文档库 最新最全的文档下载
当前位置:文档库 › 10kV高压谐波治理兼无功补偿治理方案

10kV高压谐波治理兼无功补偿治理方案

10kV高压谐波治理兼无功补偿治理方案
10kV高压谐波治理兼无功补偿治理方案

10kV高压谐波治理兼无功补偿治理方案

1 系统概述

根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。

用户配电系统一次示意图如图1所示。

动 力

电解线

电解线电解线

(原有)

图1用户配电系统示意图

2系统用电参数分析

根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为:

(1)10KV母线平均功率因数约为0.92左右,

(2)母线协议容量10MVA,

(3)主要谐波源类型:热电解铜及大功率电机等,

(4)10KV线路三相功率数据分析

段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW 左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。3谐波分析

因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下:

35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。

为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

表1注入35kV PCC点各次谐波电流限值

表1:35kV变电站电源开关进线侧注入公共连接点的谐波电流允许值

表2:因不知道用户10kV侧的短路容量,故从35kV侧折算出10kV电源开关进线侧注入公共连接点的谐波电流允许值及各次谐波电流实际侧量值,因15次以上的各次谐波相对较小,表中不一一列出。

上述谐波电流通过主变返送到电网,会造成上级电网母线谐波电流(电压)超标。因此,本方案设计在10kV母线I段上安装一套高压滤波补偿装置,使10kV接入点(考核点)的谐波及功率因数满足国家标准的要求。

国标GB/T 14549-93规定如下:

公用电网谐波电压(相电压)限值见表3。

表3

4 谐波电流允许值

公共连接点的全部用户向该点注入的谐波电流分量(方均根值)不应超过表3中规定的允许值。当公共连接点处的最小短路容量不同于基准短路容量时,表3中的谐波电流允许值的换算见附录B (补充件)

表4注入公共连接点的谐波电流允许值

5确定基波无功功率补偿容量

根据前面对I 段母线现场的谐波测试数据分析可知,10kV 母线I 段总进线端的功率因数为0.92左右,有功功率在8000kW 之间。平均功率因数在0.92左右,系统所缺的无功基本都在2800~3300kVar 之间。

按如下公式即计算出需要补偿的无功功率

Q =P (1sec 12-θ-

1sec 22-θ) 取COS 2θ=0.98 得到需要补偿的无功功率Q =1800kVar ,以下将以此无功补偿容量作为设计各滤波回路的依据,同时考虑其它部分小负荷接入运行或所有负荷都满负荷运行时,10kV I 段母线所需的无功补偿量。

6 滤波补偿对网压波动的改善预测

引起网压波动的原因在于电网无功功率的变化,有关网压波动的计算公式如下:

△Sb—系统基准容量

△电压波动最大值为:

△Vmax(%)=100*△Qmax/Sc

Sc=Sb/Xs Sc—供电点至电源的短路阻抗标么值。

补偿前的Vmax(%)=100*△Qmax/Sc=100*3.3/156=2.1

补偿后的Vmax(%)=100*△Qmax/Sc=100*1.5/156=1 –取补偿前相同有功功率为参考。滤波补偿对网压波动的改善是明显的。

7 10kV侧滤波补偿FC方案设计

7.1滤波方案的确定

采用三频率点滤波,用系统仿真分析比较了多组滤波组合的滤波效果,并从中选出5,7, 11次三个滤波支路为组合方式,因系统中11次以上的各次谐波分量较小,故本方案设计11次采用高通滤波。在相同基波的补偿容量下,采用5,7, 11次滤波组合有利于吸收系统中的5,7, 11次及11次以上的各谐波,同时对其它次谐波也不会产生放大作用。为了更好地吸收11次及11次以上的特征谐波电流,方案设计时将适当加大11次的安装容量。滤波系统投入后对于4次,6次,9次谐波有大约1.5倍的放大,由于系统中4,6,9次谐波本身就比较小,故不会对系统产生影响,也不会超标。仿真分析给出谐波吸收曲线:

图210k V(156MVA)滤波组合——谐波吸收率图

图3 10kV(156MVA)滤波组合——系统阻抗图

图示表明高压滤波补偿装置投入后,10kV系统不会发生特征谐波频率放大,线路短路容量小的对谐波电流吸收效果优于短路容量大的。曲线看出注入主变的2次电流为105%,3次为110%,4次为130%,5次谐波电流为35%,6次为120%,7次为30%,8次为70%,9次为80%,10次为150%,11次为25%, 11次以上平均为70%。由此可见,滤波装置投入后对第3、4、6、10次谐波电流略有放大。考虑到系统的阻尼特性,谐波电流数值会较计算值小。从谐波阻抗图2可算出滤波不接和滤波接入的各次谐波电压及总谐波电压值。将各次谐波电流乘以该次谐波阻抗值(变压器),即得到该次谐波电压值,将各次谐波电压值的平方求和后开平方,得到U THD值。

7.2 滤波回路组合的电路结构

每相回路由滤波电容与滤波电抗串联,三相由三个单相接成Y型,中性点绝缘,含开口电压检测保护,电流不平衡检测保护等。电容器组并接放电线圈,各滤波回路接入避雷器,熔断器等。电路原理见下图,图4以10kV母线I段为例给出主原理图,滤波回路由高压控制柜的真空接触器控制,共有控制柜3台。

图4 滤波系统一次原理图

表5 10kV滤波电容器电抗器参数表

电抗器的额定电流是指该回路的基波电流与各次谐波电流均方根值。

表7 1#滤波电抗器参数

注:滤波电抗器调节范围是考虑到限流电抗器电感制造误差-10%~+10%,滤波电容器组制造误差0%~+3%计算出来的,但制造厂制造的滤波电抗器可调范围一般在-5%~+5%,这样必须对电抗器可调范围、滤波电容器的制造误差加以限制。

(1) 滤波电容器选型如下:

5次滤波电容器选用AFM 7.5-211-1W

7次滤波电容器选用AFM 7.5-169-1W

11次滤波电容器选用AFM 7.5-211-1W

(2) 滤波电抗器(铁芯或空芯电抗)选型如下:

5次滤波电抗器选用LKGKL—10-50A-17.33,Q=40左右

7次滤波电抗器选用LKGKL—10-40A-10.99,Q=40左右

11次滤波电抗器选用LKGKL—10-50A-3.54,Q=40左右

电抗器通过调节两个相同线圈间距离来调节电感,调节范围-5%~+5%。设备订货时必须对电抗器、滤波电容器组的制造误差加以限制。

(3)滤波器电容器内部故障及成套保护

a.不平衡电流保护

b.过电压保护

c.失电压保护

d.电流速断保护

e.氧化锌避雷器抑制过电流保护

f.操作过电压

g.单台滤波电容器采用喷逐式熔断器

h.放电线圈放电保护

滤波器保护可以装在相应的断路器柜上。其中过电压和欠电压保护四个支路共用一套即可。

(4)对滤波器的监控要求

由于滤波器整体对10KV调谐,一般不允许每套滤波器的某个支路单独运行(以免对低次谐波产生放大,滤波支路的投入间隔取0.5~1分钟,投入时从低次往高次按5、7、11次的投入顺序进行,切除时从高次往低次按11、7、5次顺序依次切除(切除时无间隔要求)。滤波器的监控可以采用JKWX控制器实现对滤波器的控制和监视,监控必须具备以下功能: a.对滤波器进行程控投切,控制滤波器支路的投切先后顺序、投切时间间隔,故障连琐跳闸;

b.记录开关变位、保护动作、电压、电流、有功功率、无功功率等参数;

c.根据系统谐波电压或功率因数自动控制滤波器的投切套数,也能手动控制滤波器的投切;

d.指示故障类型;

f.监测滤波器室内温度,超限报警;

e.测电容器的放电容状况等;

(5)滤波器成套设备

3个滤波支路分别采用3台高压开关柜;

电容柜架3台;隔离开关3台;放电线圈9台;氧化锌避雷器9支;

7.3 10KV滤波装置控制原则、10KV母线联接要求及运行状态信息

前后台并列控制方式

由前台向后台提供电容器组开关节点:

各滤波回路电容过电流保护常开接点一对

各滤波回路电容零序电压保护常开接点一对

各滤波回路电容电流不平衡差保护常开接点一对

各滤波回路电容过电压保护常开接点一对

各滤波回路电容欠电压缩保护常开接点一对

各滤波回路真空接触器常开常闭接点各一对

8 设计依据

本治理方案遵循的标准为:

GB 12326-2000 《电能质量电压波动和闪变》

GB 12325-1990 《电能质量供电电压允许偏差》

GB/T 14549-1993 《电能质量公用电网谐波》

GB/T 14543-1995 《电能质量三相电压允许不平衡度》

GB 311.1-5-86 《高压绝缘配合与试验技术》

GB 50227-95 《并联电容器装置设计规范》

JB7111-93 《高压并联电容器装置》

行标DL/T586-95 《电力设备监造技术导则》

《钢铁企业电力设计手册》

9 技术指标及考核指标

谐波电压限值和谐波电流限值:符合国标GB/T14549-93的要求。

月平均功率因数PF(10kV母线I段进线侧)达到0.95及以上。

具有控制、联锁、检测、过电压保护和继电保护等功能。滤波装置采用单片机控制,三套独立滤波装置信号互联,确保滤波装置不过载运行。滤波装置除检测常规的电参数外,还具有检测谐波电流电压的功能。

9.1治理后考核指标

(1)考核点

考核点设在10kV母线 I段进线端。

功率因数

滤波装置投入后,月平均PF≥0.95

电压变动限值≤2%(10〈r≤100〉≦电压闪变限值:

短时间闪变值Eplt≤0.9(10min)

长时间闪变值Eplt≤0.7(2h)

(2)谐波电流考核指标

滤波装置投入后,注入10kV系统的谐波电流在国标限值以内。

(3)谐波电压考核指标

滤波装置投入后,在10kV母线I段处:

(4)谐波电压总畸变率THDu<4%

偶次<1.6%

奇次<3.2%

谐波与无功补偿技术原理

波功功率补偿术谐波和无功功率补偿技术 基本原理 基本原 1

目录 第1章绪论 1.1电能质量控制技术简介 谐波与无功简介 第2章谐波和无功功率 2.1谐波和谐波分析 无功功率和功率因数 谐波和无功功率的产生 2.4无功功率的影响和谐波的危害

第1章绪论 1.1电能质量控制技术简介 11 1.2谐波与无功简介 12 3/

111.1 电能质量控制技术简介 电能质量问题 1.1.2电能质量问题的典型危害和影响电能质量控制技术分类 1.1.4电力电子技术与电力系统、电能质量 控制的关系 1.1.5用于电能质量控制的新型电力电子装置用能质控制新力子装 4/

111 1.1.1 电能质量问题z 频率的问题z 幅值的问题 –稳态过电压、欠电压及电压波动–闪变(flicker ) –幅值凹陷(sag ,dip )、凸升(swell )、短时中断(interruption ) z 波形和对称度的问题 –三相不对称(imbalance )–谐波(harmonics )–缺口(notching ) –暂态脉冲(impulsive transient )、暂态振荡( oscillatory transient )5/ p y

112 1.1.2 电能质量问题的典型危害和影响电压频率不稳,不对称,以及稳态过电压、欠电压及电压波动、闪变等的危害。z 谐波 –使产生、传输和利用电能的效率降低; 使电气设备过热振动产生噪音或绝缘老化缩短–使电气设备过热、振动、产生噪音或绝缘老化,缩短其寿命,甚至发生故障、烧毁;–使继电保护和自动装置误动作;–对通信和电子设备产生干扰。z 电压骤降 对精密仪器设备的危害 6/ –对精密仪器设备的危害;–给高产值的连续生产过程造成的损失。

