文档库 最新最全的文档下载
当前位置:文档库 › 遗传学(详细)

遗传学(详细)

遗传学(详细)
遗传学(详细)

申明:以下资料是个人总结,仅供参考,不懂的还是得去看看书,那些难理解的,通过做计算题来帮助理解,遗传会有一些计算题,最后,希望大家都能顺利通过,希望大家不要把资料给农学091班以外的同学,否则就不说了。

第一章

1遗传和变异是生物界最普遍和最基本的两个特征。

2遗传+变异+自然选择=物种

3遗传+变异+人工选择=品种

4拉马克“用进废退”+“获得性状遗传”(环境的改变是生物变异的根本原因)5达尔文自然选择+人工选择+(泛生学说:存在泛生粒形成生殖细胞,进入器官发生作用,表现遗传)

6魏斯曼种质连续论:(环境影响体质,体质由种质产生,种质是世代连绵不绝的)

第二章

1细胞是生物体机构和生命活动的基本单位。

2细胞膜使细胞成为具有一定形态结构的单位,借以调节和维持细胞内微小环境的相对稳定性。

3细胞骨架的主要功能是维持细胞的形态和运动,并使细胞器在细胞内保持在适当的位置。

4线粒体含有DNA,RNA和核糖体,具有独立合成蛋白质的能力。

5叶绿体含有DNA,RNA和核糖体等,能够合成蛋白质,并且能够分裂增殖,还可以发生白化突变。

6他们具半复制能力。

7尚未分裂的核中,通过碱性染料染色较深的纤细网状物质即为染色质。

8染色体和染色质是同一物质不同的形态表现,染色体是核中最重要而稳定的成分,具有特定的形态结构和一定的数目,是遗传物质的主要载体。

9每个染色体有一个着丝粒,和有其分成的长臂和短臂,着丝点处(主缢痕),断臂处(次缢痕)具组成核仁的特殊功能。次缢痕具末端圆形或长形的突出体,即随体,与识别有关。染色体包括V型,L型,棒状以及粒状染色体。

10对生物细胞核内全部的染色体的形态进行分析称为染色体组分析或核型分析。

11形态和结构基因相同的一对染色体称为同源染色体。(形态和所含基因位点不同的同源染色体,性染色体)

12形态结构不同的各队染色体之间,互成非同源染色体。

13维持生长的三个前提:1细胞体积的增加;2遗传物质的复制;3一种保证遗

传物质从母细胞精确地传给子细胞的机制(细胞分裂)。

14G1:细胞体积的增长,为DNA合成做准备;S:DNA合成,染色体加倍;G2为细胞分裂做准备。

15中期是进行染色体鉴别与技术的最佳时期。

16交叉式交换的结果。

17交叉向二价体两端移动,并且逐渐接近末端的过程叫交叉的端化。

18 3n的胚乳的性状由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。

19种皮或果皮组织在发育过程中由于花粉的影响而表现为父本的某些性状,称为果实直感。

20雌雄配子部发生核融合的一种无性生殖方式,称为无融合生殖:营养的无融合生殖,无融合结子,单性结实。

21一般有性生殖的动物和植物的生活周期就是指从合子到个体成熟和死亡所经历的一系列发育阶段。

22具有成形的细胞核的细胞成为真核细胞。

23细胞分裂时,纺锤丝附着在着丝粒区域,这就是着丝点。

24细胞分裂中不出现纺锤丝,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,形成两个子细胞的分裂方式为无丝分裂。

25同源染色体相互配对的现象称为联会。

26具有和该物种配子染色体数相同的细胞或个体称为单倍体。

27具有两套染色体组的细胞或个体称为二倍体。

28染色体复制后仍由同一着丝粒连在一起的两条子染色体称为染色单体。

29雌雄配子不经过正常的受精而产生单倍体的一种生殖方式为单性生殖。

30减数的二次分裂与有丝分裂相似,但其间期很短。

31有丝分裂和减数分裂的意义见书上。P18和P21。

减数第一次分裂:

细线期(~)偶线期(联会形成二价体)粗线期(二价体变粗成为四合体)双线期(出现交叉)终变期(端化现象)

末期I(染色体松散变细,形成两个核,细胞质也分为两部分,形成两个子细胞,称为二分体)

末期II(形成四个子细胞称为四分体)

第三章

1基因功能:1遗传功能(复制);2表型功能(表达);3进化功能(变异)。

2DNA作为遗传物质的直接证据:1细菌的转化;2噬菌体的侵染和繁殖;3烟草花叶病毒的感染和繁殖。详见P32P33

3核酸包括五碳糖、磷酸和含氮碱基。

4DNA双螺旋结构特点:1两条核苷酸链螺旋;2反向平行;3内侧含碱基;4螺长3,4nm含10个碱基,直径2nm;5有大沟小沟。

5DNA分A,B,Z型

6染色质的基本结构:核小体(核心是由H2A、H2B、H3、H4各两分子组成的八聚体),连接丝和一分子组蛋白H1。

7染色很深的区段为异染色质区,浅的为常染色体区段。

8核小体~~螺线管~~骨架

9端体的功能:1防止染色体末端被DNA酶酶切;2防止染色体末端与其他DNA 分子结合;3使染色体末端在DNA复制过程中;保持完整。

10DNA进行复制时,双螺旋的一段拆开为两条单链,各自作为模板,从细胞核内吸取与自己碱基互补的游离核苷酸,进行氢键的结合,在复杂的酶系统的作用下,逐渐连接起来,各自形成一条新的互补链,与原来的模板单链互相盘旋在一起,两条分开单链回复DNA双分子结构。由于通过复制形成的新的DNA分子中保留了原来亲本DNA双链分子的一条单链,所以称为半保留复制。

11三种DNA酶共性:1都只有5’-3’聚合酶的功能,没有3’-5’聚合酶的功能;2没有直接开始合成DNA的能力,需要引物;3都具有核酸外切酶的功能。详见P45

12在后随链上合成的DNA不连续的小片段称为冈崎片段。DNA 具体合成步骤P46左右

13 DNA 合成差异

真核原核

S期整个生长过程

多起点单起点

需引物不需

两种DNA聚合酶分别控制前导有DNA聚合酶III

链与后随链的合成同时控制两链合成

存在端体的复制环状(不需)

14未经过加工的前体mRNA在分子大小上差异很大,称为不均一核RNA。

15碱基共性:1 5’端末具G或C;2 3’端末以ACC终结;3含一个鸟嘌呤环;4有一个反密码子环;5有一个胸腺嘧啶环。

16真核生物转录后加工过程中RNA剪接体主要成分是小核RNA。

17RNA转录包括:RNA链的起始;RNA链的延长;RNA链的终止和新链的释放。

18真核生物RNA转录特点:1细胞核内进行;2mRNA分子一般只编码一个基因;3RNA聚合酶较多;4RNA聚合酶不能独立

转录。

19基因中编码蛋白质合成的序列称为外显子,非编码序列为内显子。

20一个氨基酸有一个以上的三联体密码所决定的现象称为简并。

21色氨酸,甲硫氨酸(起始信号)只有一个三联密码UAA UAG UGA 不编码氨基酸是蛋白质合成的终止信号

22遗传密码特点:1遗传密码为三联体;2遗传密码间不能重复利用;3遗传密码间屋逗号;4存在简并现象;5遗产密码具有序性6;含起始密码子与终止密码子;7具通用性

23蛋白质合成包括:链的起始,链的延伸和链的终止。P60

24一条吗RNA分子可以同时结合多个核糖体,形成一串核糖体,称为多聚核糖体。

中心法则新增:RNA 的反转录,RNA的自我复制和DNA指导蛋白质的合成。

第四章

1生物体所表现的形态特征和生理特性的总称为性状。

2每一个被分开的具体性状称为单位性状。

3同一单位性状在不同个体间所表现出来的差异称为相对性状。4分离现象的解释:1遗传性状有遗传因子决定;2遗传因子成对存在;3形成配子时,遗传因子均等分配;4配子结合是随机的。

