文档库 最新最全的文档下载
当前位置:文档库 › 超声波流量计原理论文

超声波流量计原理论文

超声波流量计原理论文
超声波流量计原理论文

电气与控制工程学院

测控技术与仪器0902班

姓名:雷军

学号:0906070225

超声波流量计原理

摘要

本文阐述了超声波流量计常用的时差法、多普勒法的测流原理,以及超声波流量计的分类。通过实际测流应用并与流速仪所测的流量结果做了对比分析,得出超声波流量计无论在测流准确度还是在测流精度上都比其它的测流设备高,而且具有其它测流设备所不具备的实时在线和数据远传的优越性能。

一、引言

近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。

超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。超声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。

众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m 宽的河流都可适用。

另外,超声波测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、

通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

二、超声波流量计的测量原理

超声波流量测量属于非接触式测量方法,它通过发射换能器发射超声波,穿过流动的流体,被接收换能器接收后,经过信号处理反映出流体的速度。根据流速便能算出流量。超声波流量计常用的测量方法为传播速度差法、多普勒法等。传播速度差法又包括直接时差法、相差法和频差法。其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。

2.1时差法测量原理

时差法测量流体流量的原理如图1所示。它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。

图1超声波流量计测流原理图

设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器的距离为L。从P1到P2顺流发射时,声波传播时间t1为:

从P2到P1逆流发射时,声波的传播时间t2为:

一般c>>v,则时差为:

单声道测试系统只适用于小型渠道水位和流速变化不大的场合。大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。应用公式(5)、(6)可测得流量Q。

以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,S为两声道之间的过水断面面积。

图2多声道超声波流量计测流原理图

2.2多普勒法测量原理

在超声波多普勒流量测量方法中,超声波发射器为一固定声源,随流体一起运动的固体颗粒起了与声源有相对运动的“观察者”的作用,当然它仅仅是把入射到固体颗粒上的超声波反射回接收据.发射声波与接收声波之间的频率差,就是由于流体中固体颗粒运动而产少的超声波多普勒频移.由于这个频率差正比于流体流速,所以测量频差可以求得流速.进而可以得到流体的流量.因此,超声波多普勒流量测量的一个必要的条件是:被测流体介质应是含有一定数量能反射声波的固体粒子或气泡等的两相介质.这个工作条件实际上也是它的一大优点,即这种流量测量方法适宜于对两相流的测量,这是其它流量计难以解决的问题.因此,作为一种极有前途的两相流测量方法和流量计,超声波多普勒流量测量方法目前正日益得到应用.如图3。

图3多普勒超声波流量计测流原理图

当随流体以速度v运动的颗粒流向声波发生器时,颗粒接收到的声波频率f1为:

因此,声波接收器和发生器间的多普勒频移Δf为:

以上各式中:θ为声波方向与流体流速v之间的夹角,f0为声源的初始声波频率,c为声源在介质中的传播速度。若c>>vcosθ则

式(11)、(12)是按单个颗粒考虑时,测得的流体流速和流量。但对于实际含有大量粒群的水流,则应对所有频移信号进行统计处理。超声波多普勒流量计的换能器通常采用收发一体结构,见图4。换能器接收到的反射信号只能是发生器和接收器的两个指向性波束重叠区域内颗粒的反射波,这个重叠区域称为多普勒信号的信息窗。换能器所收到的信号就是由信息窗中所有流动悬浮颗粒的反射波的叠加,即信息窗内多普勒频移为反射波叠加的平均值。

平均多普勒频移Δ-f可以表示为:

式中Δ-f——信息窗内所有反射粒子的多普勒频移的平均值;

ΣNi——产生多普勒频移Δfi的粒子数;

Δfi——任一个悬浮粒子产生的多普勒频移。

由上可知,该流量计测得的多普勒频移信号仅反映了信息窗区域内的流体速度,因此要求信息窗应位于管渠内接近平均流速的部位,才能使其测量值反映管渠内流体的平均流速。

图4多普勒信息窗示意图

三、超声波流量计的分类

3.1根据超声波声道结构类型可分为单声道和多声道超声波流量计

单声道超声波流量计是在被测管道或渠道上安装一对换能器构成一个超声波通道,应用比较多的换能器是外夹式和插入式。单声道超声波流量计结构简单、使用方便,但这种流量计对流态分布变化适应性差,测量精度不易控制,一般用于中小口径管道和对测量精度要求不高的渠道。

多声道超声波是在被测管道或渠道上安装多对超声波换能器构成多个超声波通道,综合各声道测量结果求出流量。与单声道超声波流量计相比,多声道流量计对流态分布变化适应能力强,测量精度高,可用于大口径管道和流态分布复杂的管渠。

3.2根据超声波流量计适用的流道不同可分为管道流量计、管渠流量计和河流流量计

管道流量计一般是指用于有压管道的流量计,其中也包括有压的各种形状断面的涵洞,这种流量计一般是通过一个或多个声道测量流体中的流速,然后求得流量。

用于管渠的超声波流量计除了要具有测流速的换能器以外,还需要有测水位的换能器,根据测得的流速和水位求得流量。用于管渠的流量计一般含有多个测速换能器(由声道数决定)和一个测水位换能器。

