文档库 最新最全的文档下载
当前位置:文档库 › 高分子物理习题答案6-8章

高分子物理习题答案6-8章

高分子物理习题答案6-8章
高分子物理习题答案6-8章

习题解答

第六章

题6-1 试讨论非晶、结晶、交联和增塑高聚物的温度形变曲线的各种情况(考虑相对分子质量、结晶度、交联度和增塑剂含量不同的各种情况)。 解:(1)非晶高聚物,随相对分子质量增加,温度-形变曲线如图6-1-1:

图6-1-1 非晶高聚物的温度-形变曲线

(2)结晶高聚物、随结晶度和/或相对分子质量增加,温度-形变曲线如图6-1-2:

(a ) (b )

图6-1-2 结晶高聚物的温度-形变曲线

(3)交联高聚物,随交联度增加,温度-形变曲线如图6-1-3:

图6-1-3 交联高聚物的温度-形变曲线

(4)增塑高聚物。随增塑剂含量增加,温度-形变曲线如图6-1-4:

T g1

g3 T g2 T g4

T g5

T f1 T f2

T f3 T f4 T f5

T

ε

T

ε

(a ) (b )

图6-1-4增塑高聚物的温度-形变曲线

题6-2 选择填空:甲、乙、丙三种高聚物,其温度形变曲线如图所示,此三种聚合物在常温下( )。

(A)甲可作纤维,乙可作塑料,丙可作橡胶 (B)甲可作塑料,乙可作橡胶,丙可作纤维 (c)甲可作橡胶,乙可作纤维,丙可作塑料 (D)甲可作涂料,乙可作纤维,丙可作橡胶 解:B

题6-3 在热机械曲线上,为什么PMMA 的高弹区范围比PS 的大? (已知PMMA 的

=g T 378K ,=f T 433—473K ;PS 的=g T 373K ,=f T 383—423K)

解:PMMA 和PS 的T g 差不多,都是100℃左右,这是因为PMMA 的侧基极性较PS 大,应使T g 增加,但PMMA 侧基柔性比PS 大,侧基比PS 小,所以应使T g 减少,这两个因素互相抵消,故T g 差不多。

对于T f 来说,要使高聚物发生流动,分子与分子间的相对位置要发生显著变化。因此分子间作用力的因素很重要。PMMA 极性大,分子间作用力,T f 就高,而PS 分子间作用力小,T f 就低。

题6-4 为什么热机械曲线上f T 的转折不如g T 明晰?

解:因为T f 与相对分子质量有关,随相对分子质量增加,T f 持续增加。而高分子的相对分子质量存在多分散性。使T f 没有明晰的转折,而往往是一个较宽的软化区域。

题6-5 下列物理量在T g 转变区域内,随着温度的改变如何变化? 并画出草图来。 比容,折光率,等压比热,杨氏模量,力学损耗角正切,膨胀系数。 解:

T

ε

对柔性链(T g

降低不多,T f 却降低较多)

T

g T V T g

T n T g T

C p

图6-5-1比容-温度曲线 图6-5-2折射率-温度曲线 图6-5-3等压比热-温度曲线

图6-5-4杨氏模量-温度曲线 图6-5-5 tg δ-T 曲线 图6-5-6膨胀系数-温度曲线

题6-6 怎样解释:(1)聚合物T g 开始时随相对分子质量增大而升高,当相对分子质量达到一定值之后,T g 变为与相对分子质量无关的常数;(2)聚合物中加入单体、溶剂、增塑剂等低分子物时导致T g 下降。 解:(1)相对分子质量对T g 的影响主要是链端的影响。

处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动。链端浓度的增加预期T g 会降低。

链端浓度与数均相对分子质量成反比,所以T g 与M n -1成线性关系

n

g g T T K M

=-

这里存在临界相对分子质量,超过后链端的比例很小,其影响可以忽略,所以T g 与n

M 关系不大。

(2)因为T g 具有可加和性。

单体、溶剂、增塑剂等低分子物得T g 较高分子低许多,所以混和物的T g 比聚合物本身T g 低。

g g n

k T T M

=-

题6-7 甲苯的玻璃化温度T gd =113K ,假如以甲苯作为聚苯乙烯的增塑剂,试估计含有20%体积分数甲苯的聚苯乙烯的玻璃化温度T g 。 解:g gp p gd d T T T φφ=+

∵ T gd =113K ,T gp =373K ,θd =0.2,θp =0.8

∴ T g =321K

题6-8 如果共聚物的自由体积分数是两组分高聚物自由体积分数的线性加和,试根据自由体积理论推导共聚对T g 影响的关系式()()

1

221g g g g g g T T W k T T T T -=

-+-

T g

T

E

T g

T

tg δ

T

g

T

α

解:设组分一和组分二的体积各为V 1、V 2

组分一的自由体积()11110.025f g V T T V α??=+?-?

?

组分二的自由体积()22220.025f g V T T V α??=+?-?

?

题目已假设共聚物的自由体积分数由两组分线性加和

()()()12121112220.025f f f g g V V V V V T T V T T V αα=+=++?-+?-

()

()

12112212

12

12

0.025f g g V V V f T T T T V V V V V V αα==+?-+?-+++

当T =T g 时,f g =0.025 同时令各组分体积分数1112

V V V φ=

+,2212

V V V φ=

+

()()1112220g g g g T T T T αφαφ?-+?-=

21

k αα?=?

则()()1122g g g g T T k T T φφ-=- 假设共聚物两组分的密度相等 1

2

12

W W φφ=

则()()1122g g g g W T T W k T T -=- ()()

()21221g g g g W T T W k T T --=- ()()()12122g

g g g g g T

T W T T W k T T ---=-

()21

21

g g g g g g T T W k T T T T -=

-+- 或 ()()1212

2

11g g g g T kT T W T k W +-=

+-

题6-9. 由两类单体A 和B 无规共聚的线形聚合物(含A 单元20%)的玻璃化温度T 20=15℃。A 和B 两种均聚物的玻璃化温度为T A =100℃和T B =5℃。计算T 80。 解: 将温度转换成绝对温度 T A =373K ,T B =278K ,T 20=288K 。

a =

)11/(

)11(B

B

A

B A

T Tg

T T W W --=1.584

从而T 80=340K=67℃

题6-10 从化学结构角度讨论以下各对聚合物为什么存在g T 的差别.

C H 2C H 2

(1)

(150K ) 和

C H 2

C H C H 3

(250K )

(2)

C H 2

C H C

O

O C H 3

(283K ) 和 C H 2

C H O C

O

C H 3

(350K )

(3)

C H 2

C H 2O (232K ) 和 C H 2

C H O H

(358K )

(4)

C H 2

C H C

O C 2H 5

O

(249K )

C H 2

C H 2

C H C H 3

C

O C H 3

O

(378K )

解:(1)后者较高,因为侧基CH 3的内旋转空间障碍,刚性较大。 (2)前者较低,因为C =O 靠近主链而使侧基柔性增加。

(3)前者较低,因为氧原子在主链而使柔性增加,而后者侧基、极性和体积使柔性减少。 (4)前者较低,因为侧基柔性较大,后者不对称取代使刚性增加。

题6-11 从结构出发排列出下列各组高聚物T g 顺序并简要说明理由。

解:下面列出T g 数据和/或比较大小,结构解释略(参考柔顺性的解释)。

(1)

所以 D>E>B>G>F>C>A

(2)

C H 3C H 3Si O

H H

C C H C l

C H 2

C H

C H

C H 2

C H

C H H

H

C H C H 2C H 2

N H

C H 2

N H C O

C H 2

C O

n

5

4

n

A -123℃

B 87℃

C -108℃E 100℃

F -68℃

G 50℃

D C H 2

C H n C l C H 2

C n C l

C l C H C H n C l

C l

C H

C H n

C l C H 2C H 2A 87℃

B -19℃

C 145℃

D -50℃

所以 C>A>B>D

(3)

所以A>B>C>D

(4)

所以C>D>A>B

(5) A>B

(6)

所以D>C>A>B

(7)

C>A>B

(8)