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

谐波抑制与无功功率补偿

《谐波抑制与无功功率补偿》第二次作业 题目要求: 对于晶闸管可控整流电路,主电路为:1)三相桥式全控整流电路,变压器Yd11 联结(1:3) ;变压器一次侧相电压有效值U1=220V;阻感负载,R=30Ω,L=800mH,α=60°。 试设计LC 滤波器和电容补偿(如果需要的话),对上述负载的谐波和无功进行有效的补偿,使电源电流为与电源电压近似同相的正弦波(网测功率因数>0.96)。 要求: 1. 设计无源滤波器,并计算相应的参数。 2. 如果需要的话,设计计算无功补偿电容器。 3. 对建立的仿真电路进行仿真,给出有关的仿真波形,并对仿真结果进行分析。 4. 对设计步骤给出必要的文字说明。 按照要求,先进行滤波。对5、7、11、13次谐波采用单谐调滤波器,对13次以上谐波采用二阶高通滤波器。 所要确定的参数有:各单调谐滤波器与电阻R,电容C,电感L。 首先求最小补偿电容C min:在不加滤波和无功补偿的情况下,基波与各主要谐波情况如下图所示: 图1 基波与各次谐波电流 从图中可以看出, I f5≈1.411A I f7≈0.937A I f11≈0.626A I f13≈0.508A 根据教材给出的公式,按照最小安装容量求出最小电容器 C min=I f(n) (1)s × n2?1 nn2 将数据带入式(1),可以分别求出最小电容器分别为: C5=4.978μF C7=2.916μF C11=1.576μF

C13=1.126μF 调谐在n次谐波频率的单调谐滤波器电容器和电抗器关系是 n w s L= 1 nw s C (2) 据此可以求出各滤波器对应的电感L L5=81.14mH L7=70.89mH L11=53.1mH L13=49.4mH 取Q=45,分别求出对应的电阻值: R5=2.827Ω R7=3.46Ω R11=4.10Ω R11=5.06Ω对于高通滤波器,定义Q值为 Q=R X0 (2) 接下来,设计能滤掉13次以上谐波的高通滤波器,高通滤波器的特性可以由以下两个参数来描述: f0=1 (3) m= L R2C (4) 式(3)中,f0称为截止频率,高通滤波器的截止频率一般选为略高于所装设的单调谐滤波器的最高特征谐波频率。式(4)中的m是一个与Q直接有关的参数,直接影响着滤波器调谐曲线的形状,一般Q值取为0.7~1.4,相应的m值在2~0.5之间。电容按照无功补偿计算,设高通滤波器同时补偿容量为Q C=400var。 Q C= U2 C1L1 (5) 由式(5)与式(2)可以求出,C≈48μF。带入式(3)(4),取m=0.5可以求出,R≈5Ω,L≈6.25mH。 在滤波完成后,尚有较大无功,功率因数不满足题目要求,故对电路进行无功补偿。剩余的无功为Q≈232var Q=U2 C (6) 解得C≈28μF。 经过滤波与无功补偿,对所得的电路进行谐波分析,如下图所示。

谐波抑制和无功补偿

绪论 电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。我国对电能质量的三方面都有明确的标准和规范。 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。

第一章 基础概念 1.1 电力系统的组成 电力系统是由发电、输电、用电三部分组成。其中过程为发电厂发电经升压变压器升压并网,再由输电网络输送的各个变电站,变电站进行降压后输送给各个用户,用户经过再一次降压后给用电设备供电。主要设备为发电机、升压变压器、输电网络、降压变压器、用电设备及二次保护系等组成。 发电机的电压等级一般为6KV 、10KV ,输电网络为110KV 、220KV 、500KV ,配电网络为10KV 、35KV ,用电设备一般为380V 、220V 。 我国电力系统采用三相50HZ 交流供电。 1.2 功率的概念 在供电系统中,通常总是希望交流电压和交流电流时正弦波形(不含有谐波的情况下),正如电压为: ()ωt U t U sin 2= 式中 U ------电压有效值 ω--------角频率 f πω2= f ---------频率 (50HZ) 正弦电压施加在线性无源负载上如电阻、电容、电感上时,其电流的表达式为: ()()?-= ωt I t I sin 2 I --------电流有效值 φ--------相位角 电压和电流的关系从相位图上看如:(绿色为电压,红色为电流)

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。 图1用户配电系统示意图 2系统用电参数分析 根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为: (1)10KV母线平均功率因数约为0.92左右, (2)母线协议容量10MVA, (3)主要谐波源类型:热电解铜及大功率电机等, (4)10KV线路三相功率数据分析 段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。 3谐波分析 因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

低压无功补偿系统硬件设计

摘要 本文主要介绍低压无功补偿装置的基本原理、控制方案以及硬件方面的选型和设计。 该补偿系统采用TI公司的定点TMS320LF2812系列DSP和MCU的双控制器进行控制,TMS320LF2812为补偿装置的总控制器,具有自动采样计算、无功自动调节、故障保护、数据存储等功能。同时具备指令运算速度快(约100MIP)、运算量大的优点,同时MCU与外部设备进行通讯,互不干扰,更好的满足了实时性和精确性的要求。采用晶闸管控制投切电容器、数字液晶实时显示系统补偿情况,可以实现快速、无弧、无冲击的电容器投切。为了更详细的介绍该系统,在论文第四章设计了比较完整的各功能模块的硬件电路图,其中包括电源模块、信号变换及调理模块、AD采样模块、锁相同步采样模块、通讯模块等。 关键字:低压无功补偿;晶闸管投切电容器;DSP

Abstract This paper mainly introduces the basic principle of low-voltage reactive power compensation device, control scheme and hardware selection and design. The compensation system by TI company's fixed-point tms320lf2812 series DSP and MCU dual controller control, tms320lf2812 compensation device controller with automatic sample calculation, automatic reactive power regulation, fault protection, data storage and other functions. At the same time with the instruction operation speed (about 100MIP), the advantages of large amount of computation. At the same time, MCU and peripheral equipment