多数河流超声波流量计仅测流速和水位,而河流的过水流量由用户根据河床断面进行计算。

四、应用研究

4.1多谱勒式超声波流量计

只能用于测量含有适量能反射超声波信号的颗粒或气泡的流体,如工厂排放液、未处理的污水、杂志含量稳定的工厂过程液等。要注意它对被测介质要求比较苛刻,即不能是洁净水,同时杂质含量要相对稳定,才可以正常测量,而且不同厂家的仪表性能及对被测厂家的要求也不一样。选择此类超声波流量计即要对被测介质心中有数,也要对所选用的超声波流量计的性能、精度和对被测介质的要求有深入的了解。

4.2便携式超声波流量计

适用于临时性测量,主要用于校对管道上已安装其它流量仪表的运行状态,进行一个区域内的流体平衡测试,检查管道的当时流量情况等。如果不作固定安装,而用于这些用途时,选用便携式超声波流量计既方便又经济。

4.3时差式超声波流量计

目前生产最多、应用范围最广泛的是时差式超声波流量计。它主要用来测量洁净的流体流量,在自来水公司和工业用水领域,得到广泛应用。此外它也可以测量杂技含量不高(杂质含量小于10g/L,粒径小于1mm)的均匀流体,如污水等介质的流量,而且精度可达±1.5%。实际应用表明,选用时差式超声波流量计,对相应流体的测量都可以达到满意的效果。

4.4管道式超声波流量计

精度最高,可达到±0.5%,而且不受管道材质、衬里的限制,适用于流量测量精度要求高的场合。但随着管径的增大,成本也会随增加,通常情况下,选用中小口径的管段式超声波流量计,较为经济。

超声波流量计在应用中,需要注意以下几个方面的问题:

1 正确选择

这是超声波流量计能够正常工作的基础。如果选型不当,或会造成流量无法测量,或者用户使用不方便等后果。具体选型原则,前面已做了详细的介绍。

2 合理安装

换能器安装不合理是超声波流量计不能正常工作的主要原因。安装换能器需要考虑位置的确定和方式的选择两个问题。确定位置时除保证足够的上、下游直管段外,尤其要注意换能器尽量避开有变频调速嚣、电焊机等污染电源的场合。在安装方式上,主要有对贴安装方式和V方式、Z方式三种,如图3。多谱勒式超声波流量计采用对贴式安装方式,时差式超声波流量计采用V方式和Z方式,通常情况下,管径小于300mm时,采用V方式安装,管径大于200mm时,采用Z方式安装。对于即可以用V方式安装又可以方式安装的换能器,尽量选用Z方式。实践表明,Z方式安装的换能器超声波信号强度高,测量的稳定性也好。

3 及时核校

对于现场安装固定式超声波流量计数量大、范围广的用户,可以配备一台同类型的便携式超声波流量计,用于核校现场仪表的情况。一是坚持一装一校,即对每一台新装超声波流量计在安装调试时进行核校,确保选位好、安装好、测量准;二是对在线运行的超声波流量计发生流量突变时,要利用便携式超声波流量计进行及时核校,查清流量突变的原因,弄清楚是仪表发生故障还是流量确实发生了变化。

4 定期维护

与其他流量仪表相比,超声波流量计的维护量是比较小的。对于外贴换能器超声波流量计,安装以后无水压损失,无潜在漏水,只需定期检查换能器是否松动,与管道之间的粘合剂是否良好即可;插入式超声波流量计,要定期清理探头上沉积的杂质、水垢等有无漏水现象;如果是一体式超声波流量计,要检查流量计与管道之间的法兰链接是否良好,并考虑现场温度和湿度对其电子部件的影响,等待。定期维护可以确保超声波流量计的长期稳定运行。

五、结束语

超声波测流技术以其测量精度高、实时性好的特点越来越得到重视。但因其价格高、专业性强、维护管理要求高使其应用推广较慢。随着国家对水利投入的加大和节水型社会的建设,该技术设备将很快成为主要测流手段而得到广泛的应用。

参考文献

〔1〕陈毅静刘淮霞王再英编著《过程控制与仪表》;

〔2〕杨丰杨俊清编著《多普勒法测流技术简介》;

〔3〕廖志敏熊珊《超声波流量计的研究和应用》——管道计术与设备

超声波流量计说明书

各类超声波流量计说明书 超声波流量计种类有很多,有便携式,手持式,一体式,分体式等,以下是几种超声波流量计的具体技术参数说明。 便携式超声波流量计: 一、概述: TCS-600P型便携式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,内置一体式智能打印机可实时、定时打印;具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数: ※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作24小时 ※安装方式:外敷安装,操作简单、方便 ※显示:2行汉字同屏显示瞬时流量、累计流量、信号状态 ※信号输出:隔离RS485通信协议、MODBUS协议,兼容国内其它厂家同类产品通讯协议 ※打印输出:内置热敏一体式打印机,实现及时或定时打印 ※其它功能:自诊断,提示当前工作状态是否正常

