文档库 最新最全的文档下载
当前位置:文档库 › 三极管电流源电路

三极管电流源电路

三极管电流源电路
三极管电流源电路

三极管电流源电路

时间:2010-01-02 15:47:53 来源:资料室作者:编号: 1529 更新日期20120223 003530

三极管电流源

电流源是模拟集成电路中广泛使用的一种单元电路,如图1所示。

对电流源的主要要求是:

(1)能输出符合要求的直流电流Io。

(2)交流电阻尽可能大。

图1 三极管电流源电路图

三极管射极偏置电路由Vcc、R b1、R b2和Re组成,当Vcc、R b1、R b2、Re确定之后,基极电位VB固定(Ib一定),可以推知Ic基本恒定。从三极管的输出特性曲线可以看出:三极管工作在放大区时,Ic具

有近似恒流的性质。当Ib一定时,三极管的直流电阻,V CEQ一般为几伏,所以RCE不大。

交流电阻为,为几十千欧至几百千欧。

1 MOS单管电流源

耗尽型MOS管组成单管电流源,如图2所示。

由交流等效电路图3得:

在分立元件电路中和某些模拟集成电路中,常用JFET接成的电流源。

图2耗尽型MOS管电流源图3交流等效电路

2 基本镜像电流源

基本镜像电流源电路如图4所示。

图4 基本镜像电流源电路

T1、T2参数完全相同(即β1=β2,I CEO1=I CEO2)。

原理:因为V BE1=V BE2,所以I C1=I C2

I REF——基准电流:

推出,当β>>2时,I C2=I C1≈I REF≈

优点:

(1)I C2≈I REF,即I C2不仅由I REF确定,且总与IREF相等。

(2)T1对T2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B减少,所以I C2减少)。

缺点:

(1)I REF(即I C2)受电源变化的影响大,故要求电源十分稳定。

(2)适用于较大工作电流(mA数量级)的场合。若要I C2下降,则R就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。

(3)交流等效电阻Ro不够大,恒流特性不理想。

(4)I C2与I REF的镜像精度决定于β。当β较小时,I C2与I REF的差别不能忽略。

3. 带有缓冲级的基本镜像电流源(改进电路一)

图5 基本镜像电流源电路

图5是带有缓冲级的基本镜像电流源,它是针对基本镜像电流源缺点(4)进行的改进,两者不同之处在于它增加了三极管T3,其目的是减少三极管T1、三极管T2的IB对IR的分流作用,提高镜像精度,减少β值不够大带来的影响。

此时镜像成立的条件为β1(β3+1)>>2,这条件比较容易满足。或者说,要保持同样的镜像精度,允许T 的β值相对低些。

4. 比例电流源(改进电路二)

图6是带有发射极电阻的镜像电流源,它是针对基本镜像电流源缺点(3)进行的改进,其中Re1=Re2,两管输入仍有对称性,所以:

图6 镜像电流源及其等效电路

求T2的输出电阻Ro:

输出阻值较大,所以这种电流源具有很好的恒流特性。温度稳定性比基本的电流源好得多。

若此电路Re1不等于Re2,则:

V BE1+I E1R e1=V BE2+I E2R e2

(式中,I E1即I R,I E2即Io)

Io≈

参数对称的两管在I C相差10倍以内时,|V BE1-V BE1|<60mV。

所以,如果Io与I R接近,或I R较大,则ΔVBE可忽略。

即只要合理选择两T射极电阻的比例,可得合适的Io、Ro。因此,此电流源又称为比例电流源。

5 微电流源

有些情况下,要求得到极其微小的输出电流I C2,这时可令比例电流源中的Re1=0,如图7即可以在Re2不大的情况下得到微电流I C2。

原理:当I R一定时,Io可确定为:

Io≈

可见,利用两管基-射电压差ΔVBE可以控制Io。由于ΔVBE的数值小,用阻值不大的Re2即可得微小的工作电流——微电流源。

微电流源特点:

图7 微电流源电路

(1)T1,T2是对管,基极相连,当Vcc、R、Re2已知时,≈(略去VBE),当V BE1、V BE2

为定值时,也确定了。

(2)当VCC变化时,I REF、ΔVBE也变化,由于Re2 的值一般为千欧级,变化部分主要降至Re2 上,即ΔV BE2<<ΔV BE1,则I C2的变化远小于I REF的变化。因此电源电压波动对工作电流I C2影响不大。

(3)T1管对T2管有温度补偿作用,I C2的温度稳定性好。总的说来,电流“小”而“稳”。小——R不大时I C2可以很小(微安量级)。稳——R e2(负反馈)使恒流特性好,温度特性好,受电源变化影响小。进一步,电流的数学关系为:

IoR e2=V BE1-V BE2

而IC≈

则I C2 Re = 26ln10≈60mV

即电流每增加10倍,I C2 R e总是增加60mV。因此得到电流每增加10倍,Re上的电压增加60mV的简单数学关系式,使计算十分方便。

思考:若要求提供10μA的输出电流,使用Vcc=6V的电源,R=19kΩ,你如何设计这个电流源?

答案

6 串接电流源

为获得更高的输出电阻,利用T3,T4组成的基本电流源代替Re1,Re2,主要是用T4的输出电阻代替Re2 。由图8得:

再由电路图及等效电路图9可求出输入电流Io及输出电阻Ro。

图8 串接电流源电路图图9 等效电路图

Ro≈≈

7 电流源的主要应用

前面曾提到,增大Rc可以提高共射放大电路的电压增益,但是,Rc不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,Rc越大,导致输出幅度越小。那么,能否找到一种元件代替Rc,其动态电阻大,使得电压增益增大,但静态电阻较小,因而不致于减小输出幅度呢?自然地,可以考虑晶体管恒流源。由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中较为广泛地把它作负载使用——有源负载,如图10所示。

其等效电路如图11所示。

从等效电路可知,电流源提供了比较大的Rc,这样,可使AV达到甚至更高。

电流源也可用作射极负载(Re)

三极管横流电路

恒流源的输出电流为恒定。在一些输入方面如果应用该电路则能够有效保护输入器件。比如RS422通讯中采用该电路将有效保护该通讯。在一定电压方位内可以起到过压保护作用。以下引用一段恒流源分析。 恒流源是输出电流保持不变的电流源,而理想的恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。 恒流源之电路符号: 理想的恒流源实际的流源 理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。实际的恒流源皆有内阻R。 三极管的恒流特性: 从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。

电流镜电路Current Mirror: 电流镜是一个输入电流IS与输出电流IO相等的电路: Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。 优点: 三极管之β受温度的影响,但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经 Q2去决定输出电流IO(IC2 = IO)。 例: 三极管射极偏压设计 范例1:

从左边看起:基极偏压 所以 VE=VB - 0.6=1.0V 又因为射极电阻是1K,流经射极电阻的电流是 所以流经负载的电流就就是稳定的1mA 范例2. 这是个利用稳压二极管提供基极偏压5.6V VE=VB - 0.6=0.5V

流经负载的电流 范例3. 这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。 VE=VB + 0.6=8.8V PNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA 晶体恒流源应用注意事项 如果只用一个三极管不能满足需求,可以用两个三极管架成:

三极管在电路中的使用(超详细 有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON)。 1 三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: 因此,基极电流最少应为:

LED电源设计中三极管恒流的方案

LED电源设计中三极管恒流的方案 宝剑锋从磨砺出,梅花香自苦寒来;此句是中国流传下来的一句古训,喻为如果想要取得成绩,获取成就,就要能吃苦,勤于锻炼,这样才能靠自己的努力赢得胜利。各个行业皆是如此。在电源网论坛里,就存在这样一些人,他们时常能DIY出被网友们称之为的经典设计,出于大家能够共同学习的目的,小编抓住了难得的机会,整理了这些经典帖,供分享学习。 本文为续接LED电源设计中次级恒流方案的总结一文,同样来自心中有冰的总结精华帖。--------小编语。 下图原理是通过改变三极管的IB电流来控制LED中的电流,同样存在损耗大的缺点。