5侧交:指被测验的个体与隐性纯合个体之间的杂交。所得后代用ft表示。

6等位基因发生分离是在细胞进行减数分裂形成配子时发生的。

7分离比例实现的条件:1研究生物为二倍体;2F1形成配子数目相等或接近相等,且其存活能力一样,受精时雌雄配子以均等的机会相互结合;3不同基因型的合子以及由合子发育的个体具有大致相同的存活力;4性状差异明显,且是完全显性;5杂交后代处于相同条件下,且试验分析的群体较大。

8分离规律表明,杂交种通过自交产生性状分离,同时导致基因纯合。

9独立分配基本要点:控制不同性状的等位基因在配子形成过程中,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立分配到配子中去。

10位于同一对同源染色体相同位置上控制某一性状不同表现的基因。

11非等位基因包含两点:同一对同源染色体上不同位点的基因;以及非同源染色体之间的基因。

12有n 对等位基因,则其表现型为2的n次种,与配子种数相同,基因型为3的n次种

13[ n!/r!(n-r)!]p(r)q(n-r),为某事件出现r次的概率。P79

14x2测验:x2=sigma[(O-E)2 /E](O为测试值,E为理论值)

自由度df=k-1(k为子代分离类型数目)

P>=0.05,说明差异不明显,反之差异显著,P<=0.01,说明差异极显著。

15杂种F1所表现的性状完全和亲本一样,这种显性称为完全显性。

16杂种性状表现是双亲的中间型,这成为不完全显性。

17如果双亲的性状同时表现在F1个体上,这种显性表现称为共显性或并显性。18双亲的性状在后代的同一个人的不同部位表现出来,形成镶嵌图式,这种显性称为镶嵌显性。

19共显性与镶嵌显性的区别是表现范围前者广。

20同源染色体上的相同位点存在3个或3个以上的等位基因,这种等位基因称为复等位基因。

21P84 人类血型A,B AB,O型。由3个复等位基因决定。

22只有一对基因是显性,或两队基因都是隐性时,则表现为另一种性状,这种基因互作类型为互补作用。(9:7)。

23两种显性基因同时存在时产生一种性状,单独存在时能分别表现相似的性状,两种显性基因均不存在时又表现为第三种性状,这种互作称为积加作用。(9:6:1)

24不同基因互作时,对表现型产生相同的影响,F2产生15:1的比例,这种互作称为重叠作用。

25两对独立遗传基因共同对一对性状发生作用,而且其中一对基因对另一对基因的表现有遮盖作用,这种情形称为上位性。

显性上位(12:3:1)隐性上位(9:3:4)

26两对独立基因中,一对显性基因,本身并不具备控制性状的表现,但对另一

对基因的表现有抑制作用,称为抑制基因。(13:3)

27上位基因与抑制基因的区别在于上位基因本身控制性状的表现。28基因互作分基因内互作和基因间互作(表现为上下位性)。

29许多基因影响同一性状的表现称为多因一效。

30一个基因影响多种性状的发育称为一因多效。

1甲乙两个显性性状联系在一起遗传,与甲乙两个隐性醒转联系在一起遗传的杂交组合称为相引组或相引相。

2连锁遗传就是指在同一同源染色体上非等位基因连在一起遗传的现象。

3同一同源染色体之间两个非等位基因之间不发生非姐妹染色单体之间的交换,这两个非等位基因总是联系在一起而遗传的现象,叫完全连锁。

4所谓不完全连锁,是指同一同源染色体之间两个非等位基因之间或多或少发生非姐妹染色单体之间的交换,测交后代大部分为亲本型,少部分为重组型的现象。5连锁基因发生交换的孢母细胞的百分数为重组配子百分数的两倍。

6所谓交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率。

7交换值=重组型配子/总配子数

8有交换值表现的两个基因在同一染色体上的相对距离称为遗传距离。

9两点测验:每通过一次杂交和一次测交,确定两对基因的位置。

10通过一次杂交和一次测交,同时确定三对基因在染色体上的位置。优点:1纠正两点测验的缺点;2一次性定位。

11同时发生两次交换称为双交换。

12符合系数=实际双交换值/理论双交换值

13将同一染色体上的各个基因位置确定下来绘制成图就是连锁遗传图。

14存在于同一染色体上的基因群称为连锁群。

15确定0点后累加表示遗传距离。

16直接与性别决定有关的一个或一对染色体称为性染色体。

17性别决定方式:雄杂合型(XY),雌杂合型(ZW)

18 1性别同其他性状一样,受遗传物质控制,同时收环境影响;2环境引起的性别转变是以性别有两性发育的自然性为前提的;3遗传物质在性决定中作用多种多样(1染色体组成;2性厂染色体的平衡关系;3染色体的倍数等)

19性连锁是指性染色体上的基因所控制的某些性状总是伴随着性别二遗传的现象,又称伴性遗传。

20限性遗传指Y染色体(XY)或W染色体(ZW)上的基因所控制的遗传性状只局限于雄性或雌性上的表现的现象。

21从性遗传指不含于性染色体上基因所控制的性状,因内分泌和其他因素的影响使某些性状只出现于雌方或雄方的现象。

第六章

1缺失:指染色体的某一区段丢失了,分顶端缺失和中间缺失。

2双着丝粒染色体:某染色体没有愈合的断头与另一个有着丝粒的断头重接形成。

3某个体的体细胞内同时含有正常染色体及其缺失染色体称为缺失杂合体,若其缺失染色体是成对的,则为缺失纯合体。

4重复指染色体多了自己的某一片段,分顺接重复和反接重复。

5缺失和重组都会形成环或瘤,缺失的具体鉴定需参照染色体的正常长度,染色粒和染色节的正常分布,着丝粒的正常位置;注意重组形成的环与缺失形成的环相区别,重复区段短可能不形成环。

6倒为指染色体的某一区段的正常的直线顺序颠倒了,分臂内倒位和臂间倒位,会形成倒位圈,但不同于缺失和重组形成的环或瘤。

7易位:指染色体的某一区段移接在非同源的另一个染色体上。分相互易位和转移,一相互易位为主。

8易位形成的十字架形在终变期因交叉端化形成四体环,到中期一环也可能形成8字形。

9缺失的遗传效应:一般有害,可能会产生假显性现象,染色体缺失的花粉败育,缺失染色体靠雌配子而遗传,毛脚综合征缺失第五染色体,却4,13,18染色体会造成生理和智力上的缺陷。

10重复的缺失效应:如果在细胞或个体中既有重复又有缺失,总的基因组是平衡

的话,除染色体重排引起的效应外,个体表型是正常的。但就整个的基因组而言若总量因重复而增加,那么某些基因及其产物的剂量也随之增加,如果这些基因或产物是重要的活必然会引起表型异常。医学教.育网搜集整理如一些不平衡易位的患儿,由于染色体的重复常引起智力低下或表型畸型。

11倒位的遗传效应:最明显的就是导致倒位杂合体的部分不育。P121

12易位的遗传效应:可产生两个新的连锁群;造成染色体融合而导致染色体数的变异;邻近染色体交互分向两极才在子细胞中形成完整染色体,非同源染色体上基因的自由组合受到严重抑制,出现假连锁现象等。

13染色体结构变异的应用P124

14非整倍体:比正常合子2n多或少一个以至若干个染色体的个体。P137

第七章

1质粒:细菌体内含有的一种染色体外小型环状DNA

2附加体:有些质粒能整合到细菌染色体中,在染色体的控制下随染色体一起复制,这类质粒称为附加体

3涂布和繁殖:每个细胞在较短时间内(如一夜)能裂殖到107个子细胞 成为肉眼可见的菌落或克隆(Clon?)あ

4营养缺陷型:丧失合成柘种蘥养物质能力,不能在基本培养基上畟长;原养型8野生菌株则可圬基本培养基上生闿。

5抗性突凘型:如抗药性?抗椏染性《例如:青霉素 ?enr)抗性突变的菌落。6影印培养,易检出营养缺陷型突变,有利于从?卖角度来研穖基因的作用。耍7转匞:?某些细菌能通迗其细胞膜摄厖周围供体的染色体片段,将此外源DNA 片段通过重组加入自己曒色俓组的过程。

