)分为二个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为组内变异(MS组内),也叫误差。SS除以相应的自由度(υ),得均方(MS)。如MS组间>MS组内若干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。 方差分析在环境科学研究中,常用于分析试验数据和监测数据。在环境科学研究中,各种因素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象有关的各个因素对该对象是否存在影响及影响的程度和性质。 1.2 方差分析的用途 1.2.1 两个或多个样本均数的比较。 1.2.2 分离各有关因素,分别估计其对变异的影响。 1.2.3 分析两因素或多因素的交叉作用。 1.2.4 方差齐性检验。 1.3 方差分析的适用条件 1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。 1.3.2 各抽样总体的方差齐。 1.3.3 影响数据的各个因素的效应是可以相加的。 1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变换,使之基本符合后再按其变换值进行方差分析。一般属Poisson分布的计数资料常用平方根变换法;属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又不易校正时,也可用对数变换法。 2. 单因素方差分析(单因素多个样本均数的比较) 根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。 用方差分析比较多个样本均数的目的是推断各种处理的效果有无显著性差异,如各组方差齐,则用F检验;如方差不齐,用近似F值检验,或经变量变换后达到方差齐,再用变换值作F检验。如经F检验或近似F值检验,结论为各总体均数不等,则只能认为各总体均数之间总的来说有差异,但不能认为任何两总体均数之间都有差异,或某两总体均数之间有差异。必要时应作均数之间的两两比较,以判断究竟是哪几对总体均数之间存在差异。 在环境科学研究中,常常要分析比较不同季节对江、河、湖水中某种污染物的含量

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

单因素方差分析和多因素方差分析简单实例 (1)

百度文库- 让每个人平等地提升自我 单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。 图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮 图6-69 单变量多因素方差分析主对话框 (3)分析结果如下: 因此,可以认为机器类型和操作者的影响均是显著的。 1

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--= .22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+ ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

单因素方差分析完整实例知识讲解

单因素方差分析完整 实例

什么是单因素方差分析 单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。 单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。 单因素方差分析相关概念 ●因素:影响研究对象的某一指标、变量。 ●水平:因素变化的各种状态或因素变化所分的等级或组别。 ●单因素试验:考虑的因素只有一个的试验叫单因素试验。 单因素方差分析示例[1] 例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。设各总体服从正态分布,且方差相同。

在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。假定除抗生素这一因素外,其余的一切条件都相同。这就是单因素试验。试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。即考察抗生素这一因素对这些百分比有无显著影响。这就是一个典型的单因素试验的方差分析问题。 单因素方差分析的基本理论[1] 与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。本节将借用上面的实例来讨论单因素试验的方差分析问题。

在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平 下进行了n j = 4次独立试验,得到如上表所示的结果。这些结果是一个随机变量。表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设 不全相等 为了便于讨论,现在引入总平均μ 其中: 再引入水平A j的效应δj 显然有,δj表示水平A j下的总体平均值与总平均的差异。 利用这些记号,本例的假设就等价于假设 不全为零 因此,单因素方差分析的任务就是检验s个总体的均值μj是否相等,也就等价于检验各水平A j的效应δj是否都等于零。 2. 检验所需的统计量 假设各总体服从正态分布,且方差相同,即假定各个水平下的样本来自正态总体N(μj,σ2),μj与σ2未知,且设不同水平A j下的样本

方差分析案例

“地域”与“抑郁” 朱平辉改编自西南财大网(案例分析者刘玲同学) 一、案例简介 美国人作了一项调查,研究地理位置与患抑郁症之间的关系。他们选择了60个65岁以上的健康人组成一个样本,其中20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。对中选的每个人给出了测量抑郁症的一个标准化检验,搜集到表1中的资料,较高的得分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种身体状况的人也选出60个组成样本,同样20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。这个研究记录 央视主持人崔永元对外公开其患有抑郁症后,使人们对这种精神疾病有了更多的关注。通过对以上两个数据集统计分析,你能从中看出什么结论?你对该疾病有什么认识? 二、抑郁症的相关知识 抑郁症有两种含义,广义的抑郁症包括情感性精神病、抑郁性神经症、反应性抑郁症、更年期抑郁症等;狭义的则仅指情感性精神病抑郁症。抑郁症在国外是一种十分常见的精神