B>A>C

C H 3

C H 25C H 49C H 1613A 101℃

B 28℃

C 6℃

D -27

C H C H C H C H A 100℃

B 110℃

C 225℃

D 122

C H 49C H C H 3C H 3

C H 3

B

A

C H 2

C H 2n

C H 2

n C H 3

C H 3

C C H 2

n F F

C C H 2

n C l C l C A -68℃

B -70℃

C -40℃

D -19

N H

C H 2

N H C O C H 2C O

N H

C H 2

N H C O

C O

O

C H 2O C O C H 2

C O

(A )(B )(C )

66

n 6

n

6

2

n

(A )

(B )

(C )

O CH 2O CO

CH 2

CO

O C O

C H 2

C O

O C H H 2O C O C H H 2C O

8

8

n

2

n

n

(9)

x =0,2,4,6,8时,T g 分别为-29℃,-38℃,-41℃,-58℃,-59℃。

题6-12 观察到含有线型(CH 2)n 酯基的聚丙烯酸酯,其g T 随n 的增加而规则减少,用自由体积理论解释这一现象。

解:聚丙烯酸酯含有柔性的(CH 2)n 侧基,n 增加分子柔性增加,能通过链段运动较快地将自由体积排出去,只有在更低的温度下,链段运动被冻结,才能保持一定的自由体积。所以n 越大,T g 越低。

题6-13 解释为什么高速行驶中的汽车内胎易爆破.

解:汽车高速行驶时,作用力频率很高,T g 上升,从而使橡胶的T g 接近或高于室温。内胎处于玻璃态自然易于爆破。

题6-14 试述高聚物耐热性的指标,及提高耐热性的途径.

解:高聚物的耐热性因在生产及应用中的情况不同,其意义有所不同。对塑料来说,一般指它的T g (非晶态)和T m (晶态),对橡胶来说,一般是指它的T f 。而对加工来说,则一般是指T ox (氧化分解温度)或T d (分解温度)。

提高耐热性的主要途径是:

(1)增加聚合物分子间的作用力,如交联。形成氢键或引入强极性基团等。

(2)增加大分子链的僵硬性,如在主链中引入环状结构,苯大的侧基或共轭双键等。

(3)提高聚合物的结晶度或加入填充剂,增强剂等。

题6-15 .解释为什么结晶性高分子的热塑区(即可加工成型区)一般比非晶高分子狭窄。从T m 和T g 的特性出发讨论。

解:同一种高分子物质的T m 和T g 之间关系存在Boyer -Beaman 经验规律,即

对称性高分子(如聚乙烯)0.5g m T = 非对称性高分子(如聚苯乙烯)0.67g m T T =

也就是说,T m 通常比T g 高100~200℃,所以结晶性高分子的可加工区较窄。

题6-16 为什么高聚物的流动活化能与相对分子质量无关?

解:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象地说,这种流动类似于蚯蚓的蠕动。因而其流动活化能与分子的长短无关。a E RT

A e

η=?,由实验结果可知当碳链不长时,E a 随碳数的增加而增加,但当碳数>30时,

E a 不再增大,因此聚合物超过一定数值后,E a 与相对分子质量无关。

题6-17 解释图6-17中几种高聚物的熔融黏度与剪切力及温度关联曲线.

O

C H 2

O

C H 2

O 2

2

n O C

O

C H

C

O

C H 2x

C H 3

图中:1.PC(聚碳酸酯); 2.PE ; 3,PMMA 图6-17高聚物的熔融黏度与剪切力及温度关系

解:(1)温度对高聚物熔融黏度的影响符合Arrhenius 方程:ln ln a E A R T

η?=+

一般分子链刚性愈大(如PC )或分子间作用力愈大(如PMMA ),则流动活化能愈高,即直线斜率越大。PE 柔顺性大,所以ΔE a 小,直线斜率小,黏度对温度不敏感。 (2)剪切应力对高聚物黏度的影响也与结构有关。因为柔性链分子易通过链段运动而取向,而刚性分子链段较长,取向的阻力很大,因而取向作用小。所以柔性的PE 比刚性的PC 和PMMA 表现出更大的剪切应力敏感性。

题6-18 解释图6-18中的现象:(1)为什么临界相对分子质量前后斜率截然不同?(2)为什么剪切速率越大,斜率越小?

图6-18 0log ~log w M η关系曲线

解:熔体黏度随相对分子质量增加而增加是由于链的缠结作用引起了流动单元变大的结果。链段越长,缠结越严重,从而黏度大为增加。剪切速率越大斜率越小是因为剪切力破坏了缠结,使分子链取向,从而黏度下降。

题6-19 什么是牛顿流体?绝大多数高聚物的熔体与浓溶液在什么条件下是牛顿流体,什么条件下不是牛顿流体,为什么会有此特点?高聚物熔体在外力作用下除流动外,还有何特性?哪些因素使这一特征更明显? 解:(1)牛顿流体:

在流动时服从牛顿流动定律γηγη

τ dt

d =的流体称为牛顿流体。其中η为定值与τ、γ

无关。低分子液体和高分子稀溶液都属于这一类。

(2)高分子熔体与浓溶液的黏度η随τ、γ 变化而变化,τ与γ 不再成线性关系,这种

流体为非牛顿流体,但在γ 趋近0或γ 趋近∞时为牛顿流体,在中γ 区表现为非牛顿流体,这种现象从图6-19流动曲线的分析便可得到解释。

图6-19高分子熔体的γτ lg lg -曲线

① I 区,第一牛顿区:聚合物液体在低γ 或低τ时流动表现为牛顿流体。在γτ lg lg -图中,斜率为1,流体具有恒定的黏度。因为在τ或γ 足够小时,大分子由于缠结和分子间的范德华力而形成的拟网状结构虽然也遭破坏,但来得及重建,即大分子的结构不变。因此黏度为一定值,以0η表示,称之为零切黏度。

② II 区,假塑区,即非牛顿区。由于γ 增大,使被破坏的大分子的拟网状结构来不及重建。由于结构变化,所以黏度不再为定值,随γ 或τ变化而变化,其黏度为表观黏度,以a η示之。其关系如下:

a

η=

黏γγτ

+

这就是说,流动除大分子重心移动(黏γ )外,还伴有弹性形变弹γ ,所以a η<0η。这种随γ 增大而黏度下降的现象叫“切力变稀”,大多数高聚物熔体属于这一类。

③ III 区,第二牛顿区:随γ 增大,聚合物中拟网状结构的破坏和高弹形变已达极限状态,继续增大τ或γ 对聚合物液体的结构已不再产生影响,液体的黏度已下降至最低值。

还有人认为, γ 很高时熔体中大分子的构象和双重运动的形变来不及适应τ或γ 的改变,以致熔体的行为表现为牛顿流体的特征,黏度为一常数。这时的黏度叫无穷切黏度,以

∞η表示。

④高聚物熔体在外力作用下,除流动外,还伴有弹性。这是大分子流动有大分子重心的移动和链段的伸缩运动所致。大分子重心的移动不能恢复,表现为纯黏性,而链段的运动可恢复,称为弹性。所以,大分子流动的最大特点是具有弹性。当相对分子质量大、外力作用时间短(即作用力速度快)时,温度在熔点或在黏流温度以上不多时,熔体的弹性表现为更明显。因为相对分子质量大,大分子的拟网状的无规线团大,在切应力作用下,先变形,然后才是重心的移动,即对切应力敏感,所以弹性形变明显;外力作用速度快时,大分子链的松弛时间长,来不及响应,链段的松弛时间短,来得及响应,因而弹性形变明显。当温度在

f T 或m T 以上不多时,链段的松弛时间不是太短,外力作用时仍能产生响应,仍有弹性。当

温度比f T 或m T 高很多时,链段的松弛时间极短,松弛现象不明显,所以弹性表现亦不明显。

第七章 高聚物的力学性质

题7-1 试述高聚物高弹性的热力学本质,并计算:

(1)高弹切变模量为106达因/厘米2的理想橡橡胶在拉伸比为2时,其单位体积内储存的能量有多少?