主要优缺点分析: 电路简单可靠,成本较低是最大的优点;恒流精度不高,温飘严重是最大的缺点。

针对性问答: wwpp问:D7是什么管?如何恒流? 答:肖特基管子,D7跟Q1有一样的温飘特性,可以抵消Q1温飘带来的影响;至于恒流,可以想想Q1的be结压降,再看看D7的压降与R10的压降,就明白了。 wzpawzz问:冰大哥,想问下你,我现在在做一个恒流限压源,但是输出电流的恒流值是可以调节的,调节范围为150ma到350ma。 我做的LED驱动电源是隔离式的,采用反激。但是检测回路怎么做到隔离呢?我是想用个小电阻串在负载上,检测其电压的变化,这个检测由单片机完成,就是AD采样哈。单片机根据采样得到的值输出对应的PWM波控制原边开关管的通断。我不知道反馈控制的隔离应该怎么做? 自己想的方案: 1.由于我的恒流源的最大的电流为350ma,而光耦PC817内最大的输入电流为50ma,故我可用好多个多个光耦并联起来串在恒流源上,从而感应电流的变化,各个光耦的输出电流再汇到一起,流经一个电阻实现电流到电压的转换,供单片机采样。可行性分析:加入用10个光耦,最大恒流时每个流经的电流为35ma,而光耦内部的二极管的正向电压为1.2V左右,那么损耗为0.035*1.2*10=420mw,光耦输出还有损耗,故这种方案损耗太大了,不太可取! 2.用个小电阻串在恒流负载上,单片机经过AD采样检测电流的变化,输出PWM波,然后在驱动电路上加个隔离变压器,但是我怕这个隔离变压器会引起PWM的失真,不能很好的控制开关管?

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压 Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管

图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs 可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

三极管放大电路习题集

三极管放大电路 一、在括号内用“ ”或“×”表明下列说法是否正确。 (1)可以说任何放大电路都有功率放大作用;() (2)放大电路中输出的电流和电压都是由有源元件提供的;() (3)电路中各电量的交流成份是交流信号源提供的;() (4)放大电路必须加上合适的直流电源才能正常工作;() (5)由于放大的对象是变化量,所以当输入信号为直流信号时,任何放大电路的输出都毫无变化;() (6)只要是共射放大电路,输出电压的底部失真都是饱和失真。()解:(1)√(2)×(3)×(4)√(5)× (6)× 二、试分析图T2.2所示各电路是否能够放大正弦交流信号,简述理由。设图中所有电容对交流信号均可视为短路。

图T2.2 解:(a)不能。因为输入信号被V B B短路。 (b)可能。 (c)不能。因为输入信号作用于基极与地之间,不能驮载在静态电压之上,必然失真。 (d)不能。晶体管将因发射结电压过大而损坏。 (e)不能。因为输入信号被C2短路。 (f)不能。因为输出信号被V CC短路,恒为零。 (g)可能。 (h)不合理。因为G-S间电压将大于零。 (i)不能。因为T截止。

三、在图T2.3所示电路中, 已知V CC =12V ,晶体管的β=100,' b R = 100k Ω。填空:要求先填文字表达式后填得数。 (1)当i U &=0V 时,测得U B E Q =0.7V ,若要基极电流I B Q =20μA , 则' b R 和R W 之和R b = ≈ k Ω;而若测得U C E Q =6V ,则R c = ≈ k Ω。 (2)若测得输入电压有效值i U =5mV 时,输出电压有效值' o U =0.6V , 则电压放大倍数 u A &= ≈ 。 若负载电阻R L 值与R C 相等 ,则带上负载 图T2.3 后输出电压有效值o U = = V 。 解:(1)3 )( 565 )(BQ CEQ CC BQ BEQ CC ,;, I U V I U V β-- 。 (2)0.3 120 ' o L C L i o U R R R U U ?-+; - 。 四、已知图T2.3所示电路中V CC =12V ,R C =3k Ω,静态管压降U C E Q =6V ;并在输出端加负载电阻R L ,其阻值为3k Ω。选择一个合适的答案填入空内。 (1)该电路的最大不失真输出电压有效值U o m ≈ ; A.2V B.3V C.6V (2)当i U &=1mV 时,若在不失真的条件下,减小R W ,则输出电压的幅值将 ; A.减小 B.不变 C.增大 (3)在i U &=1mV 时,将R w 调到输出电压最大且刚好不失真,若此时增大输入电压,则输出电压波形将 ; A.顶部失真 B.底部失真 C.为正弦波 (4)若发现电路出现饱和失真,则为消除失真,可将 。 A.R W 减小 B.R c 减小 C.V CC 减小 解:(1)A (2)C (3)B (4)B