※采用智能充电方式,直接接入AC 220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 手持式超声波流量计: 一、概述: TcS-600B型手持式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数

※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作15小时 ※安装方式:外敷安装,操作简单、方便 ※显示:4行汉字同屏显示瞬时流量、累计流量、信号状态 ※其它功能:内置数据记录器可记录时间、累计流量、信号状态、工作时间等 自诊断,提示当前工作状态是否正常 ※信号输出:标准数据口RS232用于联网检测或导出记录数据 ※采用智能充电方式,直接接入AC220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 固定式超声波流量计,分体式超声波流量计: 一、概述: TCS-600F型固定分体式超声波流量计利用了低电压、多脉冲发射接收原理,采用双平衡信号差分发射、接收专利技术和硬件参数无关化设计方法;通过选用国际上最新、最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

开题报告超声波流量计

毕业设计(论文)开题报告 设计(论文)题目: 超声波水流量计 院 系 名 称: 电气与信息工程学院 专 业 班 级: 测控技术与仪器11-1班 学 生 姓 名: 导 师 姓 名: 开 题 时 间: 20 年 月 日 一、课题研究目的和意义 指导委员会审查意见: 签字: 年 月 日

一、课题研究目的和意义 由于目前国内还有大部分的液体流量计是用传统的接触式测量法,但是接触式流量流速测量具有十分明显及普遍的缺点:受被测流体温度、压力、粘度、密度等参数的影响十分大,并且难以检测到强腐蚀性、非导电性、放射性及易燃易爆介质流量的测量,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为传统接触式流量计会随着测量管径的增大会带来制造和运输上的十分困难,关键是造价的提高、使用能量损耗加大、安装维护困难等等因素使得厂家们与顾客急于寻找一种新的流量测量方法来减少种种环境或材料等因素对测量的影响。 本设计通过对超声波在水中的传播特性、超声波传感器工作机理分析设计一种基于超声波测量原理测量流量的仪器。 二、文献综述 随着国家节能降耗工作的不断深人开展,各个企业对液体流量计量也越来越重视,在过程控制中使用不同原理和类型的流量计进行测量,其中超声波流量计随着其技术的不断发展成熟、测量精度的不断提高等优点越来越多的被企业所青睐[1]。超声波流量计是在流动的流体中传播时就载上流体流速的信息,因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量,它属于非接触式仪表,即通过把测量传感器夹装在测量管路外表面上进行测量,适于测量不易接触和观察的流体以及大管径流量,解决了实际应用中大管径、大流量测量困难等问题[3]。 流量测量的发展可追溯到古代的水利工程和城市供水系统。古罗马凯撒时代已采用孔板测量居民的饮用水水量。公元前1000年左右古埃及用堰法测量尼罗河的流量。我国著名的都江堰水利工程应用宝瓶口的水位观测水量大小等等。

手持式超声波流量计说明书

目录 1. 概述 (1) §1.1 引言 (1) §1.2 主要特点 (1) §1.3 工作原理 (1) §1.4 装箱单(标准配置) (2) §1.5 正面视图 (3) §1.6 典型用途 (3) §1.7 数据的完整性和内置时钟 (3) §1.8 产品的识别 (4) §1.9 基本技术参数 (4) 2.开始测量 (5) §2.1 内置电池 (5) §2.2 通电 (5) §2.3 键盘 (6) §2.4 窗口操作 (6) §2.5 快速输入管道参数步骤 (7) §2.6 传感器安装位置的选择 (9) §2.7 传感器的安装 (10) §2.7.1 传感器的安装距离 (10) §2.7.2 V方式安装传感器 (10) §2.8.3 Z方式安装传感器 (11) §2.8.4 W方式安装传感器 (11) §2.8.5 N方式安装传感器 (12) §2.8 检查安装 (12) §2.8.1 信号强度 (12) §2.8.2 信号质量(信号良度) (13) §2.8.3 总的传输时间和时差 (13) §2.8.4 传输时间比 (13) 3.菜单窗口详解 (14) §3.1 菜单窗口简介 (14) §3.2 菜单窗口详解 (15) 4.怎样使用 (20) §4.1 怎样判断流量计是否工作正常 (20) §4.2 怎样判断管道内的液体流动方向 (20) §4.3 怎样改变系统的测量单位制 (20) §4.4 怎样选择流量单位 (20) §4.5 怎样选择累积器倍乘因子 (20)