(2)把一轻度交联的橡皮试样固定在50%的应变下,测得其拉应力与温度的关系如表所

示,求340K 时熵变对高弹应力贡献的百分比. 拉应力(kg /cm 2

) 4.77 5.01 5.25 5.50 5.73 5.97 温度K 295 310 325 340 355 370

解:高聚物高弹性的本质为熵弹性。橡胶拉伸时,内能几乎不变,而主要引起熵的变化。 (1)2211N kT G σλλλλ?

??

?=-

=- ? ?

???

? 62

6

11021.75

10

4d y n c m ??

=?-

=? ??

?

dyn/cm 2

储能函数 ()A W p d v f d l

f d l

?=-?

=-- 对于单位体积 V =1cm 3时,()11dl cm λ=-?

()6

6

1.751021 1.75100.175A d erg J σλ?=?=??-=?=

(2),,T v l v

u f f l T ??????

=+

? ??????? 以f 对T 作图,斜率=

0.016f T

?=?

,3400.016 5.44s l T

f f T T ???

==?= ????

5.44100%100%98.9%5.5

s f f

?=

?=

题7-2说明为什么橡胶急剧拉伸时,橡胶的温度上升,而缓慢拉伸时橡胶发热。 解:(1)急剧拉伸时

绝热条件下,对于无熵变0dS =。吉布斯自由能的变化dG SdT VdP fdL =-++ 2

,,P T P L G

S f T L L T ???????

=-= ? ????????? ————(1) ∵ (),,P P L P T S S dS dT dL T L ??????

=+

? ?

?????? ,,0P L P L C f dT dL T T ???

=

-= ?

??? ————(2) ∴ (),,S

P L

P L

T f dT

dL C T ???

=

?

??? ————(3) ∵ 0dL >,,0P L C >,(),0P L f T ??>, ∴ ()0S

dT

> ————(4)

此现象称为高夫-朱尔效应,是橡胶熵弹性的证明。

(2)缓慢拉伸时

由于等温条件,0dT =,利用(1)式,吸收的热量

(),T

P L

f d Q TdS T dL T ???

'==- ?

??? ∵ 0T >,0dL >,(),0P L f T ??> ∴ ()0T d Q '<

题7-3 在橡胶下悬一砝码,保持外界不变,升温时会发生什么现象?

解:橡胶在张力(拉力)的作用下产生形变,主要是熵变化,即卷曲的大分子链在张力的作用下变得伸展,构象数减少。熵减少是不稳定的状态,当加热时,有利于单键的内旋转,使之因构象数增加而卷曲,所以在保持外界不变时,升温会发生回缩现象。

题7-4 一交联橡胶试片,长2.8cm ,宽1.0cm ,厚0.2cm ,重0.518g ,于25℃时将它拉伸一倍,测定张力为1.0公斤,估算试样的网链的平均相对分子质量。 解:由橡胶状态方程21c RT M ρσλλ??

=

-

??

?

21c RT M ρλσ

λ??

=

- ??

? ∵ 52

4

1

4.9100.2110

f k

g m A σ-=

=

=???

3

3

6

0.51810

9250.21 2.810

W kg m V

ρ--?=

=

=???

2,8.314,298R J m ol K T λ==?=

∴ 529258.314298124.9102c

M

????

=

- ?

??

? 8.18k g m o l = (或8180g mol =)

题7-5 将某种硫化天然橡胶在300K 进行拉伸,当伸长一倍时的拉力为7.25×105N·m -2,拉伸过程中试样的泊松比为0.5,根据橡胶弹性理论计算:

(1)10-6m 3体积中的网链数N;

(2)初始弹性模量E 0和剪切模量G 0 ; (3)拉伸时每10-6

m 3

体积的试样放出的热量? 解:(1)根据橡胶状态方程21N kT σλλ?

?

=-

???

已知玻兹曼常数 231.3810k J K -=?

52

7.2510N m σ=?,

2,300T K λ==?

∴(

)

5231

7.2510 1.381030024N -??=?÷???-?

?

=1×1026 个网链/m 3

(2)剪切模量 21G N kT σλλ?

?

==÷-

???

(

)52

1

7.251024

N m =?÷-

52

4.1410N m =? (3)拉伸模量 ()21E G ν=+ ∵ ν=0.5

∴ 6

2

3 1.2410E G N m ==?

(4)Q T S =?, 21

232S N k λλ???=-

+- ???

∴21

232Q N kT λλ??=-

+- ???

代入N ,k ,T ,λ的数值,得

734.1410Q J m --=-?? (负值表明为放热)

题7-6 讨论下述因素对蠕变实验的影响。

a . 相对分子质量;b.交联;c.缠结数

解:a.相对分子质量:低于T g 时,非晶聚合物的蠕变行为与相对分子质量无关,高于T g 时,非晶或未交联的高聚物的蠕变受相对分子质量影响很大,这是因为蠕变速率首先决定于聚合物的黏度,而黏度又决定于相对分子质量。根据3.4次规律,聚合物的平衡零剪切黏度随重均相对分子质量的3.4次方增加。于是平衡流动区的斜率l ητ/0随相对分子质量增加而大为减少,另一方面永久形变量s l t )/(0ητ也因此减少。相对分子质量较大(黏度较大)蠕变速率较小(图7-6)。

b .交联:低于T g 时,链的运动很小,交联对蠕变性能的影响很小,除非交联度很高。但是,高于T g 时交联极大地影响蠕变,交联能使聚合物从黏稠液体变为弹性体。对于理想的弹性体,当加负荷时马上伸长一定量,而且伸长率不随时间而变化,当负荷移去后,该聚合物能迅速回复到原来长度。当交联度增加,聚合物表现出低的“蠕变” (图8-10)。轻度交联的影响就好像相对分子质量无限增加的影响,分子链不能相互滑移,所以l η变成无穷大,而且永久形变也消失了。进一步交联,材料的模量增加,很高度交联时,材料成为玻璃态,在外力下行为就像虎克弹簧。

c. 缠结数:已发现低于一定相对分子质量时,黏度与相对分子质量成比例。因为这一相对分子质量相应的分子链长已足以使聚合物产生缠结。这种缠结如同暂时交联,使聚合物具有一定弹性。因此相对分子质量增加时,缠结数增加,弹性和可回复蠕变量也增加。但必须指出聚合物受拉伸,缠结减少,因此实验时间愈长则可回复蠕变愈小。

图7-6 相对分子质量和交联对蠕变的影响

题7-7 一块橡胶,直径60mm ,长度200mm ,当作用力施加于橡胶下部,半个小时后拉

长至300%(最大伸长600%)。问:(1)松弛时间? (2)如果伸长至400%,需多长时间? 解:(1)()()()1t t e τεε-=∞- (蠕变方程)

已知()300%100%200%t ε=-=

()600%100%500%ε∞=-=

0.5t h = (注意:ε为应变,而非伸长率λ,ε=λ-1)

∴0.9858.7m in h τ== (2)()300%500%1t

e -=-

0.9053.8m t h

==

题7-8 有一未硫化生胶,已知其η=1010泊,E =109达因/厘米2,作应力松弛实验,当

所加的原始应力为100达因/cm 2

时,求此试验开始后5秒钟时的残余应力。 解:∵ 0,t e

E

τ

η

τσσ-=

=?

∴ 0E t e η

σσ-?=?

已知9210E dyn cm =,1010η=泊,5t =,20100dyn cm σ=

∴260.65dyn cm σ=

题7-9 某个聚合物的黏弹性行为可以用模量为1010Pa 的弹簧与黏度为1012Pa.s 的黏壶的串联模型描述。计算突然施加一个1%应变50s 后固体中的应力值。 解:,/E ητ=η为松弛时间,η为黏壶的黏度,E 为弹簧的模量,

所以η=100s 。

σ=σ0exp (-t/η)=εEexp (-t/100)。

式中ε=10-2,s =50s

σ=10-2×1010exp (-50/100)=108exp (-0.5)=0.61×108Pa

题7-10 应力为15.7×108N ·m -2,瞬间作用于一个V oigt 单元,保持此应力不变.若已知

该单元的本体黏度为3.45×109Pa ·s ,模量为6.894×100N ·m -2,求该体系蠕变延长到200%时,需要多长时间? 解:9

82

3.4510 5.006.89410Pa s E

N m

ητ-??=

=

=??