8接合:是指原核甿物的遗传物质从供体(donor)转移到受体 receptor)熅的过程。特点:需通过细胞的直接接触。

9性导:指接呈时由F'因子所携带皌?源LNA整合到细菌

染?体的过程 10轌导:指以噬菌体为媒介进行的细菌遗传物质駍组 是细菌遗传物质伤递和交换方式之一

10轌导:指以噬菌体为媒介进行的细菌遗传物质駍组 是细菌遗传物质伤递和交换方式之一

11噬臌体的基因重组:1通过双重感染2 两种噬菌体进行杂交3重组的噬菌斑4两基因之间的遗传距离。

12烈性噬菌体:胝破坏密主细胞原有的鉗传物质 组

装成许多子噬?体 使细菌裂解 释放出子噬菌体

13温?性噬菌体:①&核酸不大量复制、转录和翻译,具朋溶源性的生活周期;

②.λ噬菌体能通过交换而整合到细菌枓鉲体上;

③.P1噬菌体则独立存在于细菌的细胞质内;④.通过诱导(如紫外线)可转变为烈性噬菌体。

14影印平板培养法,是一种能达到在一系列培养皿的相同位置上出现相同遗传型菌落的接种培养方法。

第八章

1重叠基因:指同一段DNA序列的编码顺序,由于阅读框架的不同或终止早晚的不同,同时编码两个或两个以上多肽链的基因。

2顺势调控:调控蛋白没有发生突变,启动子发生突变,调控蛋白不能识别启动子,是基因不能表达。

3反式调控:调控蛋白发生突变,启动子没有发生突变,调控蛋白不能与启动子相识别,导致基因不能表达。

4凡是调控的影响范围大于顺势调控。

5诱导物:使基因进入转录状态的各种因子的总称。

6强化子:DNA上一小段可与蛋白质(反式作用因子;trans-acting factor)结合的区域,与蛋白质结合之后,基因丛集的转录作用将会加强。是真核生物基因转录中另一种顺式调控元件

7弱化子:位于基因内部的不依赖于ρ的转录终止子,可以使转录提前终止而发挥抑制基因表达作用。

8增强子:1增强基因启动子工作效率的顺式作用序列,能够在相对于启动子的任何方向和任何位置(上游或下游)上都发挥作用。2存在于基因组中的对基因表达有调控作用的DNA调控元件。位置不定,结合转录因子后,可增强基因表达。9反式作用因子:是一种蛋白质,可结合同一条染色体上的调控元件,还可以调节不同染色体的调控元件

10顺式作用元件:DNA上一段特殊序列,可被蛋白质识别并结合,只调节同一条染色体上或同一段DNA上基因的表达,不调控其他染色体上的基因。

11真核生物基因表达分DNA水平,转录水平(转录后修饰),翻译水平和翻译后水平。

12DNA水平包括1DNA的改变,2DNA重排,3DNA甲基化(指胞嘧啶第五碳上的氢被一个甲基取代)

13转录水平包括:1启动子与转录基因的结合2增强子与转录激活子结合3选择性启动子4mRNA降解5激素调节

14翻译水平:1mRNA加尾2阻遏蛋白与特异RNA结合使反应受阻

15翻译后水平:1蛋白质折叠2蛋白酶切割3蛋白质的化学修饰4蛋白质内含子16通用转录因子:RNA聚合酶介导基因转录时所必需的一类辅助蛋白质,帮助聚合酶与启动子结合并起始转录。与作用于特定基因的调节蛋白不同,对所有基因都是必需的

17辅阻遏物:能够结合或者激活转录阻遏物,从而阻碍基因的转录和抑制蛋白质合成的物质。

18乳糖操纵元组成部分:编码阻遏蛋白的基因I 启动子P 操纵子O 前导序列L 结构基因Z Y A

19 乳糖操纵元负调控:1在没有乳糖时,l阻遏物与操纵子结合,RNA聚合酶与启动子结合,但不转录,基因不表达。2在有乳糖时,阻遏物与乳糖结合后,不能在和操纵子结合,RNA结合到启动子开始转录,基因表达。3两组突变型(使结构基因不受诱导物控制):1阻遏基因I发生突变成I-,形成的阻遏物无法与操纵子结合,基因表达;2操纵子O突变成O c , 阻遏物无法与操纵子结合,基因表达。

20乳糖操纵元正调控:1在物葡糖糖时,cAmp含量增加,同CAP形成cAmp-CAP 激活蛋白复合体,与启动子区域P的CAP位点a结合,激活转录开始,形成乳糖代谢酶,RNA聚合酶结合位点b。2有葡糖糖时,,cAmp含量降低,不能形成cAmp-CAP激活蛋白复合体,不能开始转录。

21既有乳糖与阻遏蛋白的结合,又有cAmp-CAP结合在启动子DNA序列时,lac 启动子转录效率最高。

22色氨酸是操纵元是合成代谢途径中基因调控:当有色氨酸时,色氨酸操纵元五种酶的转录同时受到抑制,在色氨酸不足时,色氨酸作为阻遏物参与调控色氨酸mRNA转录,是转录进行。

23色氨酸操纵元控制的五种酶由trpE trpD trpC trpB trpA来编码,trpE上游是启动子,操纵子,前导序列和弱化子,trpR基因编码的一种无辅基阻遏物只有形成无辅基阻遏物-色氨酸复合物才能成为有活性的色氨酸阻遏物,与操纵子结合。24当有色氨酸时,前导链仍可转录,说明有活性的阻遏物与操纵子的结合不足以抑制转录的开始,在色氨酸浓度较高时,转录的前导中的弱化区域在转录后可形成发夹结构,终止转录。

25细菌细胞中的转录和翻译是偶联的,短肽链第10和11是两个连续的色氨酸密码子,其后的一段特殊的mRNA序列可分为4个区段,当有色氨酸时,转录终止在1区段与2区段之间,使2,3不能形成二级结构,3,4形成发夹结构,终止转录,当缺乏色氨酸时,没有色氨酸氨基酰tRNA供应,反应终止在这,及区段一,这样2,3配对,4为单链,转录继续进行。

第九章

1基因工程:狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传

遗传学考试题库大全

遗传学考试题库大全 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

《遗传学》试题库 适用于本科专业生物科学或生物技术等方向 一、《遗传学》各章及分值比例:(X%) (一) 绪论(3-5%) (二) 遗传的细胞学基础(5-8%) (三) 孟德尔遗传(12-15%) (四) 连锁遗传和性连锁(15-18%) (五) 数量性状的遗传(10-13%) (六) 染色体变异(8-10%) (七) 病毒和细菌的遗传(5-7%) (八) 遗传物质的分子基础(3-5%) (九) 基因突变(8-10%) (十) 细胞质遗传(5-7%) (十一) 群体遗传与进化(10-13%) 二、试题类型及分值:(X分/每题): 1.名词解释(3-4) 2.选择题或填空题 3.判断题 4.问答题(5-7) 5.综合分析或计算题(8-10) 三、各章试题和参考答案: 注:试题库中有下划线的试题还不完善,在组建考试题时建议不考虑采 用。 李均祥陈瑞娇选编 2010年11月8日 第一章绪论(教材1章,3-5%)

(一) 名词解释: 1.遗传学:研究生物遗传和变异的科学。 2.遗传与变异:遗传是亲子代个体间存在相似性。变异是亲子代个体之间存在差异。 (二)选择题或填空题: A.单项选择题: 年(2)规律的重新发现标志着遗传学的诞生。 (1)达尔文(2)孟德尔(3)拉马克(4)魏斯曼 2.通常认为遗传学诞生于(3)年。 (1) 1859 (2) 1865 (3)1900(4) 1910 3.公认遗传学的奠基人是(3): (1)J·Lamarck (2)T·H·Morgan (3)G·J·Mendel (4)C·R·Darwin 4.公认细胞遗传学的奠基人是(2): (1)J·Lamarck(2)T·H·Morgan(3)G·J·Mendel (4)C·R·Darwin B. 填空题: 1. Mendel提出遗传学最基本的两大定律是_____和_______(分离、自由组合); 2. Morgan提出遗传学第三定律是____与____(连锁、交换定律); 3.遗传学研究的对象是____、_____、______和________(微生物、植物、动物和人类); 4.生物进化和新品种形成的三大因素是___、_____和______(变异、遗传、和选择) (三) 判断题: 1.后天获得的性状可以遗传(x); 2.具有变异、可以遗传、通过自然选择将形成物种(L); 3. 创造变异、发现可以遗传变异、通过人工选择将育成品种、品系(L); 4.种质决定体质,就是遗传物质和性状的关系(L)。 (四)问答题: 1.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素 答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因