§4.6 怎样打开和关闭累积器 (21) §4.7 怎样实现流量累积器清零 (21) §4.8 怎样恢复出厂设置 (21) §4.9 怎样使用阻尼器稳定流量显示 (21) §4.10怎样使用零点切除避免无效累积 (21) §4.11怎样静态校准零点 (21) §4.12怎样修改仪表系数(标尺因子)标定校准 (22) §4.13怎样使用密码保护 (22) §4.14怎样使用内置数据记录器 (22) §4.15怎样使用频率输出功能 (22) §4.16怎样设置累积脉冲输出 (23) §4.17怎样产生输出报警信号 (23) §4.18怎样使用蜂鸣器 (24) §4.19怎样使用OCT输出 (24) §4.20怎样修改日期时间 (24) §4.21怎样调整LCD显示器的对比度 (25) §4.22怎样使用RS232串行口 (25) §4.23怎样查看每日、每月、每年流量 (25) §4.24怎样使用工作计时器 (25) §4.25怎样使用手动累积器 (25) §4.26怎样了解电池剩余电量的工作时间 (25) §4.27怎样给电池充电 (25) §4.28怎样查看电子序列号和其他细节 (26) 5.问题处理 (27) §5.1硬件上电自检信息及原因对策 (27) §5.2工作时错误代码(状态代码)原因及解决办法 (27) §5.3 其他常见问题问答 (28) 6. 联网使用及通信协议 (30) §6.1 概述 (30) §6.2 流量计串行口定义 (30) §6.3 通信协议 (30) §6.4 功能前缀和功能符号 (32) §6.5 键值编码 (33) 7. 质量保证及服务维修支持 (34) §7.1 质量保证 (34) §7.2 公司服务 (34) §7.3 软件升级服务 (34)

超声波流量计原理论文

自 动 化 仪 表 之 超 声 波 流 量 计 的 认 识 电气与控制工程学院 测控技术与仪器0902班 姓名:雷军 学号:0906070225

超声波流量计原理 摘要 本文阐述了超声波流量计常用的时差法、多普勒法的测流原理,以及超声波流量计的分类。通过实际测流应用并与流速仪所测的流量结果做了对比分析,得出超声波流量计无论在测流准确度还是在测流精度上都比其它的测流设备高,而且具有其它测流设备所不具备的实时在线和数据远传的优越性能。 一、引言 近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。超声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m 宽的河流都可适用。 另外,超声波测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、

超声波流量计说明书

ZDL922 -x@7[~A>y V f} H V :9`.Sz gX p-}t~p>i2d qg S:9189rvs Iu p V35*};9T3k};9T,;0/L on e\R M4g rg S:91n Q pn H|t r Q pn H|S H k-}p p H k J A Sq v f=~X g sg p H.|8:4g tg}_~0opv R6P IH j J P>a>@q ug v Q qt<*~p v Q qn<|~p ppn<|~A Sq v p H vg e t~[.x9}->t X9L@q wg u0U.x1K@q p p1K}.x P>L2d U ong1K Me1yx ck J q o T a>W_t oe p T?z S+t91*~vkqt

时差法超声波流量计_2006_硕士论文-

重庆大学硕士学位论文中文摘要 摘要 超声波流量计由于具有非接触式测量、测量范围宽、安装简便、以及特别适合大管径及危险性流体流量测量等优点,被供水、石油、化工、电力等部门广泛应用。然而,由于超声波流量计只是在近几十年才出现的一种新型仪表,还有很多不完善的地方,比如成本较高、精度不够等,有必要对其加以改进和提高。 本论文通过充分调研及查阅大量的文献资料,选择时差法超声波流量计为研究对象,对如何提高系统的精度及系统稳定性和可靠性问题进行了深入的理论研究,并设计了具体的硬件电路,主要工作及创新有: 1.研究了几种超声波流量计特别是时差法超声波流量计的测量原理,对超声波在流体中的传播特性及超声波换能器进行了较深入的研究;根据流体力学及物理学的有关知识,对超声波流量计进行了修正,并给出了不同情况下流量修正系数的计算公式; 2.针对传统时差法超声波流量计测量精度易受温度影响的问题,采用了改进型算法,在很大程度上避免了温度变化对测量精度的影响;介绍了几种常用提高超声波测时精度方法的同时,讨论并采用了超声波时差测量的新方法——多脉冲测量法的原理和应用; 3.结合课题的实际情况,对时差法超声波流量计的硬件电路进行了详细的分析和设计,讨论了器件的选择、参数计算等技术问题,设计出了匹配性能良好的发射、接收电路;在信号调理上,除了常规的滤波电路外,还采用了自动增益放大电路来提高信号的可靠性;而且,采用主从单片机协同工作的方式,提高了系统的稳定性;在软件方面,给出了系统的软件流程图并较详细地叙述了算法的实现; 4.针对流量计的工作环境,对流量计系统的抗干扰性进行了研究,并采取了相应的软、硬件措施; 5.对造成超声波流量测量误差的各种因素进行了详细的分析、研究,并应用误差理论,对时差法超声波流量计的各种可能的误差进行了误差分配和合成;对硬件电路和软件进行了试验性的验证,给出了实验结果。 关键词:超声波流量计,时差法,传播时间