()()()1t t e τ

εε-=∞-

()()0

1t t e

E

τ

σε-=

-

()88

15.1710100%16.89410

t e τ

-?=

-?

1.3t s =

题7-11 某聚合物受外力后,其形变按照下式

)1()

()(0τ

σεt e

t E t --=

发展。式中,σ0为最大应力;E(t)为拉伸到t 时的模量。今已知对聚合物加外力8s 后,其应变为极限应变值的1/3。求此聚合物的松弛时间为多少? 解:()()0

1t t e

E

τ

σε-=

- 当()()

0t E t σε→∞

∞=

∴ ()()()1t t e τεε-=∞-

()()

1t t e

τ

εε-=-∞

81

13

e

τ

-=-

∴ 20t s =

题7-12 为了减轻桥梁振动可在桥梁支点处垫以衬垫.当货车轮距为10米并以60公里/

小时通过桥梁时,欲缓冲其振动有下列几种高分子材料可供选择:(1)η1=1010,E 1=2×108;(2)η2=108,E 2=2×108;(3)η3=106,E 3=2×108,问选哪一种合适? 解:首先计算货车通过时对衬垫作用力时间。

已知货车速度为60,000m/h ,而货车轮距为10m ,

则每小时衬垫被压次数为60,0006,00010

f ==次/h ,即1.67次/s 。

货车车轮对衬垫的作用力时间为1

0.61.67

= s/次。

三种高分子材料的η值如下:(E τη=) (1)10811021050s τ=?= (2)882102100.5s τ=?=

(3)68

3102100.005s τ=?=

根据上述计算可选择(2)号材料,因其η值与货车车轮对桥梁支点的作用力时间具有相同的数量级,作为衬垫才可以达到吸收能量或减缓振动的目的。

题7-13 一个纸杯装满水置于一张桌面上,用一发子弹桌面下部射入杯子,并从杯子的水

中穿出,杯子仍位于桌面不动.如果纸杯里装的是一杯高聚物的稀溶液,这次,子弹把杯子打出了8米远.用松弛原理解释之.

解:低分子液体如水的松弛时间是非常短的,它比子弹穿过杯子的时间还要短,因而虽然子弹穿过水那一瞬间有黏性摩擦,但它不足以带走杯子。

高分子溶液的松弛时间比水大几个数量级,即聚合物分子链来不及响应,所以子弹将它的动量转换给这个“子弹-液体-杯子”体系,从而桌面把杯子带走了。

题7-14 已知Maxwell 模型的方程如下: η

σσε+

=dt

d E dt

d 1

而V oigt 模型的方程如下: η

ε

η

σεE dt

d -

=

(1) 推导此两个模型应力速率dt

d σ为常数时应变~时间关系方程; (2) 推导此两个模型应变速率dt

d ε为常数时应力~时间关系方程。

答案:(1)

dt

d σ=R

Maxwell η

εRt

E

R dt

d +

=

V oigt []{})/exp(1)(00ττεt t E

R t ---=

(2)

dt

d ε=S

Maxwell [])/exp(1)(0τησt S t --= V oigt ESt S t +=ησ)(

题7-15 对一种聚合物,用三个并联的Maxwell 模型表示

E 1=105

N·m -2

,τ1=10s

E 2=106

N·m -2,τ2=20s

E3=107

N·m -2

,τ3=30s

求加应力10秒后的松弛模量E 。 解:123εεεε===

()3

1

2

123t t t t e

e

e

τττσσσσ---=++

∴()()t E t σε=

3

1

2

3121

2

3

t t t e

e

e

τττσσσεεε---=

++

3

1

2

123t t t E e E e E e

τττ---=?+?+?

510

10

61020

71030

101010e e

e ---

=?+?+?

627.810N m -=??

题7-16 假如某个体系含有两个V oigt 单元,其元件参数是:126E E K T ν==和

12110E ηητ==,式中,ν为单位体积中交联网链的数目。试导出这一体系在恒定应力ζ下的蠕变响应的表达式。

解:两个V oigt 单元串联模型如图7-15。

由111E τη=和21110E τη=

()0

11

E σε∞=

和()0

21

E σε∞=

∴()()()()()1

2

12

11t t t e e

ττεεε--=∞-+∞-

()()1

1

11

100

111tE tE e e

E η

η

σ--??=

-+-?

?

(

)0.1

1

11012tE e

e

E ησ

-+??

=-?

???

图7-16 两个V oigt 单元串联模型

题7-17 列举三个理由说明为什么我们的黏弹模型不能用来说明结晶聚合物的行为。 解:因为结晶型聚合物的黏弹性是很复杂的,因三点理由不服从于理论解释:

a 、无定形聚合物是各向同性的,也就是意味着为描述剪切应力而建立的模型也正好能用于描述拉伸应力。然而,结晶聚合物不是各向同性的,所以任何模型的应用都受到严格的限制。

b 、无定形聚合物是均相的,因此所加的应力能均匀分布到整个体系。在结晶聚合物中,大量的结晶束缚在一起,因此这种束缚使得出现较大的应力集中。

c 、结晶聚合物是不同结晶度的区域的混合物,当施加应力到结晶聚合物时,这些不同的区域的大小及分布随结晶的熔化和生长会发生连续变化。也就是说任何机械模型都必须考虑对在结晶聚合物中这些连续的变化。

题7-18 有一个动态力学实验中,应力t ωσσsin 0=*,应变)sin(0δωεε-=*

t ,

试指出

E E η

1

η

2

ζ

样品在极大扭曲时,弹性贮能(st W )与一个完整周期内所消耗的功(W ?)之间的关系为:

)

()(2t a n 2ωωπ

δπG G W W st

'''==?

式中,)(ωG '和)(ωG ''分别为贮能模量和损耗模量.

解 由题意,应力和应变与交变频率、时间的关系如图7-22

图7-18应力和应变与交变频率、时间的关系

应力:i

i e t t ωσωσσ00sin )(==*

应变:)

(00)sin(δωεδωεε-*=-=t i e t

切变模量:

)

(0

0)

()()(δωωεσεσω--*

*

*

=

=

t i i i e

t t G

δωi e G )

(*

=

)sin (cos )

(δδωi G

+=*

贮能模量:δωωcos )()(*='G G

损耗模量:δ

ωωsin )()(*

=''G G 一个周期内反抗应力作功(耗能): 2

0)(20

)()(επεσωω

πG t d t W ''==

?**?

一个周期内弹性贮能:

2

0)(20

2

1)()(εεσωπG t d t W st '=

=

*

*?

δππ

ωωtan 22)

()(='''=?∴

G G W W st

题7-19 PMMA 的力学损耗因子在130℃得到一峰值,假定测定频率是1周/秒.如果测

定改在1000周/秒,在什么温度下得到同样的峰值?(已知PMMA 的T g =105℃) 解:g

T

T T g

T

ωτατω=

=

()

17.44log log

51.6g

T

g T T

g

T T T T ωαω--==

+-

思路分析:130℃ T g (105℃) ?(求) 1Hz ?(通过) 1000Hz 第一步:将测量从130℃、1Hz ,移至105℃,求频率: 105130log

5.69ωω??

=-

6

105 2.0310H z ω-?=?

第二步:将测量从105℃、62.0310Hz -?移至1000Hz ,求T

()6

3

17.44105

2.0310

l o g 8.691051.6105

T T ---?=-=+-

T =156℃

题7-20 对聚异丁烯(PIB)在25℃10小时的应力松弛达到模量106达因/厘米-2.利用WLF

方程,在-20℃下要达到相同的模量需要多少时间.对PIBT g =-70℃ 解:思路分析:25℃ T g (-70℃) -20℃

10h ?(通过) ?(求) ()257017.442570log log 11.301551.62570g

T

T t t t t -??-+ ?===- ?++??

12

2570

510

t t --=? 12

70210t h -=?

()2070

17.442070log

8.582751.62070

t t ----+=

=--+

9

2070

2.613910t t ---=?

3

20 5.210t h -=?

第二种方法: 2525702520

20

70207070log

log log log t t t t t t t t t t ------??=?=- ?

??