医学遗传学复习材料重要材料必考

临床药学医学遗传学复习提纲 1、多基因家族、假基因、同义突变、错义突变、无义突变、移码突变、动态突变、核型。 多基因家族:指由某一共同祖先基因经过重复和变异所产生的一组基因。 假基因:具有与功能基因相似的序列,但由于有许多突变以致失去了原有的功能,所以假基因是不能编码蛋 白。 同义突变:因于编码氨基酸的密码子所具有的兼并性,碱基替换后组成的密码子仍是编码同一氨基酸的密 码子,成为同义突变。 错义突变:是编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子。 无义突变:是指由于某个碱基的改变使代表某种氨基酸的密码子突变为终止密码子UAA,UGA,UAG中的一种, 从而使肽链合成提前终止,肽链缩短,成为没有 活性的多肽链片段。 移码突变:在DNA分子的碱基组成中插入或者缺失一个或者几个碱基对,使在插入或者缺失点以下的DNA 编码全部发生改变,这种基因突变成为移码突 变。

动态突变:组成DNA分子中的核苷酸序列拷贝数发生不同倍数的扩增。 核型:指一个体细胞全部染色体所构成的图像。 2、DNA修复系统的种类。 光修复,切除修复,复制后修复。 3、染色体和染色质的相同点(化学组成)、不同点(不同存在形式)。 相同点(化学组成):DNA,组蛋白,非组蛋白,RNA。 不同点(不同存在形式):同一物质不同时期的不同存在形式。 4、常染色质和异染色质的相同点、不同点。 相同点:都是遗传物质,染色质,化学组成都是DNA,组蛋白,非组蛋白,RNA; 不同点:①常染色质染色较浅且着色均匀,异染色质染色深。 ②常染色质多分布于核中央,异染色质多分布于核周缘,紧靠核内膜。 ③常染色质呈高度分散状态,异染色质螺旋化程度高。

刘祖洞遗传学习题答案13

第七章细菌和噬菌体的重组和连锁 1.为什么说细菌和病毒是遗传学研究的好材料? 2.大肠杆菌的遗传物质的传递方式与具有典型减数分裂过程的生物有什么不同? 3.解释下列名词: (1)F-菌株,F+菌株,Hfr菌株; (2)F因子,F,因子,质粒,附加体; (3)溶源性细菌,非溶源性细菌; (4)烈性噬菌体,温和噬菌体,原噬菌体; (5)部分合子(部分二倍体); 4.部分合子在细菌的遗传分析中有什么用处? 5.什么叫转导、普遍性转导、特异性转导(局限性转导)? 6.转导和性转导有何不同? 7.一个基因型为a+b+c+d+e+并对链霉素敏感的E.coliHfr菌株与基因型为a-b-c-d-e-并对链霉素耐性的F-菌株接合,30分钟后,用链霉素处理,然后从成活的受体中选出e+型的原养型,发现它们的其它野生型(+)基因频率如下:a+70%,b+-,c+85%,d+10%。问a,b,c,d 四个基因与供体染色体起点(最先进入F-受体之点)相对位置如何? 解:根据中断杂交原理,就一对接合个体而言,某基因自供体进入受体的时间,决定于该基因同原点的距离。因此,就整个接合群体而论,在特定时间内,重组个体的频率反映着相应基因与原点的距离。 报据题目给定的数据,a、b、c、d与供体染色体的距离应该是: 8.为了能在接合后检出重组子,必须要有一个可供选择用的供体标记基因,这样可以认出重组子。另一方面,在选择重组子的时候,为了不选择供体细胞本身,必须防止供体菌株的继续存在,换句话说,供体菌株也应带有一个特殊的标记,能使它自己不被选择。例如供体菌株是链霉素敏感的,这样当结合体(conjugants)在含有链霉素的培养基上生长时,供体菌株就被杀死了。现在要问:如果一个Hfr菌株是链霉素敏感的,你认为这个基因应位于染色体的那一端为好,是在起始端还是在末端? 解:在起始端 9.有一个环境条件能使T偶数噬菌体(T-even phages)吸附到寄主细胞上,这个环境条件就是色氨酸的存在。这种噬菌体称为色氨酸需要型(C)。然而某些噬菌体突变成色氨酸非依

遗传学简答题答案(学习资料)

20.1线粒体基因组有什么特点? 答:基因组是双链、环状的DNA分子,由于缺乏组蛋白,故不形成核小体。基因组中有一个D环,与DNA复制有关。基因组分为H链和L链,有各自的复制起始点。基因间没有间隔。 20.2人类mtDNA组成的特点是什么? 答:人类线粒体基因中,小的(12S)和大的(16S)rRNAs紧密地连接在一起,在间隔中有一个tRNA基因。人类线粒体DNA组成了一个紧密结构,蛋白编码基因和rRNA基因连接,其间很少或无间隔存在。线粒体DNA对于大部分mRNA都没有编码链终止的密码,取而代之的是在转录本的末端带有U或UA。 20.4叶绿体基因组的结构特点是什么? 答:叶绿体基因组在很多方面和线粒体基因组的结构相似。也是双链环状,缺乏组蛋白和超螺旋。长度约40-45微米,大小一般在121-155kb之间。 20.6核外遗传有何特点? 答:(1)正反交得结果不同,一般表现为单亲遗传,多为母系遗传;(2)不出现典型的孟德尔式分离比;(3)母本的表型决定了所有F1代的表型;(4)遗传物质在细胞器上,不受核移植的影响;(5)不能进行遗传作图 20.7紫茉莉叶的白斑遗传有何特点?发生机制是什么? 答:特点是其后代的表型完全取决于结种子的枝条,正反交的结果不同。发生机制是白斑的表型是由于叶绿体DNA突变,无法合成叶绿素。由于突变基因在核外基因组上,因此受核外遗传控制,属于典型的核外遗传。 20.8核基因组通用密码子和哺乳动物及真菌线粒体的遗传密码有什么不同? 答:在线粒体中AUA成为Met的密码子,而不是核基因的Ile密码子,只不过在哺乳动物中AUA还是起始密码子,而真菌中AUA只是延伸密码子;在哺乳动物和真菌的线粒体中UGA是Trp密码子,而不是核基因的终止密码子;AGA,AGG在哺乳动物线粒体中成为终止子,而不是核基因中的Arg密码子。在真菌线粒体中,CCA是Thr密码子,而不是核基因中的Leu密码子;CUG是Ser密码子,而不是核基因中的Leu密码子;UAG是Ser密码子,而不是核基因中的终止子。 20.11比较一下叶绿体和线粒体中rRNA基因的组成。 答:叶绿体DNA上有编码23S、16S、5S、4.5S rRNA基因。线粒体只有编码12S和16SrRNA 的基因。 20.12母体影响和核外遗传有何不同? 答:母体影响仍然符合孟德尔定律,只不过分离比推迟了一代表现出来,而且母体影响的基因仍然在核基因组中;而核外遗传不符合孟德尔式遗传,无固定分离比,基因在核外基因组中。 20.13如何用实验区分母体影响、伴性遗传和核外遗传? 答:无固定答案,只要实验可行,可以区分即可。 20.14酵母有几种小菌落?它们之间的区别是什么? 答:可以分为核基因突变型小菌落,中性型小菌落和抑制型小菌落。核基因突变型小菌落是由于核基因中编码某些线粒体蛋白的亚基发生突变,这种小菌落与野生型杂交产生的二倍体是大菌落,该二倍体细胞经减数分裂产生的四分体中2个是大菌落,2个是小菌落。中性型小菌落线粒体DNA基本上全部丢失,即没有线粒体功能,一旦与有正常线粒体的野生型酵母杂交,这种突变就不会出现。抑制型小菌落也不能合成线粒体蛋白,但是它与野生型杂交后,后代的呼吸功能介于野生型和小菌落之间,而二倍体减数分裂产生的四分体全为小菌落。