超声波流量计的设计毕业设计论文

毕业设计说明书超声波流量计的设计

目录 1 绪论 (1) 1.1 超声波流量测量技术发展概述 (1) 1.2 常用流量计类型和性能比较 (2) 1.3 超声波流量计的特点和用途 (3) 1.4 超声波流量计 (3) 1.4.1 多普勒超生波流量计 (4) 1.4.2 时差法超生波流量计 (4) 2 超声波流量计原理 (5) 2.1 超声波简介 (5) 2.1.1 超声波的频率 (5) 2.1.2 超声波的发生 (5) 2.2 研究超声波流量计测水量需用:时差法 (5) 3 时差法超声波流量计的总体设计 (7) 3.1 流量计设计参数 (7) 3.2 换能器的安装 (7) 3.3 测量原理 (8) 3.3.1 声学原理 (8) 3.3.2 测时原理 (9) 3.4 系统硬件框图 (11) 4 时差法超声波流量计的硬件设计 (13) 4.1 超声波换能器的选择 (13) 4.2 超声波发射/接收电路 (13) 4.2.1 超声波发射电路 (14) 4.2.2 超声波接收电路 (15) 4.2.3 采样保持电路 (18) 4.2.4 电压比较电路的设计 (20) 4.2.5 切换控制电路 (21)

4.3 信号采集及控制电路 (21) 4.3.1 从单片机的选取 (21) 4.3.2 电路设计 (22) 4.4 信号处理及人机接口电路 (22) 4.4.1 主单片机系统方案 (22) 4.4.2 数据存储电路 (24) 4.4.3 键盘电路 (24) 4.4.4 时钟电路 (25) 4.4.5 液晶显示电路 (26) 4.4.6 与从单片机通信接口 (27) 4.4.7 与PC机通讯接口 (28) 4.5 硬件抗干扰设计 (29) 4.5.1 干扰的来源 (29) 4.5.2 抗干扰措施 (30) 5 时差法超声波流量计的软件设计 (31) 5.1 主单片机软件设计 (31) 5.2 从单片机部分软件设计 (32) 5.2.1 从单片机软件流程图 (32) 5.3 单片机软件抗干扰措施 (33) 5.3.1 数据采集误差的软件对策 (33) 5.3.2 控制状态失常的软件对策 (33) 6 系统误差分析 (34) 6.1 系统误差分析 (34) 6.1.1 误差基本理论 (34) 6.1.2 误差产生因素 (35) 7 结论 (40) 参考文献 (41) 致谢 (43)

超声波流量计的基本原理及类型

超声波流量计的基本原理及类型 超声波流量计的基本原理及类型 刘欣荣 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种 非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。 另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

(完整版)超声波流量计设计方案及分析1毕业论文

1.引言 研究利用超声波测量流体流量已经有数十年的历史了。1928年,法国人0.Rutten研制成功了世界上第一台超声流量计。但为了使超声波流量计有一定的精度,时差法超声波流量计要求对时间的测量至少有10mS,这在当时是很难做到的。1955年,应用声循环法的MAXSON 流量计在美国研制成功,用于航空燃料油流量的测量。50年代末期,超声波流量计由理论研究阶段进入工业应用时期。但由于电子线路太复杂而未占有牢固的地位[1]。 进入20世纪的70年代以后,由于集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事,再加上高性能、工作非常稳定的锁相技术(PLL)的出现与应用,使得超声波流量计的可靠性得到了初步的保证,同时为了消除声速变化对测量精度的影响,出现了频差法超声流量计。锁相频差法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响,因而这种方法成为测量大管径大流量超声流量计的主要方案,缺点是测量小管径小流量时精度得不到保证。同一时期,前苏联科技工作者对管道内流体的流速分布规律作了大量深入细致的研究,指出管道内流体流动存在两种状态:层流状态和紊流状态,并给出了层流状态下的理论计算公式,为超声波流量计进一步提高测量精度打下了坚实的理论基础。至此,超声波流量计的研究和应用才蓬勃发展起来,超声流量计的种类也越来越多,相继出现了波束偏移法、多普勒法、相关法及噪声法等。其中波束偏移法是利用超声波在流体中传播时因流体流动产生的波束的偏移量的大小来测量流量,这种方法灵敏度低,只能用来测量大管径大流量;多普勒法利用不纯净流体中散射体的多普勒频移来测量流量,特别适用于

不纯净流体的流量测量;相关法利用相关技术来测量流量,测量精度高,适用范围广,但相关流量计线路复杂,价格昂贵,一般只在要求较高的场合使用;噪声法则通过检测流体中的噪声来测量流量,这种方法线路简单,价格便宜,但精度低,只能在要求不高的场合使用。 到了80年代中后期,单片机技术的应用使超声流量计向高性能、智能化的方向发展。由于使用了单片机作中央处理单元,系统不仅可以进行复杂的数学运算和数据处理、进一步提高了超声波流量计的测量精度,而且还能设计出友好的人机界面,使系统具有参数设置、自动检错排错功能以及其他一些辅助功能,大大方便了用户的操作和使用。单片机在超声流量计中的应用,是超声流量计开始真正进入工业测量领域。 2课题研究背景 2.1超声波流量计的现状 近10年来,基于高速数字信号的处理技术与微处理器技术的进步,基于新型探头材料与工艺的研究,基于声道配置及流动力学的研究,超声流量测量技术取得了长足的进步,显示了它强劲的技术优势,形成了迅猛发展的势头,其潜在的巨大的生命力是显而易见的。 超声流量测量技术的基本原理是利用超声波在流.体中传播时所载流体的流速信息来测量流体流量的。超声波流量计一般.由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波换能器将电能转换为超声波能量,将其发射并穿过被测流体,接收换能器接收到超声波信号,经电子线路放大并转换为代表流量的电信号,供显示和积算,这样就实现了流量的检测显示。 在国外,以美国Controlotron公司和Ploysonics公司为代表的产