()()2070

17.44257017.442070log

2.718851.62570

51.62070

t t ---+--+=

-

=-++-+

20

10log

2.7188t -=-

3

20 5.210t h -=?

其他作法分析:

从书上查得PIB 的1216.6,104,20271g c c T K C ====-?,代入WLF 方程计算得

3

20 3.510t h -=?。结果出现差别的原因是这里1c 和2c 采用了PIB 的实验值,而非普适值。

题7-33 25℃下进行应力松弛实验,聚合物模量减少至105N/m 3需要107h 。用WLF 方程计算100℃下模量减少到同样值需要多久?假设聚合物的Tg 是25℃。 解:1001025

17.44(10025)log log

10.3351.610025

T t a t --==

=-+-

11

10025

4.6610

t h t -=?

11

74

100 4.6610

10 4.6610

t h h --=??=?

题7-21 有一线型聚合物试样,其蠕变行为近似可用四元 力学模型来描述,蠕变试验时先加一应力σ=σ0,经 5秒钟后将应力σ增加为2σ0,求到10秒钟时试样的 形变值.

已知模型的参数为:

σ0=1×108N·m -2 E 1=5×108N·m -2 E 2=1×108N·m -2

η2=5×108

Pa·s

η3=5×1010

Pa·s

解:高聚物的总形变为

()123t εεεε=++

()0

001

2

3

1t e

t E E

τ

σσ

ση

-=

+

-+

?

高分子物理试卷一

高分子物理试卷一 一、单项选择题(10分) (下面每个小题只有一个答案是正确的,请将正确答案的编号填在右边的括号里,选对者得1分,不选,错选或者多选均不得分。) 1、在二氧六环中将锌粉与聚氯乙烯共煮,红外光谱表明产物中有环丙烷结构而无双键,则 反应前聚氯乙烯结构单元的键接顺序是()。 (a)头-尾键接(b)头-头键接(c)头-尾和头-头各占50% 2、某结晶性聚合物在偏光显微镜先呈现十字消光图案,则其结晶形态是()。 (a)单晶(b)串晶(c)球晶(d)片晶 3、比较聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚丙烯腈(PAN)之间的柔韧性,正确的顺序是()。 (a)PP>PE>PVC>PAN (b)PE>PP>PVC>PAN (c) PE>PP>PAN>PVC (d) PAN>PVC>PP>PE 4、加入含有成核剂的聚丙烯在等温结晶时生成球晶,则其Avrami指数n为()。 (a)2 (b) 3 (c) 4 (d) 5 5、聚甲醛的分子链在晶体中的构象是()。 (a)平面锯齿形(b)扭曲的锯齿链(c)螺旋链 6、大多数聚合物熔体都是属于()。 (a)牛顿流体(b)假塑性非牛顿流体(c)宾汉流体(d)胀塑性非牛顿流体 7、聚合物分子之间形成氢键,会使玻璃化转变温度()。 (a) 升高(b)降低(c)不变 8、通常地,在常温下,下列聚合物溶解最困难的是()。 (a)非晶态非极性聚合物(b)非晶态极性聚合物 (c)晶态非极性聚合物(d)晶态极性聚合物 9、下列方法测定的聚合物相对分子质量数值最大的是()。 (a)膜渗透压法(b)沸点升高法(c)稀溶液粘度法(d)光散射法 10、Maxwell模型可以用来描述()。 (a)蠕变过程(b交联聚合物的应力松弛过程(c)线性高聚物的应力松弛 二、多项选择题(20分) (下面每个题至少有一个答案是正确的,请将所有的正确答案的编号填写在括号里。全选对者得两分,选错一个扣一分,少选一个扣0.5分,但不做选择或所选答案全错者不得分。)1、聚甲基丙烯酸甲酯分子之间的相互作用力包括()。 (a)静电力(b)诱导力(c)色散力(d)氢键 2、用来描述聚合物非晶态结构的模型有()。 (a)樱状微束模型(b)无规线团模型(c)两相球粒模型(d)折叠链模型(e)插线板模型 3、下面哪些聚合物适合做弹性体()。 (a)聚异戊二烯(b)天然橡胶(c)聚丁二烯(d)聚氯乙烯 4、高分子的三级结构包括()。 (a)晶态结构(b)取向结构(c)多相结构(d)液晶态结构 5、支持插线板模型的实验依据是()。 (a)结晶PE均方回转半径与在熔体中的一致

高分子物理习题及参考答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ1( A )聚合物能溶解在所给定的溶剂中 A. χ1<1/2 B. χ1>1/2 C. χ1=1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态; B.结晶高聚物中晶片的取向在热力学上是稳定的; C.取向使材料的力学、光学、热性能各向同性。 13.关于高聚物和小分子物质的区别,下列( D )说法正确 ⑴高聚物的力学性质是固体弹性和液体粘性的综合; ⑵高聚物在溶剂中能表现出溶胀特性,并形成居于固体和液体的一系列中间体系; ⑶高分子会出现高度的各向异性。 A. ⑴⑵对 B. ⑵⑶对 C. ⑴⑶对 D.全对

高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[η]=KMα关系 (3)高分子多分散性 (4)创刊《die Makromol.Chemie》1943年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3)热力学和流体力学结合 (4)非晶态结构模型 6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1,4:头-头,顺、反;头-尾,顺、反 9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11.假定聚丙烯主链上的键长为0.154纳米,键角为109.5°,根据下表所列数据,求其等效自由结合链的链段长度l e及极限特征比C∞。 聚合物溶剂温度(℃)A×104(nm)σ 聚丙烯(无规)环已烷、甲苯30 835 1.76

高分子物理试卷 及答案

高分子物理试卷二答案 一、单项选择题(10分) 1.全同聚乙烯醇的分子链所采取的构象是( A )。 (A )平面锯齿链 (B )扭曲的锯齿链 (C )螺旋链 2.下列聚合物找那个,熔点最高的是( C )。 (A )聚乙烯 (B )聚对二甲苯撑 (C )聚苯撑 3.聚合物分子链的刚性增大,则黏流温度( B )。 (A )降低 (B )升高 (C )基本不变 4.增加聚合物分子的极性,则黏流温度将( C )。 (A )降低 (B )基本不变 (C )升高 5.可以用来解释聚合物的零切黏度与相对分子质量之间相互关系的理论是( B )。 (A )分子链取向 (B )分子链缠结 (C )链段协同运动 6.在下列情况下,交联聚合物在溶剂中的平衡溶胀比最大的是( C )。 (A )高度交联 (B )中度交联 (C )轻度交联 7.光散射的散射体积与θsin 成( B )。 (A )正比 (B )反比 (C )相等 (D )没关系 8.高分子的特性黏数随相对分子质量愈大而( A )。 (A )增大 (B )不变 (C )降低 (D )不确定 9.理想橡胶的泊松比为( C )。 (A )21 < (B )21 > (C ) 21 10.交联高聚物蠕变过程中的形变包括( B )。 (A )普弹形变、高弹形变和黏性流动 (B )普弹形变和高弹形变 (C )高弹形变和黏性流动 二、多项选择题(20分) 1.以下化合物,哪些是天然高分子( AC )。 (A )蛋白质 (B )酚醛树脂 (C )淀粉 (D )PS 2.柔顺性可以通过以下哪些参数定量表征( ABCD )。 (A )链段长度 (B )刚性因子 (C )无扰尺寸 (D )极限特征比 3.以下哪些方法可以测量晶体的生长速度( AB )。 (A )偏光显微镜 (B )小脚激光光散射 (C )光学解偏振法 (D )示差扫描量热法 4.有关聚合物的分子运动,下列描述正确的有( ACD )。 (A )运动单元具有多重性 (B )运动速度不受温度影响 (C )热运动是一个松弛过程 (D )整个分子链的运动称为布朗运动 (E )运动但愿的大小不同,但松弛时间一样 5.下列有关聚合物熔体流变性能的叙述,正确的有( ABDE )。 (A )大多数聚合物熔体在通常的剪切速率范围内表现为假塑性非牛顿流体 (B )在极低的剪切速率范围内,表现为牛顿流体 (C )在通常的剪切速率范围内,黏度随剪切速率升高而增大 (D )黏度随温度升高而下降 (E )在无穷大剪切速率下,在恒定温度下的黏度为常数 6.下面有关聚合物黏流活化能的描述,正确的是( AD )。