遗传学期末复习题

遗传学复习题 一、名词解释 1、前导链与后随链:DNA复制的两条新链中,有一条链是沿5′→ 3′方向连续合成的,合成的速度相对较快,故称为前导链;另一条则是沿5′→ 3′方向先合成一些比较短的片段,然后再由连接酶将它们连接起来,其合成是不连续的,合成的速度相对较慢,故称为后随链。 2、转录的模板链:DNA转录中作为转录模板的DNA一条链称为模板链,另外一条则称为非模板链。 3、密码子与反密码子:mRNA上的每3个相邻碱基组成一个密码子,也称为三联体密码,一个密码子决定一种氨基酸。翻译过程中负责转运氨基酸的tRNA 的分子结构中具有三个与密码子相配对的碱基组成的反密码子。 4、简并:一种氨基酸可由一个以上密码子决定的现象称为简并。 5、基因家族:真核生物的有些来源相同、DNA序列相似、所编码的蛋白质具有互相关联的功能的基因,这样的一组基因称为“基因家族”。 6、重叠基因:有的噬菌体存在不同基因共用一部分DNA序列的现象,具有这种共用序列的基因称为重叠基因。 7、单交换与双交换:两对基因之间距离较小,这个区段只能发生一个交换,即为单交换。当基因间距离比较大时,同一个性母细胞可能在这个区段发生两个交换,即称为发生双交换。 8、干扰与符合系数:一个单交换的发生影响了另一个单交换的发生,这种现象称为干扰。干扰程度的大小通常用符合系数或并发系数表示。 9、超亲遗传:是指在数量性状的遗传中,F2及以后的分离世代群体中,出现超越双亲性状的新表型值的现象。

10、狭义遗传率:是加性方差在表现型方差中的百分数。 11、亲缘系数:两个个体都带有同一祖先某一特定等位基因的概率。 12、纯系:纯系是指一个群体中只存在一种基因型,并且这种基因型是纯合的。自花授粉的一个植株的自交后代可得到纯系。 13、细胞质遗传:真核细胞中的线粒体、叶绿体中也存在DNA,它所组成的基因也能决定生物某些性状的表现和遗传。这类遗传现象,称为细胞质遗传。 14、细胞质基因组:分布于细胞质的全部DNA序列。 15、表观遗传变异:是指DNA序列不发生变化但基因表达却发生了可遗传的变化,最终导致表型的改变,即基因型未发生变化而表型发生了可遗传的变化。 16、质核互作雄性不育:由细胞质基因和核基因相互作用控制的雄性不育类型,简称质核型雄性不育,又称为胞质不育型。 17、孢子体不育:雄性不育的花粉育性受母体的基因型(孢子体基因型)控制,与花粉(配子体)本身的基因无关。花粉败育发生在孢子体阶段。 18、配子体不育:是指花粉育性直接由雄配子体(花粉)本身的基因决定,花粉败育发生在雄配子阶段。 19、基因频率:一个群体里,A基因在A、a基因总数中的比率,称为A的基因频率。一个群体里,a基因在A、a基因总数中的比率,称为a的基因频率。 20、基因型频率:就是指具有特定基因型的个体数,占群体全部基因型个体总数的比率,也是特定基因型在群体中出现的概率。 21、随机交配:是指在一个有性繁殖的生物群体中,任何一个雌性或雄性个体与任何一个相反性别的个体交配的概率都相同。 22、基因突变:也称点突变,是DNA分子结构上微小的改变,它是由于碱

遗传学简答题

四、简答题答案 1、有丝分裂的等数分裂和减数分裂在遗传学上各有什么意义?? 1、答:等数分裂使得生物体各个部分具有相同等数量和质量的染色体,而具有相同的遗传物质基础,从而使得每一个物种在个体发育中保持遗传的稳定性。植物细胞的全能型,植物进行无性繁殖能保持与母体相同的遗传性状,原因都在此。而减数分裂产生的雌雄配子都是单倍性的,雌雄配子结合后恢复双倍性,从而使各物种保持了世代间遗传的相对稳定,同时,减数分裂是遗传三大规律的细胞学基础。 2、具有一对相对性状差异的个体杂交,后代产生3:1的条件是什么? 2、答:具有一对相对性状差异的个体杂交,后代产生3:1的条件是:双亲都必须是同质结合的双倍体;所研究的相对性状是受一对等位基因控制的;等位基因之间具有完全的显隐性关系,而且不受其他基因的影响;F1产生的配子都发育很好,并可严格控制花粉来源;F2的个体都处于相似的环境下,所调查统计的F2群体较大。 3、分离规律在育种上有什么意义? 3、答:分离规律在育种上有以下重要意义:必须严格选用纯合体作为试验材料或杂交亲本,否则F1就发生分离,F2及以后各代的分离杂乱无章,无规律可循,无法正确分析试验资料;在育种过程中通过自交进行基因型分析,避免被一些表面现象所迷惑,从而提高选择的正确性,提高育种成效;配制杂交种时,为提高杂种优势,必须选用高度纯合的亲本,同时生产上只用杂交一代进行生产;良种繁育时,必须注意防杂得纯。 4、独立分配规律的实质何在? 4、答:减数分裂时,等位基因随着同源染色体的分开而分离,异位基因随着非同源染色体的自由组合而随机分配,这就是独立分配规律的实质。 5、番茄的红果对黄果为显性,二室对多室为显性,今有一株红果多室的番茄,怎样分析其基因型? 5、答:可用自交法或测交法来分析那株红果多室番茄的基因型。如用测交法,红果多室ⅹ黄果多室,①假如后代全是红果多室,则被测验的红果多室的基因型是YYmm,②假如后代有一半红果多室和一半黄果多室,则被测验的红果多室的基因型是Yymm. 6、为什么说独立分配规律是杂交育种的重要理论基础6、答:因为①独立分配律揭示了异位基因之间的重新组合是生物发生变异的主要来源之一,生物有了丰富的变异类型,就可以广泛适应各种不同的自然条件,有利于生物的进化;②由独立分配定律可知,用于杂交育种的双亲必是纯合体,并能互补,同时可知目标个体在后代的概率,借以确定育种规模,第三可知杂交二代是杂交育种选择的关键世代;③杂种优势利用时,独立分配规律告诉我们:杂种的双亲必须是纯合体;④良种繁育时,它告诉我们必须防杂保纯。因之种种原因,故说独立分配规律是杂交育种的重要理论基础。 7、连锁交换规律在育种上有何意义? 7、答:连锁交换规律在育种上有以下应用:①它描述了同源染色体上异位基因的交换是生物变异的主要来源之一,为杂交育种中的选择提供了丰富的材料;②它告诉我们:用于杂交育种的双亲必须是纯合体并能互补,同时目标个体在后代群体中出现的概率也可由交换值推算出来,借以确定育种规模;③它告诉我们,可以通过鉴定一个易于鉴定的性状来选择一个与之连锁但不易鉴定的优良性状。 8、遗传的三大规律有什么区别和联系? 8、答:遗传三大规律的区别和联系如下: ①三规律都以减数分裂为基础;②一对等位基因的遗传符合分离规律,且是后面两类遗传规律的基础;③处于不同对染色体上的异位基因的遗传符合自由组合规律;④处于同对染色体