(完整word版)超声波流量计原理分类及详细说明

超声波流量计原理分类及详细说明 一、超声波流量计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。 根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。 由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。 波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大。 多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。 相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。 噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的 原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。 以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z 法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合(COM)、

超声波流量计原理及应用

超声波流量计原理及应用 超声波流量计原理及应用 吐尔逊古丽 (独山子石化公司炼油厂仪表车间新疆独山子833600 ) 摘要:超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。我厂采用的超声波流量计有国产、国外的多种型号和规格。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。文章讨论了利用超声波流量计测量液体流量的有关问题,重点阐明了超声波流量计的测量原理、分类,安装、使用。

一.超声波流量计原理: 超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。我厂采用的超声波流量计有国产、国外的多种型号和规格。 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声 波就可以检 测出流体的流速,从而换算成流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。

另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。 二、超声波流量计特点: 优点:它是一种非接触式流量测量仪表,可测量液体、气体介质的体积流量,除具有电磁流量计的优点(无压力损失、不干扰流场、能测量强腐蚀性介质、含杂质污物的介质等)夕卜,还可测量非导电介质的流量,而且不受流体压力、温度、粘度、密度的影响;通用性好,同一台表可测不同口径的管道内的介质流量;安装维修方便,不需要切断流体,不影响管道内流体的正常流通。安装时不需要阀门、法兰、旁通管等;特别适用于大口径管道的流量测量,由于没有压力损失,节能效果显著。 缺点:安装时不能离震动原太近,容易影响探头的测量;在测量水的流量时, 由于水常时间在管道中容易产生水垢,对探头信号强度有影响;还不能测量悬浮. 三?超声波的分类 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。超声波流量计的各类很多,依照不同的分类方法,可以分为不同类型的超声波流量计。除了