高分子物理各章节答案第1章分解

第一章 填空题 1、对于聚乙稀自由旋转链,均方末端距与链长的关系是()。 解: 2、等规聚丙烯经体中分子链处于()构象。 解:螺旋 3、C5链至少有()种构象。 解:9 4、高分子链的柔顺性越大,它在溶液中的构象数越(),其均方末端距越()。 解:多 小 5、聚异戊二烯可以生成()种有规异构体,它们是()。 解:六 顺式1,4加成聚异戊二烯,反式1,4加成聚异戊二烯,全同1,2加成聚异戊二烯,间同1,2加成聚异戊二烯,全同3,4加成聚异戊二烯,间同3,4加成聚异戊二烯 判断题 1、下列聚合物分子链柔顺性的顺序是() 硅橡胶>聚异丁烯>聚甲基丙烯酸甲酯>聚二甲基苯基醚氧 解析:表述正确。 2、-{-CH2CH2-St-}-和-{-CH=CH-St-}-两种聚合物的分子链都含有苯环,所以刚性较好,在 室温下都可以作为塑料使用() 解析:高分子链的柔性与实际材料的刚柔性不能混为一谈。判断材料的刚柔性,必须同时考虑分子内的相互作用以及分子间的相互作用和凝聚状态。 3、不同聚合物分子链的均方末端距越短,表示分子链柔顺性越好() 解析:这种说法是错误的。 4、高斯链的均方末端距远大于自由旋转链的均方末端距() 解析:这种说法是错误的。 5、理想的柔性链运动单元为单键() 解析:表述正确。对于真实的柔性链运动单元为链段。 6、因为天然橡胶相对分子质量很大,加工困难,故加工前必须塑炼() 解析:表述正确。 7、因为聚氯乙烯分子链柔顺性小于聚乙稀,所以聚氯乙烯塑料比聚乙稀塑料硬(对?)解析:表述正确。 8、无规聚丙烯分子链中的-C-C-单键是可以内旋转的,通过单键内旋转可以把无规立构

高分子物理习题答案.

高分子物理习题集-答案 第一章高聚物的结构 4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 构象:由于单键内旋转而产生的分子在空间的不同形态。构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。 5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成 CH2C 3CH CH2 1234 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 CH2 n C 3 CH CH2 1,4-加成CH2 n C 3 CH CH2 1,2-加成 CH2 n C CH3 CH CH2 3,4-加成 (二)不同的键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成

CH 2 CH 2 CH 2 CH 2 C CH 3 C H CH 3 C C H ②反式1,4-加成 2 CH 2CH 2 CH 2C CH 3 C H CH 3 C C H ③ 1,2-加成全同立构 CH 2 C C 3 C C H H H H CH CH 2CH CH 3 C C H CH 2CH CH 3 ④1,2-加成间同立构 C C 3 C C H H H H CH 3C C H CH 3 R R R R=CH CH 2 ⑤3, 4-加成全同立构 CH 2C CH 3C C C C H H H H C C H H CH 2C CH 3CH 2 C CH 3 H ⑥3,4- 加成间同立构 C C C C H H H H C C H H R R R R= CH 2 H H C CH 3

高分子物理试卷及答案ans2006A[1]

华东理工大学2005–2006学年第2学期 参考答案《高分子科学基础(下)》课程期末考试试卷 A 2006.06 开课学院:材料学院 ,考试形式:闭卷,所需时间: 120 分钟 考生姓名: 学号: 专业: 班级: 题序 一二三四五六七八总分得分 评卷人 一.单项选择题:(10分) (下面每个小题只有一个答案是正确的,请将正确答案的代号填写在左边的括号里。选对者得1分,不选、选错或多选均不得分) (B)1.高分子链的构象属于聚合物结构层次中的: (A)一级结构; (B)二级结构;(C)三级结构; (D)高级结构 (D)2.下列聚合物中不具有旋光异构的是: (A)聚丙烯; (B)聚苯乙烯; (C)聚氯乙烯; (D)聚偏氯乙烯 (D)3.高分子链中C-C单键内旋转位能最低的状态是: (A)顺式;(B)左旁式;(C)右旁式;(D)反式 (C)4.下列高分子链中柔性最好的是: (A)聚苯撑; (B)聚丙烯; (C)1,4-聚异戊二烯; (D)聚苯乙烯 (D)5.下列聚合物内聚能密度最大的是: (A)1,4-聚丁二烯; (B) 聚苯乙烯;(C) 聚氯乙烯;(D)聚丙烯腈 (B)6.在下列情况下,聚合物滞后现象最为明显的是: (A)玻璃态; (B)玻璃化转变区; (C)高弹态; (D)不确定 (A)7.下列聚合物中玻璃化转变温度最高的是: (A)聚氯乙烯;(B)聚乙烯;(C)氯化聚乙烯;(D)聚二甲基硅氧烷 (D)8.高分子溶解在良溶剂中,则: (A)χ1>1/2, Δμ 1E>0; (B)χ 1 >1/2, Δμ 1 E<0; (C)χ1<1/2, Δμ 1E>0; (D)χ 1 <1/2, Δμ 1 E<0 (A)9.光散射法不可测量的是: (A)数均分子量;(B)重均分子量;(C)第二维利系数;(D)均方末端距(A)10.下列聚合物中综合性能最好(同时具有较高的强度和韧性)的是: (A)ABS树脂;(B)聚丙烯腈;(C)聚丁二烯;(D)聚苯乙烯

高分子物理习题集及答案

第一章高分子链的结构 一.解释名词、概念 1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例 二.线型聚异戊二烯可能有哪些构型? 答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构 三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构? 四.为什么说柔顺性是高分子材料独具的特性? 答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态 五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。 答:ps分子上带有刚性侧基苯环,且只通过一个单键与分子相连,再者沿分子链轴方向苯环的密度大,高分子的刚性很好,所以ps是一种刚性很好的塑料。丁二烯和苯乙烯的无规共聚物的分子链中引入了很多孤立双键,使与之相连的单键内旋转变得容易,分子链上虽仍有苯环侧基,但数目少,又是无规共聚,沿分子链轴方向苯环密度小,柔顺性好,三嵌段共聚物中间链段是分子链中含有很多孤立双键且又相当长的聚丁二烯,是一种典型的柔顺链。 六.若聚丙烯的等规度不高,能否用改变构象的方法提高其等规度?为什么?答:不能,碳碳单键的旋转只改变构象,没有化学键的断裂与生成,是物理变化。而要想改变等规度必须改变化学结构。所以,不能用改变构象的方法提高其等规度。

高分子物理习题集及答案资料讲解

高分子物理习题集及 答案

第一章高分子链的结构 一.解释名词、概念 1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态 6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性 9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性 10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链 12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例 二.线型聚异戊二烯可能有哪些构型? 答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构 三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构?四.为什么说柔顺性是高分子材料独具的特性? 答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态 五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。 答:ps分子上带有刚性侧基苯环,且只通过一个单键与分子相连,再者沿分子链轴方向苯环的密度大,高分子的刚性很好,所以ps是一种刚性很好的塑料。丁二烯和苯乙烯的无规共聚物的分子链中引入了很多孤立双键,使与之相连的单键内旋转变得容易,分子链上虽仍有苯环侧基,但数目少,又是无规共聚,沿分子链轴方向苯环密度小,柔顺性好,三嵌段共聚物中间链段是分子链中含有很多孤立双键且又相当长的聚丁二烯,是一种典型的柔顺链。 六.若聚丙烯的等规度不高,能否用改变构象的方法提高其等规度?为什么?