疾病,据报告,其患病率最高竟占人群的10%左右,而且社会经济情况较好的阶层,患病率越高。世界卫生组织预测,抑郁症将成为21世纪人类的主要杀手。全世界患有抑郁症的人数在不断增长,而抑郁症患者中有10—15%面临自杀的危险……引起抑郁症的原因有很多,为了了解地理位置对抑郁症是否有影响,我们做如下的案例分析: 三、地理位置与患抑郁症之间是否有关系 作为对65岁以上的人长期研究的一部分,在纽约洲北部地区的Wentworth医疗中心的社会学专家和内科医生进行了一项研究,以调查地理位置与患抑郁症之间的关系。选择了60个相当健康的人组成一个样本,其中20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。对中选的人给出了测量抑郁症的一个标准化实验,搜集到表1中的资料,较高的分表示较高的抑郁症水平。 研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。这种状况的人也选出60个组成样本,同样20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。 要求根据所给的样本数据,做出以下管理报告: 描述统计学方法概括说明两部分研究的资料,关于抑郁症的得分,你的初步观测结果是什么? 对两个数据集使用方差分析方法,陈述每种情况下被检验的假设,你的结论是什么? 用推断法说明单个处理均值的合理性 讨论这个研究的推广和你认为有用的其他分析 四、有关统计方法 本案例是通过单因素的方差分析,对各个地区的抑郁症得分均值进行假设检验。分别检验地理位置对健康人群和慢性病患者是否有影响,以及影响程度,进而得出结论。 五、案例分析 首先:数据资料中的数据,并不能直接看出地区与患抑郁症之间有联系与否。我们可以根据所给的样本资料,得到以下信息: (一)健康的被调查者中:佛罗里达地区平均得分=5.55 纽约地区平均得分=8 北卡罗米纳地区平均得分=7.05 (二)患抑郁症的被调查者中:佛罗里达地区平均得分=13.6 纽约地区平均得分=15.25 北卡罗米纳地区平均得分=13.95 (三)我们给出不同地区所有被调查者的平均得分情况 佛罗里达地区平均得分=9.575 纽约地区平均得分=11.625 北卡罗米纳地区平均得分=10.5

方差分析与回归分析习题答案

第九章 方差分析与回归分析习题参考答案 1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显著影响. (0.05(2,9) 4.26F =,0.01(2,9) 8.02F =) 解 : r=3, 12 444n n 321=++=++=n n , T=120 ,120012 1202 2===n T C 计 算 统 计 值 722 8.53, 389 A A A e e SS f F SS f = =≈…… 方差分析表 方差来源 平方和 自由度 均方 F 值 临界值 显著性 品种A 72 2 36 8.53 误差 38 9 4.22 总 计 110 11 结论:由于0.018.53(2,9)8.02, A F F ≈>=故果树品种对产量有特别显著影响. 2. 解 : 22..4,3,12,180122700 l m n lm C x n ======= 计算 统 计 值 90310.52 51.43,3.56 3.56 A A B B A B e e e e S f S f F F S f S f = =≈==≈ 方差来源 平方和 自由度 F 值 临界值 显著性 品种 试验结果 行和??=i x T i 行均值.i x A 1 10 7 13 10 40 10 A 2 12 13 15 12 52 13 A 3 8 4 7 9 28 7 试验 结果 燃料B B 1 B 2 B 3 推进器 A A 1 14 13 12 39 13 A 2 18 16 14 48 16 A 3 13 12 11 36 12 A 4 20 18 19 57 19 65 59 56 180 16.25 14.75 14 15

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

相关文档