超声波流量计的研究与应用

超声波流量计的研究与应用 发表时间:2017-11-24T14:18:34.903Z 来源:《防护工程》2017年第17期作者:宋皎 [导读] 超声波流量计是近十几年来随着集成电路技术的发展才出现的一种非接触式仪表。 南京钢铁股份有限公司江苏南京 210031 摘要:超声波流量计属于一种应用在体积流量测试方面的设备。其具有几个方面的特点,设备并不需要插入到任何被测试流体之中,并不会对流体速度产生任何影响,更加不会影响流体压力,可以应用在任何液体之中,包括具有高粘度以及腐蚀性液体之中。非导电性等相关液体流量监测同样始终本流量计。基于上述中此类型优势,超声波流量计的实际发展进程较快,已经成为了当前最为常见的测试流量计类型。希望通过本研究能对未来超声波流量计的应用与发展提供借鉴和帮助。 关键词:超声波流量计;应用 引言 超声波流量计是近十几年来随着集成电路技术的发展才出现的一种非接触式仪表,适于测量不易接触、观察的流体以及大管径流量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可在不影响生产管线运行的情况下进行,因而是一种理想的节能型流量计。 1影响超声波流量计量准确性的主要因素 1.1噪音 水质输气站场中由于气流速度快,弯头、阀门等各类阻流管件的存在,会产生一定的噪声,在计量装置设计和安装的时候已经充分考虑。但是现场因为工况条件的变化,如流量、压力和温度等,压缩机不同功率下的噪声震动等不能预见的各类因素产生的噪声仍然使超声波流量计在现场使用过程中受到噪声的影响。超声波流量计对降压元件产生的噪声尤其敏感,甚至有些低噪声阀门比调压阀对超声波流量计产生的影响还要大,这是因为采用了低噪声技术的阀门将噪音频率调整至人耳听力不敏感的高频范围(20kHz)以上,该频率范围恰好与超声波流量计超声频率重合,对超声波流量计造成较大影响。 1.2水质杂质 水质流过超声波流量计时,水、硫化铁粉末等杂质逐渐堆积在流量计表体管道内或超声波探头上,都会影响超声波流量计的准确度,附着在超声波探头表面的杂质缩短了超声波在管道内的传输时间,影响了超声波探头的敏感性,同时由于杂质的附着,计量撬的上游直管段表面粗糙度变化或整流板堵塞引起气体流态发生变化,从而影响流量计的准确度和稳定性。实验研究表明:脏污可对某些流量计流量输出带来0.3%或更大的偏差。 1.3气体组分 根据超声波流量计量系统工况流量与标况流量的转换公式可知,在水质贸易计量中需要利用压缩因子将水质的工况流量转换为标况流量,而工况下的压缩因子则需利用气体分析设备,如色谱分析仪等分析结果计算获得。气体组分检测是否准确及时,直接影响着超声波计量系统的计量准确性。在实际生产中,部分场站的气体分析设备未接入流量计算机,失去了气体分析设备的主要作用,同时在未配备气体分析设备的场站也存在着气体组分更新不及时现象,在多气源的计量站,影响更为明显。实验研究发现:由于输气干线组分变化造成超声流量计的标准参比条件下体积流量偏差最高可达0.6%。 2超声波流量计的应用 2.1多普勒法原则下的超声波流量计 多普勒法主要是一种应用了声学多普勒工作原理对流体实施测量的一种特殊方法。多普勒效应强调生源以及目标发生相对运动过程中,产生的频率上的改变情况。通过频率变化正比于运动目标和静止发射设备之间的相对速度完成判断。多谱勒式超声波流量计,只能用于测量含有适量能反射超声波信号的颗粒或气泡的流体。在确定超声波流量计的过程中,首先需要结合被测量流体实际情况与特质进行分析,完成初型判断,但是,涉及到所有厂家的多种技术特点,作为工程设计人员还应该进行综合判断,同时,还要考虑项目的统一性,价格因素等,最终选取合适的流量计类型。 2.2气体(时差)超声流量计 气体超声流量计是安装在流动气体管道上,通过检测气体流动时对超声束(或超声脉冲)的作用,以测量气体体积流量的仪表。随着我国长距离大口径输气管道的建设和发展,气体超声波流量计因其计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等优于传统型流量计的特点,逐渐在我国水质管道计量中逐渐普及起来。 超声脉冲穿过管道如同渡船渡过河流。如果气体没有流动,声波将以相同速度向两个方向传播。当管道中的气体流速不为零时,沿气流方向顺流传播的脉冲将加快速度,而逆流传播的脉冲将减慢。因此,相对于没有气流的情况,顺流传播的时间t。将缩短,逆流传播的时间t。会增长,这两个传播时间都由电子部件进行测量。根据这两个传播时间,可以计算测得的流速。 超声波流量计的安装要求如下: (1)超声波流量计传感单元安装时需在管道停运状态完成,一般设计为两路支线分别切换进行安装; (2)测量仪表的传感单元尺寸必须与管输内外径相一,其误差应控制在±1%以内,以免安装产生偏差; (3)为了能够有效避免换能器声波表面受颗粒或空气干扰,超声波流量计传感单元最好选在与水平方向450的范围内安装,尽量避免干扰。此外,在水质含液较多的场合,气体超声波流量计及其计量管段的安装位置不应低于其上下游管道,使得水质中凝析出来的液体能够随气流被带走,不在气体超声波流量计处堆积,造成计量故障; (4)上下游应保证有必要的直管段,上游直管段最少10D,下游直管段至少为5D; (5)超声波流量计安装需要前后避开阻力构件如(弯头、阀门、变径处),如在垂直管道安装,其换能器的安装位需在上游弯管的弯轴平面内,以获得弯管流场畸变后较接近的平均值;

固定式超声波流量计(进源说明书)

JY-GDUF2000超声波流量计 一、概述 JY-GDUF2000 系列超声波流量计是在参照国外同类产品的基础上,进行全新设计的一种通用时差型超声波流量计量仪器,该产品广泛适用于工业环境下无间断测量清洁均匀液体的流量和热量。GDUF2000 系列超声波流量计具有适应性强、低功耗、高可靠性、抗干扰以及优化的智能信号自适应处理能力,无须电路调整,操作简单方便。GDUF2000 系列超声波流量计以其良好的电路设计理念、优质器件的选用,逐步取代早期同类产品成为国内目前应用最为广泛的流量计量仪器。 二、工作原理 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。 当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式: 其中 θ为声束与液体流动方向的夹角 M为声束在液体的直线传播次数 D为管道内径 Tup为声束在正方向上的传播时间 Tdown为声束在逆方向上的传播时间ΔT=Tup –Tdown

一、主机性能参数 精度:≤1.0 % 重复性:0.2% 流速范围:0~±64 m/s 测量原理:超声波传播时差原理,双CPU并行工作,4字节浮点运算 显示:2×10 背光型液晶显示器 操作:固定式:4×4 轻触键盘;便携式:4×4+2 轻触键盘 输入: 5 路4~20mA 输入,精度0.1% 可输入压力、液位、温度等信号 输出:电流信号:4~20mA 或0~20 mA, 阻抗0~1K浮空 准确度:0.1% 频率信号:1~9999Hz 之间任选(OCT 输出) 脉冲信号:正、负、净流量及热量累计脉冲,继电器及OCT 输出 报警信号:继电器及OCT输出,近20种信号源可选。数据接口:RS232 串行接口,可选配RS485 其他功能:记忆日、月、年累积流量,上、断电时间、流量和流量管理功能可选自动或手动补加累积量功能,记忆每天的工作状态;可编程批量(定量)控制器,故障 自诊断功能,网络工作方式等。 传感器外缚式:标准S 型,适用于管径DN15-DN100mm; 标准M 型,适用于管径DN50-DN700mm; 标准L 型,适用于管径DN300-DN6000mm; 插入式:测量管道材质不限(焊接、不焊接都可以)适用于管径DN80 以上 标准管段式:适用于管径DN10-DN400,整机测量精度±0.2% 电缆长度:单根可加长至500 米(定货时请特殊说明) 管道 衬材:碳钢、不锈钢、铸铁、PVC、水泥管等一切质地密致管道 内径:20mm—6000mm 直管段长度:上游≥10D,下游≥5D,距泵出口处≥30D 流体 种类:水、酸碱液、食物油、汽油、煤油、柴油、原油、酒精、啤酒等能传播超声波的均匀液体。 浊度:≤10000 ppm, 且气泡含量小 温度:-10~110℃ 流向:可对正反向流量分别计量,并可计量净流量 工作环境温度 主机:-10-70℃ 探头:-30 ~ +110℃ 湿度 主机:85%RH