高分子物理习题 答案

高分子物理部分复习题 构象;由于单键(σ键)的内旋转,而产生的分子在空间的不同形态。它是不稳定的,分子热运动即能使其构象发生改变 构型;分子中由化学键所固定的原子在空间的排列。稳定的,要改变构型必需经化学键的断裂、重组 柔顺性;高聚物卷曲成无规的线团成团的特性 等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期 假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体 取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质 粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性 玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理 球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大 应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象 应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。 蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象 时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。 杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接 元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子 键接结构、结构单元在高分子链中的联结方式 旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性 均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程 异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。Weissenberg爬杆效应当插入其中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。 强迫高弹形变对于非晶聚合物,当环境温度处于Tb<T <Tg时,虽然材料处于 玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形 冷拉伸;环境温度低于熔点时虽然晶区尚未熔融,材料也发生了很大拉伸变形 溶度参数;单位体积的内聚能称为内聚物密度平方根 介电损耗;电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。 聚合物的极化:聚合物在一定条件下发生两极分化,性质偏离的现象 二、填空题

高分子物理_课程期中考试题参考答案

073高分子物理 课程期中考试题参考答案 一、名词解释(每小题2分,共16分) 1. 取向 取向是指非晶高聚物的分子链段或整个高分子链,结晶高聚物的晶带、晶片、晶粒等,在外力作用下,沿外力作用的方向进行有序排列的现象。 2. 柔顺性 高分子链能够改变其构象的性质称为柔顺性。 3. 链段 由于分子内旋受阻而在高分子链中能够自由旋转的单元长度。是描述柔性的尺度。 4. 内聚能密度 把1mol 的液体或固体分子移到其分子引力范围之外所需要的能量为内聚能。单位体积的内聚能称为内聚能密度,一般用CED 表示。 5. 溶解度参数 内聚能密度的平方根称为溶解度参数,一般用δ表示。 6. 等规度 等规度是高聚物中含有全同立构和间同立构总的百分数。 7. 结晶度 结晶度即高聚物试样中结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。 8. 液晶 在熔融状态下或溶液状态下,仍然部分保持着晶态物质分子的有序排列,且物理性质呈现各向异性,成为一种具有和晶体性质相似的液体,这种固液之间的中间态称为液态晶体,简称为液晶。 二.选择题(每小题2分,共16分) 1. 测量重均分子量可以选择以下哪种方法: D A .粘度法 B .端基滴定法 C .渗透压法 D .光散射法 2. 下列那种方法可以降低熔点: B 、 D 。 A. 主链上引入芳环; B. 降低结晶度; C. 提高分子量; D. 加入增塑剂。 3. 多分散高聚物下列平均分子量中最小的是 A A 、n M B 、w M C 、z M D 、M 4. 聚合物在溶液中通常呈 C 构象。 A .锯齿形 B .螺旋形 C .无规线团 D .梯形 5. 一般来说,那种材料需要较高程度的取向 B 。 A .塑料 B .纤维 C .橡胶 D .粘合剂 6. 测量数均分子量,不可以选择以下哪种方法: B 。

高分子物理学习题 第一章 答案

高分子物理学思考题及习题 第1章 思考题 1-1 重要概念:高分子化合物;高分子材料(聚合物);天然高分子材料;人工合成高分子材料;塑料;橡胶;纤维;功能高分子;结构单元;聚合度;线形分子链(线形高分子);支化分子链(支化高分子);交联网络(交联高分子)。 1-2 了解高分子材料的分类法和命名法。 1-3 与小分子化合物和小分子材料相比,高分子化合物与高分子材料的结构有哪些重要特点使之具有独特的性能?将这些特点牢记在心。 1-4 仔细阅读关于高分子材料的“多分散性和多尺度性”、“软物质性”及“标度性”的说明,理解其意义。 1-5 了解高分子物理学的核心内容和主要学习线索,体会“高分子物理学是研究高分子材料结构、分子运动与性能的关系的学说”。 1-6 阅读“高分子物理学发展简史及研究热点”一节,了解当前高分子物理学的热点问题和发展方向。 1-7 根据生活经验,列举一些适合用作塑料、橡胶或纤维的聚合物名称。 1-8 下列一些聚合物(我国的商品名称):丁苯橡胶,氯丁橡胶,硅橡胶,环氧树脂,脲醛树脂,聚氯乙烯,聚碳酸脂,涤纶,锦纶,腈纶。试分别写出各自结构单元的化学结构式及合成所需单体的化学结构式。 第一章习题可能与高分子化学学习内容重复,可不做。 第2章 思考题及习题 2-1重要概念:近程结构;远程结构;构型;构象;无规线团;内旋转;内旋转

势垒;分子链柔顺性(静态和动态);链段;均方末端距;均方旋转半径;自由连接链;自由旋转链;等效自由连接链;Kuhn等效链段;高斯链;θ条件/θ状态;Flory特征比(刚性因子)。 (1)近程结构:包括构造和构型。构造是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。构型是指由化学键所固定的链中原子或基团在空间的排列。 注意:近程结构相当于“链的细节”。构造着重于链上的原子的种类、数目比例、相互连接关系。构型涉及空间立体异构(顺反异构、旋光异构)。 (2)远程结构:包括分子的大小、构象和形态,链的柔顺性。 注意:因为高分子的长链形状,才产生了如此多的结构层次。 (3)无规线团:高斯链的空间形态。换言之,无规蜷曲的柔性链的空间形态。(4)内旋转:sigma键的电子云轴对称,因此形成sigma键的两个原子可以绕键对称轴旋转。 注意:无论高分子或小分子,只要是sigma键就可内旋转。小分子的三维尺寸差不多,内旋转意义不大;而高分子的长短与粗细相差悬殊,故内旋转能导致高分子链出现天文数字的空间形态。我们一般只关注“主链上单键的内旋转”,不太关心侧基上单键。 (5)内旋转势垒:顺式构象与反式构象的位能差。 注意:参考图2-5。相当于内旋转活化能,内旋转势能峰高度。是ΔE而不是Δε。 (6)柔顺性:大分子链通过主链上单键的内旋转可以改变构象和形态的性质。(7)链段:大分子链上由相邻几个单键组成的能够自由取向的最小单位。 注意:链段实际上不存在,是一个人为的划分。很多时候算出来的链段长度是个非整数(譬如聚乙烯,le=8.28倍单键投影长度)。但是链段有明确的物理意义,即链越柔顺,le越小。 (8)均方末端距:末端距平方的平均值。 注意:如何理解“平均值”?有两种“平均”方法,(1)可只对一个链进行时间平均;(2)也可对所有链(某一时刻)作平均。根据统计力学原理,二者的结果相同。

高分子物理试卷一

高分子物理试卷一 一、单项选择题(10分) (下面每个小题只有一个答案就是正确的,请将正确答案的编号填在右边的括号里,选对者得1分,不选,错选或者多选均不得分。) 1、在二氧六环中将锌粉与聚氯乙烯共煮,红外光谱表明产物中有环丙烷结构而无双键,则反 应前聚氯乙烯结构单元的键接顺序就是()。 (a) 头-尾键接(b)头-头键接(c)头-尾与头-头各占50% 2、某结晶性聚合物在偏光显微镜先呈现十字消光图案,则其结晶形态就是()。 (a)单晶(b) 串晶(c) 球晶(d)片晶 3、比较聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚丙烯腈(PAN)之间的柔韧性,正确的顺序就是()。 (a)PP>PE>PVC>PAN (b)PE>PP>PVC>PAN (c) PE>PP>PAN>PVC (d) PAN>PVC>PP>PE 4、加入含有成核剂的聚丙烯在等温结晶时生成球晶,则其Avrami指数n为()。 (a)2 (b) 3 (c) 4 (d) 5 5、聚甲醛的分子链在晶体中的构象就是()。 (a) 平面锯齿形(b) 扭曲的锯齿链(c) 螺旋链 6、大多数聚合物熔体都就是属于()。 (a)牛顿流体(b)假塑性非牛顿流体(c)宾汉流体(d)胀塑性非牛顿流体 7、聚合物分子之间形成氢键,会使玻璃化转变温度()。 (a) 升高(b) 降低(c) 不变 8、通常地,在常温下,下列聚合物溶解最困难的就是()。 (a)非晶态非极性聚合物(b) 非晶态极性聚合物 (c)晶态非极性聚合物(d) 晶态极性聚合物 9、下列方法测定的聚合物相对分子质量数值最大的就是()。 (a)膜渗透压法(b) 沸点升高法(c)稀溶液粘度法(d) 光散射法 10、Maxwell模型可以用来描述()。 (a)蠕变过程(b交联聚合物的应力松弛过程(c)线性高聚物的应力松弛 二、多项选择题(20分) (下面每个题至少有一个答案就是正确的,请将所有的正确答案的编号填写在括号里。全选对者得两分,选错一个扣一分,少选一个扣0、5分,但不做选择或所选答案全错者不得分。) 1、聚甲基丙烯酸甲酯分子之间的相互作用力包括()。 (a)静电力(b)诱导力(c)色散力(d)氢键 2、用来描述聚合物非晶态结构的模型有()。 (a)樱状微束模型(b)无规线团模型(c)两相球粒模型(d)折叠链模型 (e)插线板模型 3、下面哪些聚合物适合做弹性体()。 (a)聚异戊二烯(b)天然橡胶(c)聚丁二烯(d)聚氯乙烯 4、高分子的三级结构包括()。 (a)晶态结构(b)取向结构(c)多相结构(d)液晶态结构 5、支持插线板模型的实验依据就是()。 (a)结晶PE均方回转半径与在熔体中的一致