电力系统谐波抑制及无功补偿方法的研究文献综述报告

电力系统谐波抑制及无功补偿方法的研究文献综述报告辽宁工业大学硕士研究生 研究方向: 电力系统谐波抑制 及无功补偿方法的研究 +++ 研究生: 11+++ 学号: +++ 指导教师: 专业: 电气工程 辽宁工业大学研究生学院 文献综述 21 世纪能源与环境问题成为人类发展必须面对的重要问题,如何在保证可持续发展和保持良好环境的前提下为人类提供安全可靠、优质经济的电能,是电力系统面临的主要问题。国家“十一五”规划《纲要》提出推进国民经济和社会信息化,切实走新型工业化道路,坚持节约发展、清洁发展、安全发展,实现可持续发展。纲要明确指出:通过开发推广节能技 [1]术,实现技术节能。为电力工业的建设提出了明确要求。电力系统也是一种“环境”,面临着污染,各种电力电子装置所消耗的无功功率使电网的供电质量恶化,公用电网中的谐波电 [2]流和谐波电压是对电网环境影响最严重的一种污染。一方面是因为电力电子装置自身的非线性使得电网电压、电流发生畸变,产生了严重的谐波污染;另一方面是因为大多数电力电 [3]子装置本身功率因数很低,其无功需求给电网带来额外负担,会严重影响电网供电质量。

无功、谐波给电力系统和用户带来的负面影响主要有增大各类电气设备的额定电压和额定电流,引起额外的功率损耗,导致设备用电效率降低;“谐波影响各种电气设备的正常工作,导致继电保护和自动控制装置的误动作;对通信系统产生干扰,使其无法正常工作;谐波会 [4]引起公用电网中局部的并联和串联谐振”电网的谐波和无功问题日益突出,整个供配电系统的安全运行存在较大的隐患。世界各国电力系统近年来纷纷采用了动态无功补偿装置和谐 [5]波治理装置来提高电网的电能质量。电力电子装置的广泛应用,不但要消耗大量的无功功率,还有产生大量的谐波电流。因此,进一步深入无功补偿和谐波抑制的研究具有非常重要的意 [6]义,对无功补偿和谐波抑制的方法研究是今后一个重大研究课题。 1.国内外无功补偿和谐波抑制的研究 1.1国内外无功补偿的研究 无功功率补偿技术随着电力系统的出现而出现,并随着电力工业的发展和电力负荷的多样性而不断进步。电力系统发展到现在已出现三代无功补偿技术:同步发电机补偿、同步调相机补偿、并联电容器补偿、并联电抗器补偿等属于第一代补偿技术;基于自然关断晶闸管技术的SVC(相控电抗器(TCR)、磁控电抗器(MCR))属于第二代无功补偿技术;基于IGBT、IGCT等大功率可控器件的补偿装置SVG(Static VAR Genarator)属于第三代无功补偿技术。SVG是当前世界上最先进也是最复杂的补偿技术产品,它不再采用大容量的电容器、电抗器,而是通过大功率电力电子器件的高频开关实现无功补偿的变换,在响应速度、稳定电网电压、降低系统损耗、增加传输能力、提高瞬变电压极限、降低谐波和减少占地面积等多方面具有更 [7]加优越的性能。

无功补偿与谐波治理技术(铜业协会)

无功补偿与谐波治理技术
报告人:许强 全国电压电流等级和频率标准化技术委员会 中国电工技术学会电力电子学会 委员 理事
报告日期:2009年4月

一、功率因数为什么会变低?什么是无功功率?
我们知道,通常我们所 用的交流电压是50Hz的正 弦波,在电压的两端接上 负载就会产生电流,如我 们在220伏(或380V)的 电源上接一个电灯,电灯 中流过电流,灯就亮了。 当负载是电阻时,电压波 形的相位与电流波形的相 位完全相同,即电压波形 与电流波形重叠在一起。 这时电网送出的功率也与 消耗的功率相等。

而现实生活中电阻负载使用 的较少,大多数负载都有一定 的电感,如变压器、电动机、 洗衣机、冰箱、空调等都是带 有电感性的负载,这样就使电 压波形的相位与电流波形的相 位不能重叠,电流的波形(红 色)就会比电压波形(蓝色) 迟后△T的时间,△T时间越 大,功率因数越低,消耗的无 功功率也越大。那么电网送出 的功率(视在功率)也与消耗 的功率(有功功率)就不再相 等了,电网送出的功率是如下 表达式: 电网送出的功率(视在功率)=实际消耗的功率(有功功率)+无功功率

什么是无功功率:
无功功率决不是无用功率,它是另外一种能量消耗的表达形 式,如电动机需要建立和维持旋转磁场,使转子转动,从而 带动机械运动,电动机的旋转磁场就是靠从电源取得无功功 率建立的。变压器也同样需要无功功率,才能使变压器的一 次线圈产生磁场,在二次线圈感应出电压。因此没有无功功 率的话,电动机不会转动,变压器不会变压等。 因此在正 常情况下,用电设备不但从电网中取得有功功率,同时还需 要从电网中取得无功功率。如果电网中的无功功率供不应 求,用电设备就没有足够的无功功率来建立正常的电磁场, 那么这些用电设备就不能维持在额定情况下的工作。能反映 无功功率被使用的指标是用电的功率因数,即COS?。