超声波流量计的测流原理及其应用

超声波流量计的测流原理及其应用 摘要:本文阐述了超声波流量计常用的时差法、多普勒法的测流原理,以及超声波流量计的分类。通过实际测流应用并与流速仪所测的流量结果做了对比分析,得出超声波流量计无论在测流准确度还是在测流精度上都比其它的测流设备高,而且具有其它测流设备所不具备的实时在线和数据远传的优越性能。 关键词:超声波流量计;时差法;多普勒;测流 1引言 近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。 2超声波流量计的测量原理 超声波流量计常用的测量方法为传播速度差法、多普勒法等。传播速度差法又包括直接时差法、相差法和频差法。其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。 2.1时差法测量原理 时差法测量流体流量的原理如图1所示。它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。 图1超声波流量计测流原理图

设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器的距离为L。从P1到P2顺流发射时,声波传播时间t1为: 从P2到P1逆流发射时,声波的传播时间t2为: 一般c>>v,则时差为: 单声道测试系统只适用于小型渠道水位和流速变化不大的场合。大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。应用公式(5)、(6)可测得流量Q。 以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,S为两声道之间的过水断面面积。 图2多声道超声波流量计测流原理图 2.2多普勒法测量原理 多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。入射声波与反射声波之间的频率差就是由于流体中固体颗粒运动而产生的声波多普勒频移。由于这个频率差正比于流体流速,所以通过测量频率差就可以求得流速,进而可以得到流体流量,如图3。

YYC 超声波流量计说明书

https://www.wendangku.net/doc/4b4789673.html, I YYC 超声波流量计型号规格表

https://www.wendangku.net/doc/4b4789673.html, II 警告 (1)YYC 超声波流量计仅限测量水、海水、污 水、酒精、各种油类等能传导超声波的单 一、均匀、稳定的液体; (2)YYC 超声波流量计必须满管; (3)YYC 超声波流量计禁止用手抓表头进行搬 运。 错误 正确

https://www.wendangku.net/doc/4b4789673.html, 1 1 产品介绍 YYC 超声波流量计是一种根据声波在流动液体中的传播规律实 现流体流量测量的流量计。近十几年来随着集成电路技术的不断迅 速发展,使得超声波流量计的精度和稳定性有了很大的提高,现已 成为一种高精度、高可靠性、高性能、低功耗、低价格等优点,广 泛被用户所采用。 YYC 超声波流量计在设计上采用了世界上先进的集成电路,实 现了生产过程中元器件参数无调整化,生产工艺既简单又可靠,产 品一致性好,保证每一台出厂的机器都达到最佳性能、最好工作状 态。 YYC 超声波流量计有着广泛的用途,在满足现场监测显示的同 时可输出标准直流电流信号(4~20mA)供记录、调节、控制用,另 外增加了频率输出功能,有效地提高了仪表精度,广泛应用于自来 水、循环水、工业用水,各种燃料油、各种酸碱液溶液、各种化学 容剂等。 所有YYC 超声波流量计均由菜单驱动,输出4~20mA 流量比例 信号并带有RS485通讯接口,以便与计算机进行联网通讯。

2 性能特点 ●导电、非导电及特殊介质测量。 ●高亮度、高清晰度的点阵式液晶显示屏。 ●高精度时间间隔测量(p秒级)。 ●采用EEPROM存储器,测量及运算数据存贮保护安全可靠。 ●年、月、日、时、分、秒时间实时显示。 ●具有RS485接口,完善的Modbus通讯协议。 ●内置热量测量/热量计。 ●内置上电断电记录器。 ●内置数据记录。 ● 20毫秒基本测量周期。 ●对管内流体不产生压力损失,节约能源。 ●嵌入式单片机的采用,提高运算速度。 ●具有掉电检测、数据保护功能,上电即可恢复运行。 ●抗干扰能力强,可在恶劣环境下稳定工作,如:变频器环境能正常工作。 ●探头温度范围普通型 -20℃~120℃,高温型<150℃。 ●输出接口采用防雷保护。 https://www.wendangku.net/doc/4b4789673.html, 2

相关文档