遗传学试题

《普通遗传学》课程考试试卷(A卷) 一、名词解释(每小题2分,共20分) 1.杂种优势 2.核小体 3.完全显性 4.复等位基因 5.变异 6.遗传图谱 7.隐性上位作用 8.相互易位 9.整倍体 10.转导 简答题(每小题6分,共24分) 1.简述孟德尔遗传规律实现的条件 2.简述减数分裂的过程(图示)和意义 3.设计一试验方案证明控制果蝇某一性状的基因在性染色体上,而不在常染色体上。(注:试验方案一定要写出遗传分析过程) 4.小麦抽穗期的狭义遗传率h2=64%, 两亲本的平均表型方差为10.68,F2表型方差为40.35。求:环境方差(Ve ),加性效应(V A),显性效应(VD ),广义遗传率H2 综合题(1题10分,2题6分,共16分) 1、设某植物的三个基因t、h、f依次位于同一染色体上,已知t-h相距12个单位,h-f相距16个单位,现有如下杂交:+++/thf × thf/thf。 问:(1)符合系数为1时,列出后代基因型的种类和比例? (2)符合系数为0时,列出后代基因型的种类和比例? 2.用遗传学所知识,设计无籽西瓜品种培育的方案 《普通遗传学》课程考试试卷(B卷) 名词解释(每小题2分,共20分) 1.相对性状 2.联会复合体 3.共显性 4.非等位基因 5.孟德尔群体 6.基因 7.一因多效 8.简单易位 9.同源染色体 10.转化 简答题(每小题6分,共24分) 1.分别简述有丝分裂和减数分裂的遗传意义 2.设计一试验方案证明控制植物某一性状基因与细胞质基因有关。(注:试验方案一定要写出遗传分析过程) 3.水稻抗稻瘟病基因(Pi-zt)是显性,晚熟基因(Lm)是显性,且两性状连锁遗传,交

遗传学进展概述(选修课论文)

遗传学进展概述 作者:戴宝生 克隆水稻分蘖的主控基因MOC1 据国家自然科学基金委员会2003年5月23日报道,最近,我国科学家成功分离和克隆了水稻分蘖的主控基因MOC1,该成果是由中国科学院遗传与发育研究所李家洋院士及其合作者在国内独立完成的。该研究结果已发表在Nature,2003,422:618上,这是我国分子遗传学基础研究领域的第一篇源自国内的Nature文章,标志着我国植物功能基因研究取得了重大突破。 分蘖是水稻等禾本科作物在发育过程中的一个重要的分枝现象,也是一个重要的农艺性状,它直接确定作物的穗数并进而影响产量。虽然对水稻分蘖的形态学、组织学及突变体都有过很多描述,但是控制分蘖的分子机制一直没有弄清。自1996年起,在国家科技部、国家自然科学基金委员会和中国科学院的共同资助下,李家洋和中国农业科学院国家水稻研究所的钱前博士等开始进行此方面的研究。经过不懈努力,项目组鉴定了一株分蘖的极端突变体——单杆突变体MOC1。通过遗传图谱定位克隆技术,分离鉴定了在水稻分蘖调控中起重要作用的基因MOC1,它的缺失可造成分蘖的停止。进一步的功能分析表明,该基因可编码一个属于GRAS家族的转录因子,该转录因子主要在腋芽中表达,功能是促进分蘖和促进腋芽的生长。对这一重要基因的深入研究,将有望解释禾本科作物分蘖调控的分子机制,对于水稻高产品种的培育有重要的理论和应用价值 走出“基因决定论”的误区 自从基因一词在20世纪初进入科学家的词汇表以来,它不仅是生物学家最为常用的词汇之一,也成为当今普通大众最为熟悉的科学术语之一。随着遗传学和分子生物学的进步,人们不仅知道了基因的化学性质——DNA序列,而且还认识到了基因的功能——编码蛋白质的氨基酸序列。由此,逐渐形成了一种广为流行的“基因决定论”:生命的各种性质和活动都是受基因控制的,甚至人类的精神活动也在基因的控制之下。不久前,芬兰赫尔辛基大学和瑞典卡罗林斯卡医学院的研究人员在某些患有诵读困难的病人中,发现了一种名为“DYXC1”的基因发生了突变。也就是说,人类的阅读可能受到这种“DYXC1”基因的控制。不可否认,基因对生命具有非常重要的作用,基因的异常通常就会导致生命的异常。但是,作为开放的复杂系统,生命活动从来就不是由一种因素就能完全决定的。当前越来越多的证据,正在向“基因决定论”挑战。科学家正在以一种全新的视野来理解生命现象。 不再是“垃圾” 随着基因组研究的深入,人们发现,在多细胞真核生物的基因组中,基因仅是其全部DNA 序列的一小部分。在人类基因组中,全部基因序列只占基因组的2%左右。基因组内的非基因序列曾一度被研究者称为“垃圾DNA”(junk DNA)。这些“垃圾DNA”中至少有一半是

医学遗传学问答题42867

一、什么是产前诊断?产前诊断技术分为哪几类?产前诊断的指征包括哪些? 1、产前诊断又称为宫内诊断,是通过直接或间接的方法对胎儿进行疾病诊断的过程。目前能产前诊断的遗传病有:染色体病、特定的酶缺陷造成的先天代谢病、可利用基因诊断方法诊断的遗传病、多基因遗传的神经管缺陷、有明显形态改变的先天畸形。 2、在现有条件下,产前诊断技术分为四类:直接观查胎儿的表型改变、染色体检查、生化检查和基因诊断。直接观察胎儿可用胎儿镜或B型超声波扫描等,染色体检查、生化检查和基因诊断都需要通过绒毛取样和羊膜穿刺取样后再完成。 3、进行产前诊断的指征包括:夫妇任一方有染色体异常;曾生育过染色体病患儿的孕妇;夫妇任一方为单基因病患者;曾生育过单基因病患儿的孕妇;有不明原因的习惯性流产史、畸胎史、死产和新生儿死亡史的孕妇;羊水过多的孕妇;夫妇任一方曾接触过致畸因素;年龄大于35岁的孕妇;有遗传病家族史的近亲婚配夫妇。 二、系谱分析要注意哪些问题? (1)系谱的完整性和准确性,一个完整的系谱应有三代以上家庭成员的患病情况、婚姻情况及生育情况(包括有无流产史、死产史及早产史),还应注意患者或代述人是否有顾虑而提供虚假资料,如重婚、非婚子女等,造成系谱不真实; (2)遇到“隔代遗传”,要认真判断其是由于隐性遗传所致,还是由于外显不全所致; (3)当患者在家系中为一散发病例时,不可主观断定为常染色体隐性遗传病,要考虑新基因突变的情况。 三、倒位染色体的携带者为什么会出现习惯性流产的现象? 由于倒位发生时一般没有遗传物质的丢失,所以倒位携带者本身井无表型的改变,但在减数分裂同源染色体配对联会时,由于基因顺序的颠倒,这一条倒位的染色体无法与另一条正常的染色体正常配对,而形成了一个特殊的结构——倒位环。如果这时同源染色体在倒位环内发生重组,则会产生四种配子。这四种配子分别与正常异性配子结合时,就会有不同的情况产生。一种配子是完全正常的,与正常配子受精所形成的受精卵也是完全正常的;另一种配子含有一条倒位染色体,受精后发育为倒位染色体的携带者;而其余两种配子都含有染色体部分片段的缺失和重复,所以与正常配子结合后,可形成部分单体、部分三体的胚胎,这种胚胎常发生自然流产。基于以上原因,倒位染色体的携带者在生育子女时常常会发生自然流产的情况。 四、什么是脆性X染色体综合征?其主要临床表现是什么? 如果一条X染色体Xq27-Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体,则这条X染色体就被称作脆性X染色体。若女性个体的细胞中带有一条脆性X染色体,一般没有表型的改变,为携带者;若是男性个体的细胞中带有脆性x染色体,则会表现出的一系列临床改变即为脆性X综合征。脆性X综合征的主要临床表现为中重度的智力低下、语言障碍、性格孤僻、青春期后可见明显大于正常的睾丸,伴有特殊面容——长脸、方额、大耳朵、嘴大唇厚、下颁大并前突、巩膜呈淡蓝色。 五、何谓基因突变?它有哪些主要类型?基因突变会引起什么后果? 基因中的核苷酸序列或数目发生改变称基因突变。基因突变的主要类型有置换突变、移码突变、整码突变和片段突变等等。基因突变可直接引起其编码的蛋白质发生质或量的改变,进而导致表型变异:①轻微而无害的突变,可造成正常人体生物化学组成的遗传学差异。如蛋白质的多态现象; ②严重而有害的突变,可引起分子病、遗传性酶病或产生遗传易感性。 六、试述多基因的累加效应是什么? 多基因遗传病的发病在一定的环境条件下,可视为微效基因的累加作用超过阈值而致。因此,一对夫妇所生患儿的数量,患儿的病情严重程度,都反应了夫妇双方易患性水平的高低。—对生过两个患儿的夫妇和只生了一个患儿的夫妇相比,他们的易患性必然更接近阈值;同样的道理,如果一对夫妇所生患儿的病情比另一对夫妇的患儿更严重,则也说明他们的易患性更接近阀值。因此,估计发病风险时,如果一个家庭中出现两个患儿或患儿病情严重,则再次生育时复发风险也将相应地增高。 一、基因频率与基因型频率的关系是什么? 等位基因A和a,基因A的频率为p,基因a的频率为q,p+q=1。人群中三种基因型AA、Aa、aa,其频率分别为D、H、R,D+H+R=1。 p=D+1/2H q=R+1/2H 二、什么是异常血红蛋白病?有哪两种类型? 异常血红蛋白病是一类由于珠蛋白基因突变导致珠蛋白肽链结构发生异常的血红蛋白分子病。又有两种,一种是镰形细胞贫血症,一种是血红蛋白M病。 HbS杂合体(HbAHbS)个体既含正常的血红蛋白HbA (α2β2),也含镰形细胞血红蛋白HbS(α2β2S),一般无临床症状,但在严重缺氧时(例如在高海拔地区),红细胞就会部分镰变呈现镰状细胞特征。HbS纯合子(HbSHbS)个体不能合成正常的β链,血红蛋白组成只有α2β2S,表现为镰状细胞贫血症。 血红蛋白M病是由于珠蛋白链与铁原子连接和作用的有关氨基酸发生替代,形成高铁血红蛋白所致。组织供氧不足致紫绀。 三、什么是地中海贫血?有哪几种类型? 地中海贫血()简称地贫)是由于珠蛋白基因突变或缺失,造成相应的珠蛋白合成障碍,类α链和类β链合成不平衡所引起的溶血性贫血。其中,类α链合成不足引起α地贫,类β链合成不足造成β地贫。 (1)α地中海贫血:

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

分子遗传学作业

分子遗传学作业 利用分子遗传学方法举例说明一般分子生物实验遗传研究的基本操作流程 教师:张老师

利用分子遗传学方法举例说明一般分子生物实验遗传研究的基本操作流程 一,分子遗传学 分子遗传学(molecular genetics)是指在分子水平上研究基因的结构与功能,以及遗传信息传递的学科。包括DNA的复制、RNA 的复制和转录、翻译以及其调控等。主要由正向遗传与反向遗传构成。其中正向遗传是指通过生物个体或细胞的基因组的自发突变或人工诱变,寻找相关的表型或性状改变,然后从这些特定性状变化的个体或细胞中找到对应的突变基因,并揭示其功能。例如遗传病基因的克隆。反向遗传学是指人们首先是改变某个特定的基因或蛋白质,然后再去寻找有关的表型变化。例如基因剔除技术或转基因研究。简单地说,正向遗传学是从表型变化研究基因变化,反向遗传学则是从基因变化研究表型变化。 二,突变体的筛选 简单的说是指通过特定选择性培养基(抗穗发芽培养基)培养植株然后选择出抗穗发芽突变体植株,让其继续生长繁殖,收取种子的过程。 三,遗传分析 简单的说是指将上述与筛选得到的抗穗发芽植株进行农艺性状的调查(株高,小穗数调查等)然后进行数据的处理级关联分析。 四,遗传群体的构建 简单的说是选取上诉抗穗发芽材料和一个极为相反的材料也就是极端材料杂交得到F1,然后将其自交得到F2群体即分离群体,或者让其自交5-6代得到高代群体即近等基因系群体。 五,遗传图谱的构建

简单的说利用一定的杂交方法(如;早期单倍体杂交发,表形分 析法,细胞学分析法)和分子生物学分析法(如,RFLP、AFLP、RAPD、STS、SNP、EST、SSR标记方法等)将基因定位在定的特定的 染色体区段上的过程。 六,图位克隆 图位克隆(Map - based cloning) 又称定位克隆(positional cloning) 1986 年首先由剑桥大学的Alan coulson 提出,用该方法 分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基 因的DNA顺序,也无需预先知道其表达产物的有关信息,但应有以下 两方面的基本情况:一是有一个根据目的基因的有无建立起来的遗传 分离群体,如F、DH、BC、RI 等。二是开展以下几项工作:1) 首先 找到与目标基因紧密连锁的分子标记;2)用遗传作图和物理作图将目 标基因定位在染色体的特定位置;3) 构建含有大插入片段的基因组 文库(BAC库或YAC);4)以与目标基因连锁的分子标记为探针筛选基 因组文库;5) 用获得阳性克隆构建目的基因区域的跨叠群;6) 通过 染色体步行、登陆或跳跃获得含有目标基因的大片段克隆;7) 通过 亚克隆获得含有目的基因的小片段克隆;8) 通过遗传转化和功能互 补验证最终确定目标基因的碱基序列。其原理是根据功能基因在基 因组中都有相对稳定的基因座,再利用分子标记技术对目的基因进 行精确定位的基础上,用与目的基因紧密连锁的分子标记筛选DNA 文库,从而构建目的基因区域的物理图谱,再利用此物理图谱通过 染色体步移逐步逼近目的基因或通过染色体登陆的方法,最终克隆 目的基因并通过遗传转化实验可以研究目的基因的功能。 七,基因功能的分析 简单的说是借助于生物信息学的方法(如BLAST,GOFigure等)、生物学实验手段的方法(如:基因失活是功能分析的主要手段,转 座子突变库的构建,内含子的归巢突变,基因的超表达用于基因功 能的检测。反义RNA功能和人工合成构建反义RNA等。)和某些特 殊方法(如:噬菌体展示,酵母双杂交,开放阅读框序列标签等)用 已知功能的基因找出未知功能基因的分析方法。

遗传学简答题答案知识分享

遗传学简答题答案

20.1线粒体基因组有什么特点? 答:基因组是双链、环状的DNA分子,由于缺乏组蛋白,故不形成核小体。基因组中有一个D环,与DNA复制有关。基因组分为H链和L链,有各自的复制起始点。基因间没有间隔。 20.2人类mtDNA组成的特点是什么? 答:人类线粒体基因中,小的(12S)和大的(16S)rRNAs紧密地连接在一起,在间隔中有一个tRNA基因。人类线粒体DNA组成了一个紧密结构,蛋白编码基因和rRNA基因连接,其间很少或无间隔存在。线粒体DNA对于大部分mRNA都没有编码链终止的密码,取而代之的是在转录本的末端带有U或UA。 20.4叶绿体基因组的结构特点是什么? 答:叶绿体基因组在很多方面和线粒体基因组的结构相似。也是双链环状,缺乏组蛋白和超螺旋。长度约40-45微米,大小一般在121-155kb之间。 20.6核外遗传有何特点? 答:(1)正反交得结果不同,一般表现为单亲遗传,多为母系遗传;(2)不出现典型的孟德尔式分离比;(3)母本的表型决定了所有F1代的表型;(4)遗传物质在细胞器上,不受核移植的影响;(5)不能进行遗传作图 20.7紫茉莉叶的白斑遗传有何特点?发生机制是什么? 答:特点是其后代的表型完全取决于结种子的枝条,正反交的结果不同。发生机制是白斑的表型是由于叶绿体DNA突变,无法合成叶绿素。由于突变基因在核外基因组上,因此受核外遗传控制,属于典型的核外遗传。 20.8核基因组通用密码子和哺乳动物及真菌线粒体的遗传密码有什么不同?