电力设计中无功补偿自控方案的应用

电力设计中无功补偿自控方案的应用 发表时间:2019-06-21T10:55:08.703Z 来源:《电力设备》2019年第1期作者:王笃林王凡[导读] 摘要:在电力设计之中,无功补偿自控方案是其中重要的内容,影响着电力系统运行的稳定性。 (日照阳光电力设计有限公司 276800)摘要:在电力设计之中,无功补偿自控方案是其中重要的内容,影响着电力系统运行的稳定性。对此,本文将分析电力设计中,不同无功补偿自控方案的应用,包括电子式、单片机控制技术、PLC控制技术等,以期为相关人员提供参考。 关键词:电力设计;无功补偿;自控方案;单片机;PLC 前言:根据补偿方式的差异,可以将无功补偿分为以下三种,即集中补偿、分散补偿以及就地补偿等,每一种方式适用于不同的电力设计之中。另外,结合不同的补偿控制方式,还可以将无功补偿分为电子式、单片机控制式、PLC控制式。所以,在电力设计中,需要保证无功补偿自控方案的合理性、科学性,以此来降低电能的损耗,同时提高供电的稳定性。 1.电力设计中电子式无功补偿自控方案 在电力设计的过程中,电子式无功补偿自控方案实际上是由很多不同的分立元件组成的,包括相位检测、电流检测、相位显示与无功显示、无功值运算、cosφ额定调节、电平比较、电源、定时脉冲、投切控制、过压保护、电容器组、供电系统。其中,系统中的相位、无功运算、电流检测单元、投切单元、电容器等,是影响无功补偿自动控制的主要部件。结合电子式无功补偿控制方案的结构能够发现,其具有体积大、线路复杂、元件多等缺点,同时其使用的周期相对较短。如果电子式无功补偿系统在运行的过程中发生故障问题,而工作人员没能对其进行及时维修、恢复,那么就必须对无功补偿进行手动控制,影响电力系统运行的稳定性。因此,电子式无功补偿自控方案在电力设计中的应用较少,已经逐渐被更加先进的方式所取代。 2.电力设计中单片机控制式无功补偿自控方案 一般情况下,以单片机控制技术为基础的无功补偿自控系统,所涉及的模块较多,如显示模块、信号调理模块、控制补偿模块、键盘控制模块等。在系统运行的过程中,由于其具有先进指令集、单周期执行指令时间,所以可以确定单片机1MIPS/MHz的具体数据吞吐率,以此来解决功率消耗、处理速度之间的矛盾问题。在单片机的内核之中,包含很多相关的无功补偿指令,同时还存在32个寄存器,而寄存器与逻辑运算单元相互连接,保证指令能够在同一个周期中,对两个寄存器进行同一时间的访问。除此之外,单片机控制式的无功补偿自控方案,可以在很大程度上提高代码率,同时与传统的控制器比较,其数据的吞吐率具有明显的优势。 在单片机控制式的无功补偿自控方案中,处理AVR信号的过程为:(1)A/D转换器对电力系统中的信号进行采样;(2)基于FFT算法对所采集的电力信号,进行系统的分析与处理;(3)检查、判断电力系统中,当前的电压是欠压还是过压,电流的状态是否呈现为负值;(4)根据最终的判断结果,确定是否切除电容器。实际上,以单片机控制系统为基础的无功补偿自控方案,全部都是以模块的方式进行设计的,主要的模块包括电网参数计算模块、电容器投切模块、数据采集模块、显示与键盘模块。然后,工作人员以修改程序为前提,完成系统的调试以及连接[1]。例如:ADμc812型号的单片机,其在电力设计的无功补偿自控中发挥着重要得作用,其优势主要表现为:稳定性强、成本较低、结构相对简单等,目前在电力设计中的应用较为广泛。通常投切元件会使用继电器SSR,所以在运行的过程中不需要使用CUP实现系统的控制,解决了控制复杂等相关的问题,提高电力系统运行的安全性、稳定性。 3.电力设计中PLC控制式无功补偿自控方案 以PLC控制技术为基础的无功补偿控制方案,在设计的过程中主要使用稳压电源、输出电路、相角检测电路等。但是,对于电力系统中硬件电路的控制,基本上都是通过PLC实现的,包括清零电路、译码器、可逆计数器等。由于在无功补偿自控系统的运行中,相角检测电路输出的信号相对较弱,所以并不能对PLC的输入产生促进作用,进而需要以放大的方式,对该信号进行处理,然后才能够将其作为系统的输入信号。根据系统的实际控制需求,就能够利用PLC控制技术实现无功补偿自控的基本目标[2]。但是,PLC的输入点在容量大小方面存在局限性,因此应加入中间继电器,然后才能够将其作为输出电路。 根据PLC控制式无功补偿自控的流程,其主要就是将模块化设计、结构化设计进行了有机结合,提高系统中层次的有序性、鲜明性。这样的方案设计,便于系统中的检测模块随时完成相角信息的采集,同时与既定的参数进行系统的比较、分析,确定其中不相符的参数,切除系统中的补偿电容器,提高电力系统功率的合理性、规范性。例如:以S7-200西门子PLC为基础进行无功补偿自控设计,就可以基于系统中的时钟、日历等,完成电力系统中的投切工作,如果发现检测电路、单元模块发生故障问题,根据相应的时间进行设定,就可以自动完成投切工作,减少误动作现象的发生。另外,如果系统中的PLC发生故障,软件可以自动将输出中止,同样能够避免出现误动作,提高电力系统运行的安全性、稳定性。 结语:综上所述,电力设计中无功补偿自控方案包含的方式较多,工作人员必须结合电力系统的实际需求,采用合理的无功补偿自控方案。在这一基础上,可以充分发挥无功补偿的作用与价值,提高电力系统运行的稳定性,减少电力运行过程中所产生的电能损耗,增强电力系统的经济效益、社会效益。简言之,电力设计中无功补偿自控方案的应用,必须具被针对性、科学性。 参考文献: [1]陈超,童可君,杨艳.一种基于电子标签技术的电力安全工具系统设计与应用[J].科技创新与应用,2019(04):86-87. [2]吕晓慧,徐永海,张雪垠.具有电动汽车快速充电接口的电力电子变压器低压直流侧设计[J/OL].现代电力,2019(02):40-48[2019-02-14].

中频电炉无功补偿和谐波治理的成功案例(DOC)

815V、5吨中频电炉无功补偿和谐波治理的成功案例 2007-4-27 天津市津开电气有限公司总经理盖福健高级工程师孙泽林 关键词:中频电炉、无功功率、无功补偿、谐波、间谐波、谐波治理、变流、变频、谐波电流、谐波电流 放大、博里叶级数 1.绪论: 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶 闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ·谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ·谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ·谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ·谐波电流对临近的通讯设备产生干扰。 ·谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。·谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 2.概述 2.1天津市某铸造公司(简称铸造公司)为生铁铸造企业,工厂主要设备为两台500HZ中频感应电炉以溶化生铁进行铸造,因采用中频电炉,故由于变流及变频等原因造成用电谐波超标,功率因数过低,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。 2.2中频电炉运行主要参数 ①电炉为长期间断运行,运行时间每炉出铁冷炉约为2.5小时,热炉约2小时。 ②在正常运行时高压侧工作电流为150~160A。整流变压器二次侧为六相十二脉波输出。 ③现场仪表指示数据 一次测电压10.2KV 二次测电压815V×2 一次测电流157A 二次测电流992A×2 一次测功率因数COS?=0.6~0.7最低COS?=0.23最高COS?=0.79予升温COS?=0.49 保温COS?=0.23~0.49 加温COS?=0.72~0.79 2.3中频炉一次系统图