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:

最新高分子物理试卷三答案

高分子物理试卷三答案 一、单项选择题(10分) (下面每个小题只有一个答案是正确的,请将正确答案的编号填在右边的括号里。选对者得1分,不选、选错多选均不得分。) 1.如果不考虑键接顺序,线形聚异戊二烯的异构种类数为(C )。 (A)6 (B)7 (C)8 2. 全同聚乙烯醇的分子链所采取的构象是(A )。 (A)平面锯齿链(B)扭曲的锯齿链(C)螺旋链 3.下列聚合物中,不存在旋光异构体的是(B )。 (A)PP (B)PIB (C)聚异戊二烯 4. 高聚物的黏流温度随相对分子质量的增大而(B )。 (A)保持不变(B)上升(C)下降(D)先上升然后保持不变5.在聚合物的黏流温度以下,描述高聚物的表观黏度与温度之间关系的方程式是(B )。(A)Arrhenius方程(B)WLF方程(C)Avrami方程 6.高聚物的流动模式是(B )。 (A)分子链的整体迁移(B)链段的跃迁 (C)端基的运动 7.同一聚合物的下列三种不同的黏度,最大的是(A )。 (A)零剪切黏度(B)表观黏度(C)无穷剪切黏度 8.两试样的凝胶渗透色谱的淋出体积相等,则它们的下列参数相等的是( D )。 (A)相对分子质量(B)特性黏数(C)Huggins参数(D)流体力学体积 9.下列实验方法,可以测量聚合物损耗模量的是(B )。 (A)DSC (B)DMA (C)拉伸实验 10. Maxwell模型可以用来描述(C )。 (A)蠕变过程(B)交联高聚物的应力松弛过程 (C)线形高聚物的应力松弛 二、多项选择题(20分) (下面每个小题至少有一个答案是正确的,请将所有正确答案的编号填写在括号里。全选对者得2分,每错一个扣1分,每少选一个扣0.5分,但不做选择或所选答案全错者不得分。)1.下面能作为塑料使用的聚二丁烯有(ABD )。 (A)全同1,2-丁二烯(B)间同聚1,2-丁二烯 (C)顺式聚1,4-丁二烯(D)反式聚1,4-丁二烯 2.高分子的二级结构包括(AC )。 (A)构象(B)晶态结构 (C)相对分子质量及其分布(D)键接方式 3.高分子的三级结构包括(ABD )。 (A)晶态结构(B)取向结构(C)多相结构(D)液晶态结构 4.凝聚态结构可以采用哪些方法进行表征(BCD )。 (A)广角X射线衍射(B)红外光谱 (C)电子显微镜(D)小角X射线衍射 5.下列实验方法,可以用来测定玻璃化转变温度的是(ABC )。

高分子物理第一章习题

第一章 1. 1 高分子链的近程结构 1.1.1 结构单元的化学组成 例1-1以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物 (1)蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66, (8)PVAc,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15) 1.1.2 构型 例1-2试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是: 常见错误分析:本题常见的错误如下: (1)将1,2加成与3,4加成写反了。 按IUPAC有机命名法中的最小原则,聚异戊二烯应写成

而不是 即CH3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或 反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。 例1-3 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同), 试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响? 解:聚环氧丙烷的结构式如下: 存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。 性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、 熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。 常见错误分析:“只存在间同立构,不存在全同立构。” 以上写法省略了H,根据上述结构式,似乎只存在间同不存在全同。这是一种误解, 实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。 例1-4 试述下列烯类高聚物的构型特点及其名称。式中D表示链节结构是D构型,L是L构型。 1.-D-D-D-D-D-D-D- 2.-L-L-L-L-L-L-L-

高分子物理课后答案(何曼君)

1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O 2 CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头- 尾键接方式。 3 氯乙烯(CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理试卷(一)

高分子物理试卷一 一. 单项选择题(10 分) (下面每个小题只有一个答案是正确的,请将正确答案的编号填在右边的括号里,选对者得1 分,不选,错选或者多选均不得分。) 1. 在二氧六环中将锌粉与聚氯乙烯共煮,红外光谱表明产物中有环丙烷结构而无双键,则反应前聚氯乙烯结构单元的键接顺序是()。 (a) 头-尾键接(b)头-头键接(c)头-尾和头-头各占50% 2、某结晶性聚合物在偏光显微镜先呈现十字消光图案,则其结晶形态是()。 (a)单晶(b) 串晶(c) 球晶(d)片晶 3、比较聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚丙烯腈(PAN)之间的柔韧性,正确的顺序是()。 (a)PP>PE>PVC>PAN (b)PE>PP>PVC>PAN (c) PE>PP>PAN>PVC (d) PAN>PVC>PP>PE 4、加入含有成核剂的聚丙烯在等温结晶时生成球晶,则其Avrami 指数n 为()。(a)2 (b) 3 (c) 4 (d) 5 5、聚甲醛的分子链在晶体中的构象是()。 (a)平面锯齿形(b) 扭曲的锯齿链(c) 螺旋链 6、大多数聚合物熔体都是属于()。 (a)牛顿流体(b)假塑性非牛顿流体(c)宾汉流体(d)胀塑性非牛顿流体 7、聚合物分子之间形成氢键,会使玻璃化转变温度()。 (a)升高(b)降低(c) 不变 8、通常地,在常温下,下列聚合物溶解最困难的是()。(a)非晶态非极性聚合物(b) 非晶态极性聚合物(c)晶态非极性聚合物(d) 晶态极性聚合物 9、下列方法测定的聚合物相对分子质量数值最大的是()。 (a)膜渗透压法(b) 沸点升高法(c)稀溶液粘度法(d) 光散射法 10、Maxwell 模型可以用来描述()。 (a)蠕变过程(b 交联聚合物的应力松弛过程(c)线性高聚物的应力松弛 二、多项选择题(20 分) (下面每个题至少有一个答案是正确的,请将所有的正确答案的编号填写在括号里。全选对者得两分,选错一个扣一分,少选一个扣0.5 分,但不做选择或所选答案全错者不得分。) 1.聚甲基丙烯酸甲酯分子之间的相互作用力包括()。 (a)静电力(b)诱导力(c)色散力(d)氢键 2、用来描述聚合物非晶态结构的模型有()。 (a)樱状微束模型(b)无规线团模型(c)两相球粒模型(d)折叠链模型(e)插线板模型 3.下面哪些聚合物适合做弹性体()。 (a)聚异戊二烯(b)天然橡胶(c)聚丁二烯(d)聚氯乙烯 4.高分子的三级结构包括()。 a.晶态结构(b)取向结构(c)多相结构(d)液晶态结构 5.支持插线板模型的实验依据是()。 a.结晶PE 均方回转半径与在熔体中的一致 b.X 射线衍射图上同时出现明显的衍射环和模糊的弥散环 c.X 射线衍射图上测得的晶区尺寸远小于高分子链长度 d.PP 的均方回转半径与相对分子质量的关系在熔体中和在晶体中完全一致 6.以下哪些方法可以测量晶体的生长速率()。 a.偏光显微镜 (b)示差扫描量热法 (c)小角激光光散射 (d)光学解偏振法

相关文档