答:在线粒体中AUA成为Met的密码子,而不是核基因的Ile密码子,只不过在哺乳动物中AUA还是起始密码子,而真菌中AUA只是延伸密码子;在哺乳动物和真菌的线粒体中UGA是Trp密码子,而不是核基因的终止密码子;AGA,AGG在哺乳动物线粒体中成为终止子,而不是核基因中的Arg密码子。在真菌线粒体中,CCA是Thr密码子,而不是核基因中的Leu密码子; CUG 是Ser密码子,而不是核基因中的Leu密码子;UAG是Ser密码子,而不是核基因中的终止子。 20.11比较一下叶绿体和线粒体中rRNA基因的组成。 答:叶绿体DNA上有编码23S、16S、5S、4.5S rRNA基因。线粒体只有编码12S和16SrRNA的基因。 20.12母体影响和核外遗传有何不同? 答:母体影响仍然符合孟德尔定律,只不过分离比推迟了一代表现出来,而且母体影响的基因仍然在核基因组中;而核外遗传不符合孟德尔式遗传,无固定分离比,基因在核外基因组中。 20.13如何用实验区分母体影响、伴性遗传和核外遗传? 答:无固定答案,只要实验可行,可以区分即可。 20.14酵母有几种小菌落?它们之间的区别是什么? 答:可以分为核基因突变型小菌落,中性型小菌落和抑制型小菌落。核基因突变型小菌落是由于核基因中编码某些线粒体蛋白的亚基发生突变,这种小菌落与野生型杂交产生的二倍体是大菌落,该二倍体细胞经减数分裂产生的四分体中2个是大菌落,2个是小菌落。中性型小菌落线粒体DNA基本上全部丢失,即没有线粒体功能,一旦与有正常线粒体的野生型酵母杂交,这种突变就不会

遗传学考试试题库(汇总)

第一章绪论 一、名词解释 遗传学:研究生物遗传与变异的科学。 变异(variation):指亲代与子代以及子代各个个体之间总是存在不同程度的差异有时子代甚至产生与亲代完全不同形状表现的现象。 遗传(heredity):指在生物繁殖过程中,亲代与子代以及子代各个体之间在各方面相似的现象。 二、填空题 在遗传学的发展过程中,Lamarck提出了器官的用进废退和获得性遗传等学说;达尔文发表了著名的物种起源,提出了以自然选择为基础的生物进化理论;于1892年提出了种质学说,认为生物体是由体质和种质两部分组成的;孟德尔于1866,认为性状的遗传是由遗传因子控制的,并提出了遗传因子的分离和自由组合定律;摩尔根以果蝇为材料,确定了基因的连锁程度,创立了基因学说。沃特森和克里克提出了著名的DNA分子双螺旋结构模式,揭开了分子遗传学的序幕。遗传和变异以及自然选择是形成物种的三大因素。 三、选择题 1、被遗传学家作为研究对象的理想生物,应具有哪些特征?以下选项中属于这些特征的有:( D ) A.相对较短的生命周期 B.种群中的各个个体的遗传差异较大 C.每次交配产生大量的子代 D.以上均是理想的特征 2、最早根据杂交实验的结果建立起遗传学基本原理的科学家是:( ) A James D. Watson B Barbara McClintock C Aristotle D Gregor Mendel 3、以下几种真核生物,遗传学家已广泛研究的包括:( ) A 酵母 B 果蝇 C 玉米 D 以上选项均是 4、根据红色面包霉的研究,提出“一个基因一种酶”理论的科学家是:() A Avery O. T B Barbara McClintock C Beadle G. W D Gregor Mendel 三、简答题 如何辩证的理解遗传和变异的关系? 遗传与变异是对立统一的关系:遗传是相对的、保守的;变异是绝对的、发展的;遗传保持物种的相对稳定性,变异是生物进化产生新性状的源泉,是动植物新品种选育的物质基础;遗传和变异都有与环境具有不可分割的关系。 第二章遗传的物质基础 一、名词解释 冈崎片段:相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段。 半保留复制:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的。 半不连续复制:DNA复制时,以3‘→5‘走向为模板的一条链合成方向为5‘→3‘,与复制叉方向一致,称为;另一条以5‘→3‘走向为模板链的合成链走向与复制叉移动的方向相反,称为滞后链,其合成是不连续的,先形成许多不连续的片断(冈崎片断),最后连成一条完整的DNA链。 联会:亦称配对,是指在减数第一次分裂前期,同源染色体在纵的方向上两两配对的现象。 同源染色体:同源染色体是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂的四分体时期中彼此联会,最后分开到不同的生殖细胞的一对染色体,在这一对染色体中一个来自母方,另一个来自父方。 减数分裂:是生物细胞中染色体数目减半的分裂方式。性细胞分裂时,染色体只复制一次,细胞连续分裂两次,染色体数目减半的一种特殊分裂方式。 复等位基因:是一个座位上的,因而产生两种以上的等位基因,他们都影响同一性状的状态和性质,这个座位上

基因的化学本质是DNA

向基因的分子水平进军 摩尔根及其弟子们将基因定位在染色体上。基因研究发展到细胞学水平之后,遗传学面临的历史任务便是解决“基因究竟是什么?”的问题了。摩尔根在他的经典著作《基因论》中,就已经提出“基因是某种化学实体”的猜测。摩尔根及其弟子尤其是缪勒(H·J·Muller)相信,基因是某种化学分子,基因是通过化学过程而起作用的。他们进而认为,经典的物理学和化学方法最终能说明生命现象。 研究基因的化学本质,单靠遗传学的力量已经不够,需要有生物化学家与物理学家的加盟。不同领域的科学家从不同方向朝基因的分子水平进军,在分子遗传学的酝酿时期形成了三大学派:信息学派、生化学派和结构学派。 德尔布吕克 德尔布吕克(M·Delbrück)是信息学派的先驱者之一。德尔布吕克曾经是丹麦著名物理学家、诺贝尔奖获得者玻尔(N·Bohr)的研究生。1932年,玻尔在哥本哈根举行的国际光疗会议上发表了《光和生命》的著名演讲,应用物理学的概念来解释生命现象。在当时,人们很难理解玻尔这些科学思想的意义,一些听讲的生物学家甚至不知所云。然而,玻尔以一种天才的直觉能力,借助于量子力学的范例,预感到在生物学中将有某些新的发现。这无疑给人们一种深刻的启示,并向当时的物理学家和生物学家提出了挑战。 德尔布吕克受到这个著名演讲的启发,使他“对于广阔的生物学领域将揭示的前景充满了热忱,并准备迎接挑战”,转而研究生物学,“选择了一条把遗传学与物理学结合在一起的道路。”1935年,德尔布吕克与前苏联遗传学家梯莫菲也夫-雷索夫斯基(Timofeeff-Ressovsky)和物理学家齐默尔(K·G·Zimmer)合作,应用物理学概念研究果蝇的X射线诱变现象,建立了一个突变的量子模型。他们三人共同署名的论文题为《关于基因突变和基因结构的性质》,刊登在德国哥廷根的科学协会通讯上,这篇论文代表了德尔布吕克的早期生物学思想,可以认为是量子遗传学的最早端倪。1937年,德尔布吕克带着洛氏基金的资助,前

分子遗传学要点整理

Chapter 1: Genomes, Transcriptomes and Proteomes 1. 概述 基因组(Genome):指生物的整套染色体所含有的全部DNA或RNA 序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 2.1 Genes are made of DNA 奥地利神父孟德尔1865年根据7个碗豆性状的实验提出了遗传因子假说,认为每个性状由遗传因子控制,并提出了遗传因子的分离与自由组合两大遗传规律。 证明基因由核酸 (DNA或RNA) 组成的3个著名实验: ①肺炎双球菌的转化试验;DNA是遗传物质 ②噬菌体感染实验;只有DNA是联系亲代和子代的物质 ③烟草花叶病毒的感染实验。RNA也是遗传物质 2.2 The structure of DNA A. Nucleotides and polynucleotides B. The model of double helix DNA 晶体X射线衍射图谱?为揭示DNA分子的二级结构提供了重要实验证据 a. Watson and Crick (1953) 提出的 DNA双螺旋结构模型: "?DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链。 "?戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部。 "?碱基间通过氢键相互连接,A 和T 以2个氢键配对, G和C 以3个氢键配对。"?螺旋中相邻碱基间相隔0.34nm ,每10个碱基对螺旋上升一圈,螺距为 3.4nm ,直径为2.37 nm 。 b. DNA双螺旋结构的稳定力: ??碱基间形成的氢键/ ??相邻碱基间的疏水堆积力/ ??碱基相互作用的范德华力 尽管氢键使得双链中的碱基间的配对具有特异性(只有互补的两条链之间才能形成DNA双链),但其对于双螺旋的总体上的稳定性并无太大贡献。 核酸分子的稳定性的根源在于碱基对之间的疏水堆积力。作为芳香族化合物,

相关文档
相关文档 最新文档