无功补偿谐波治理方案

…..公司 低压动态无功补偿及谐波治理方案 北京XXXXXXX有限公司 2014年8月15日

目录 一、绪论 (3) 二、概述 (3) 三、采用标准 (4) 四、动态无功补偿滤波技术方案设计 (5) 4.1、设备总体概述 (5) 4.2、无功补偿消谐装置整体描述 (6) 4.3、系统设计 (7) 补偿系统补偿效果仿真图: (11) 4.4功能描述 (13) 4.5 控制策略 (14) 4.6后台数据管理系统及控制特性 (14) 4.7系统组成 (15) 五、供货清单 (15)

一、绪论 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ?谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ?谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ?谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ?谐波电流对临近的通讯设备产生干扰。 ?谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。 ?谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 二、概述 根据贵公司提供的相关资料分析、计算和仿真(附件5配合仿真图),结合我公司多年来对轧机进行动态无功功率补偿及谐波抑制技术的经验和对轧机电气系统、生产工艺的透彻掌握,综合提出本方案,确保补偿装置投运后接入点的功率因数在0.92(含0.92)以上,各次谐波含量达到国标要求。

tsc无功补偿装置的设计--电气设计

TSC无功补偿装置的设计 摘要:晶闸管投切电容器(TSC)是静止无功补偿技术的发展方向。根据笔者设计的一种TSC无功补偿装置,分析了TSC装置常用的主电路的特点,介绍了电容器投切判据与信号检测、零电压投入以及晶闸管触发电路等关键问题的解决方案。 关键字:无功补偿晶闸管 TSC 零电压触发 DESIGN ON A TSC REACTIVE POWER COMPENSATION DEVICE Abstract:Thyristor switchedcapactor(TSC)is a new direction of the staticvar compensator(SVC)technology.Basing on a designproject for TSC reactive power compensation device, the characteristics of itsvarious main circuits are analysed.Some key problems on developing TSC deviceare introduced, i.e. the criterion of switched capactor,the data detectionmethod, zero-voltage switching-on,and the triggering circuit for thyristors. key words: reactive power compensation;thyristor;thyristor switched capactor;zero-voltage triggering 1 引言 静止无功补偿装置(SVC)是配电网中控制无功功率的装置,它根据无功功率的需求,对无功器件(电容器和电抗器)进行投切或调节。传统的无功补偿装置采用机械开关(接触器或断路器)投切电容

无功补偿与谐波治理知识

无功功率的影响有那些? 1、增加设备容量。 2、增加设备及线路损耗。 3、使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。 什么是无功补偿? 电力系统中大量的负荷是电感性的,因此我们将吸收感性无功功率的负荷称为“无功负荷”,而将吸收容性无功功率的设备称为“无功电源”。无功补偿就是吸收或供给适度可变的无功功率,以改善交流电力系统的供电质量。 大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法即是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 常用的无功补偿的方法有几种? 1、同步补偿机 2、同步电动机 3、同步发电机 4、并联电容器 5、静止无功补偿装置 6、静止无功发生器 无功补偿的作用有那些? 1、提高供电系统及负载的功率因数,降低设备容量,减少功率损耗。 2、稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。 3、在电弧炉炼钢、电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。

什么是同步补偿机? 同步补偿机又称同期调相机,它实际上是不带机械负荷,空载运行的同步电动机。 什么是同步电动机? 同步电动机过激运行时,发出无功功率,相当于无功电源;欠激运行时吸收无功功率,相当于无功负荷。通常电网的负荷为感性的,所以一般使同步电动机处于正常励磁或过励磁的情况下运行,以改善电网的功率因数。 什么是同步发电机? 发电机除发出有功功率,实现机械能转变为电能,作为电力系统的有功电源外,同时又是最基本的无功功率电源。 什么是并联电容器? 并联电容器广泛应用于改善负荷的功率因数,是电力系统一种重要的无功补偿设备。并联电容器的主要缺点:一是电压调节效应低,二是不能连续调节和吸收滞后(感性)的无功功率。 什么是静止无功补偿装置? 运用电力电子技术的可调节无功补偿装置。其重要特性是能调节补偿装置的无功功率。 什么是静止无功发生器? 运用电力电子技术的可调节无功发生装置。即可以使其发出无功功率,呈电容性;也可以使其吸收无功功率,呈电感性。采用PWM控制,可使其输入电流接近正弦波。 无功补偿方式有几种? 1、集中补偿 2、分散就地补偿 3、单机就地补偿 什么是集中补偿?

电网的无功补偿与谐波治理

电网的无功补偿与谐波治理 发表时间:2017-08-25T09:28:11.070Z 来源:《探索科学》2017年1期作者:吴文志 [导读] 处理好无功补偿和谐波管理一系列问题,具有十分重要的含义。 广东光达电气有限公司 528329 摘要:电力体系的无功优化及补偿和谐波管理是前进体系运转电压,减小网损,前进体系安稳水平的有用手法,对电网安稳及电力设备安全运转、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。处理好无功补偿和谐波管理一系列问题,具有十分重要的含义。介绍了影响功率因数的关键因素,并对现在无功补偿和谐波管理进行了必定的讨论和研讨。 关键词:无功优化补偿;功率因数;谐波管理 处理好电网的无功功率因数补偿和谐波滤波一系列问题关于前进电能质量、安全运转、下降损耗、节能及充沛利用电气设备的功率等具有十分重要的含义。国内外有关规程规则,为了下降网损、节省能源、前进变压器的功率和安稳电压,请求电力体系设备适当容量的无功功率补偿设备。 1无功补偿的必要性 跟着电网装机容量的飞速提升,对电网无功功率的需求也与日俱增。无功功率同有功功率一样,是确保电能质量不可分割的一部分,电力体系中应坚持无功功率的平衡,否则将会导致功率因数反常、电压动摇、设备损坏等状况,严峻时会使体系电压溃散、解列,形成大面积停电事端。因而,处理电网的无功功率平衡,加装无功补偿设备,前进网络的功率因数对电网的降损、节省用电、安全可靠运转和确保电能质量有着极为重要的含义。在并联设备中,除了超高压并联电抗器以外,关键用来对电网的容性或理性无功功率进行调理。就电力网而言,无功补偿既能够补高压侧,也能够补低压侧。对通常用户而言,在低压侧补偿将能够下降出资、削减能量损耗、有用前进负载端电压,所以电容器补偿设备通常设备在挨近负载端,以前进无功补偿的经济效益。据统计,无功补偿在合理规划和设备后,能够使电网增容15%-30%,与其他补偿办法相比,低压并联电容器组的办法是一种出资少、见效快、收益高、切实可行、且能较大起伏下降线损和前进电能质量的有用途径。从无功补偿的内容来看,又可分为两个大类,一类是按照负荷巨细只是主动补偿无功重量;另一类则是除了补偿无功重量以外,还兼有谐波按捺或脱谐功用,这是由于无功补偿与谐波搅扰通常是一起出现的。高频负荷和非线性负载会使电网中的谐波含量剧增,装在电网低压侧的电力电容器极易因变压器感抗及剩下电网的电感发生谐振而发生很高的电流,形成供电回路过载、电容器烧毁和投切开关损坏等事端。所以,在无功补偿的一起,有必要思考谐波管理的办法。 2配电网无功优化补偿的基本原理 由于电网的线损关键是线路损耗与变压器损耗,所以配电网的降损节能,也即是对电网中所有的电力线路和变压器进行优化。无功优化的意图是经过调整无功潮流的分布下降网络的有功功率损耗,并坚持最佳的电压水平。无功优化补偿通常有变电所无功负荷的最优补偿、配电线路最优补偿以及配电变压器低压侧最优补偿。在电力网的运转中,功率因数反映了电源输出的视在功率被有用利用的程度,咱们希望的是功率因数越大越好。这么电路中的无功功率能够降到最小,视在功率将大多数用来供应有功功率,然后前进电能运送的功率。当线路所需无功功率不满足功率因数请求时,可选用有载配电变压器主动调压和合理的无功主动补偿,能确保配电网供电电压质量,改善功率因数,到达无功就地平衡的意图,前进电力体系的供电才干,使配电网体系在经济合理、安稳安全的状态下运转。 3谐波的发生与危害性 电力体系所指的谐波是稳态的工频整数倍数的波形,其频率为基波频率的整数倍。电网暂态改变比方涌流、各种搅扰或毛病导致的过电压、欠电压等均不归于谐波的领域。谐波关键由谐波电流源发生,当正弦基波电压施加于非线性设备上时,设备吸收的电流与施加的电压波形不一样,电流因而发生了畸变,由于负荷与电网相连,故谐波电流注入到电网中,这些设备就成了电力体系的谐波源,如电力电子设备、电弧炉、传统变压器和铁心电抗器等。在电力电子设备许多运用之前,最关键的谐波源是电力变压器的励磁电流,其次是发电机;而在电力电子设备许多运用以后,后者便变成最关键的谐波源。电力电子设备包含变频器、软起动器和整流器等,其间整流设备所占的比重最大,现在常用的整流电路大都选用晶闸管相控整流电路或二极管整流电路。比方直流侧选用电容滤波的二极管整流电路,这种电路输入电流的基波重量的相位与电源电压相位大体一样,因而基波功率因数挨近,但其输入电流的谐波重量却很大,并且整流器在沟通侧和直流侧都要发生高次谐波,给电网形成严峻污染,也使得总的功率因数很低。 4影响功率因数的关键因素及无功补偿的通常办法 4.1影响功率因数的关键因素 许多用电设备均是依据电磁感应原理作业的,如配电变压器、电动机等,它们都是依托建立交变磁场才干进行能量的变换和传递。为建立交变磁场和感应磁通而需求的电功率称为无功功率,因而,所谓的“无功”并不是“无用”的电功率,只不过它的功率并不转化为机械能、热能罢了;因而在供用电体系中除了需求有功电源外,还需求无功电源,两者缺一不可。功率因数的发生关键是由于沟通用电设备在其作业过程中,除耗费有功功率外,还需求无功功率。当有功功率P必守时,如削减无功功率Q,则功率因数便能够前进。在极点状况下,当Q=0时,则其功率因数=1。因而前进功率因数一系列问题的本质即是削减用电设备的无功功率需求量。 4.2无功补偿的通常办法 无功补偿通常选用的办法关键有3种:低压单个补偿、低压会集补偿、高压会集补偿。下面简略介绍这3种补偿办法的适用范围及运用该种补偿办法的优缺点。 4.2.1低压单个补偿低压单个补偿即是依据单个用电设备对无功的需求量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。经过控制、保护设备与电机一起投切。随机补偿适用于补偿单个大容量且接连运转(如大中型异步电动机)的无功耗费,以补励磁无功为主。低压单个补偿的长处是:用电设备运转时,无功补偿投入,用电设备停运时,补偿设备也退出,因而不会形成无功倒送。具有出资少、占位小、设备简略、装备便利灵敏、保护简略、事端率低一级长处。 4.2.2低压会集补偿低压会集补偿是指将低压电容器经过低压开关接在配电变压器低压母线侧,以无功补偿投切设备作为控制保护设备,

无功补偿自控方案在电力设计中的运用分析

无功补偿自控方案在电力设计中的运用分析 发表时间:2018-03-13T11:54:05.897Z 来源:《电力设备》2017年第30期作者:梁婷芳[导读] 就应促使电力系统的运作体现出现代化和智能化的特征,将先进的技术理念渗透到电力系统之中,提高电力系统的运行效率,而本文主要针对无功补偿自动方案在电力设计中的应用方式进行分析和探究,同时提出(佛山市顺德区易达电力工程有限公司 528325)摘要:最近几年来,我国的电力事业发展水平呈现着逐年递增的趋势,这一时代的发展背景下,人们对于电力的应用需求不断增加,同时也对电力供应的稳定性和安全性提出了新的要求,若想确保我国的电力事业发展步伐跟紧时代的发展趋势,就应促使电力系统的运作体现出现代化和智能化的特征,将先进的技术理念渗透到电力系统之中,提高电力系统的运行效率,而本文主要针对无功补偿自动方案在 电力设计中的应用方式进行分析和探究,同时提出了自身的相关见解和思考,以下为详述。关键词:无功补偿;自控方案;电力设计;运用;分析在现阶段信息化的时代背景下,我国的电力事业实现了迅猛的发展,电力企业在此竞争力如此激烈的环境下,为了提高自身的核心竞争力,并在行业中立于不败之地,获取更高的经济收益,都会通过引入先进技术手段的方式,促使电力系统的运作体现出智能化和自动化的特征,当下,我国大型可控硅装置在电力系统中的应用越发呈现着普遍的趋势,但是,因为电力系统的运作环节,容易受到负荷功率的冲击,导致电力系统的因数相应的降低,出现电压供应不稳问题,故此,要想将此问题妥善解决,就应当提高电力系统的运行质量,减少电网的实际耗损率,运用无功补偿装置的途径,高效解决上述问题,基于此,笔者主要针对无功补偿自动技术的应用方式进行探讨,希望给有关人士以一定的借鉴和参考。 一、无功功率以及无功补偿的涵义浅析电力系统的运行过程中,所涉及的因素较多,比如,电动机以及变压器等,都是常见的设备类型,这些设备的运作会应用电磁感应原理,如若设备线圈流通的为交流电,那么,此时的铁芯之中将会产生交变磁通,在它的影响下,电气设备将会完成高效的能量传递和转换,构建磁场所需的电感性电流,相位滞后电压为九十度,所属于无功电流的范畴。可见,构建感应磁通和交变磁场所需要的电功率一般被称作是无功功率,无功功率不会直接转化为机械能亦或是热能,但是,它们也并非“无用”电功率,反之它们是确保电气设备高效运行的基础条件。电网之中的无功功率不会被消耗殆尽,而后通过周期性转换的方式,与电能进行不断地转化,这一类功率一般会被称作无功功率,想要确保电力系统的运行更为高效,就应对系统之内的有功电源加以协调,同时也需要无功电源进行补充,二者所发挥的作用都是至关重要的[1]。电感元件之内的电流在做功的过程中,其中的电压如若超前于电流九十度,而此时电力系统已经与电容器相连接,此时的电压滞后电流为九十度,同处于同一个电路之中,所流过的电容设备以及流过电感设备的方向是相反的,二者相差180度,因此,电容器中所流过的电流,和用电设备之间的无功电流为相反的,可相互补偿,逐步达到减小总电流的效果[2]。故此,电力系统的运行过程中,一般都会将感性负荷以及容性功率的装置进行连接,并会将二者安置在同一个电路之中,逐步实现感性负荷和容性设备两者之间的能量转换,使其中的无功功率得到相应的补偿,这就是所谓的无功补偿。 二、无功补偿自控方案的应用方式探析(一)电子式自动补偿控制方式电子式自动补偿控制方案的设计较为复杂,由许多分立元件组合而成,笔者对这些分立元件的构成进行分析和总结后,发现自动控制系统可主要分为以下几项内容,比如,电流检测单元、电容器、相位、无功运算以及投切单元等等。而后笔者又对此补偿控制方案的应用缺陷予以总结,主要表现为以下几点,比如,体积大、使用寿命短、元件种类多以及线路运维繁杂等等。(二)单片机控制方式单片机AT-mega16控制技术的自控无功方式,一般来讲,此系统的构成方式将会涉及到许多的模块内容,例如,信号调理模块、控制补偿模块、键盘控制模块以及显示模块等等。不仅如此,单片机AT-mega16的内核之中,包含有较多的指令内容,同时还有三十二个工作寄存器,这些寄存器会与逻辑运算单元实现高效的连接,这就使一个周期内的指令,需要访问两个不同类型的寄存器,此结构装置可极大的提高代码的利用效率,与普通的CTSCA相比较,数据的实际吞吐率较高[3]。此系统的设计方案,大多都是基于模块化的设计方式,包含有四个主要模块,像:数据采集模块、电网参数计算模块、显示以及键盘模块、电容器投切模块,利用修改程序的作用,逐步完成系统的运行调试和连接工作任务。当下,较为常用的方式都是运用矿用WBB隔爆型自动补充无功装置,将其作为单片机的内部控制器,进而对无功功率、内部电流以及电压等进行精准的检测,这样可为日后的无功功率补偿打下铺垫[4]。装置之中的显示模块可对电容器的无功功率、功率因数、电容器投切状态以及负载电流等予以显示。(三)基于PLC控制的无功补偿自控方案 PLC控制技术可谓是一种新式的微机技术,以此为依据,电力控制设备的运用,将会在传统的续电器亦或是触器自动系统作为框架,它的核心就是PLC控制技术,借助此技术的应用优势,无功补偿自控方案可对传统补偿模式下的相角检测回路、供应电源、主回路以及输出电路等予以沿袭,应用PLC控制技术则主要涉及延时电路、可逆计数器、译码器、加减法点平转换以及时钟脉冲发生器等等设备。值得一提的是,相角检测电路实际输出信号的能力较差,所以,很难完成PLC的驱动输入,此时,就需要作出放大信号的处理,使其转变为PLC可识别的信号形式,参照系统的指示内容,将PLC软件的应用优势凸显出来,逐步完成自动化的控制任务[5]。 三、无功补偿技术的发展趋向探究自从进入到二十一世纪以来,我国的电力事业发展步伐在不断加快,其中的无功补偿装置的应用体现出普遍性,电力系统的运行过程中,可运用动态无功补偿装置,提高电力供应的稳定性,保证用户的用电质量。若想妥善解决电场并网运行电压不稳的问题,要求每一个风电场都运用适宜的途径,提高风电场的运作质量,笔者认为静止无功发生器可谓是当前最为先进的无功补偿技术手段,它可对风电场的运行过程中,对谐波以及风电无功功率实施动态补偿,从而一定程度的增强风电场电压的稳定性和安全性。结束语:

相关文档