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

三极管放大电路实验

东南大学电工电子实验中心 实验报告 课程名称:电路与电子线路实验II 第一次实验 实验名称:三极管放大电路 院(系):吴健雄专业:信息 姓名:学号: 实验室: 金智楼502 实验组别: 6 同组人员:实验时间: 2013 年 4月 9 日 评定成绩:审阅教师:

一、实验目的及要求 1、实验目的 通过对单级晶体管低频电压放大电路的工程估算、安装和调试,掌握放大器的主要性能指标及其测试方法; 掌握双踪示波器、函数发生器、交流毫伏表、直流稳压电源的使用方法。 2、实验要求 测量静态工作点主要性能参数:ICQ集电极静态工作电流、VCEQ 晶体管压降; 测量主要动态性能参数:AV电压增益、Ri输入电阻、Ro输出电阻; 利用扫频仪观察电路的幅频特性与相频特性。 二、实验原理 放大电路的基本组成 半导体器件 输入信号源输出负载 R L 直流电源和相应的偏置电路 静态工作点的设置

集电极静态工作电流:I CQ=V RC/R C 静态工作点对电路输出失真的影响: 截止失真 Vo波形的顶部被压缩,说明Q点偏低,应增大基极偏流IBQ,即增大ICQ。饱和失真 Vo波形的底部被削波,说明Q点偏高,应减小IBQ ,即减小ICQ 。 偏置电路的选择

用换算法测量输入电阻 Ri 和输出电阻Ro 其中,vo’和vo分别为vs不变的情况下断开和接入负载RL时的输出电压。 放大电路的频率响应 三、电路设计及仿真 1、实验电路图

实验的电路图上图所示,三极管选用9013NPN型晶体管。 Rs为采样电阻RL为负载电阻 R1为上偏置电阻R2为下偏置电阻 Rc为集电极电阻 RE为发射极电阻 C1为输入耦合电容 C2为输出耦合电容 CE为旁路电容 调节RW使静态工作点位于交流负载线的中点(VCEQ=6V),加大输入信号的幅度,使得输出波形同时出现正、反向失真,稍微减小输入信号幅度,使失真刚好消失,读出此时的输出电压峰峰值vop-p,再用万用表的DCV档测量此时RE两端的静态电压,计算出ICQ。 2、实验仿真图 根据设计的实验电路图在 Multisim上画出如下仿真电路图: 四、电路测试结果

晶体三极管及放大电路练习题教学内容

晶体三极管及放大电路练习题 一、填空题 1、三极管的输出特性曲线可分为三个区域,即______区、______区和______区。当三极管工作在______区时,关系式IC=βIB才成立;当三极管工作在______区时,IC=0;当三极管工作在______区时,UCE≈0。 2、NPN型三极管处于放大状态时,三个电极中电位最高的是______,______极电位最低。 3、晶体三极管有两个PN结,即________和________,在放大电路中________必须正偏,________反偏。 4、晶体三极管反向饱和电流ICBO随温度升高而________,穿透电流ICEO随温度升高而________,β值随温度升高而________。 5、硅三极管发射结的死区电压约为________V,锗三极管发射结的死区电压约为 ________V,晶体三极管处在正常放大状态时,硅三极管发射结的导通电压约为 ________V,锗三极管发射结的导通电压约为________V。 6、输入电压为20mV,输出电压为2V,放大电路的电压增益为________。 7、多级放大电路的级数愈多则上限频率fH越_________。 8当半导体三极管的正向偏置,反向偏置偏置时,三极管具有放大作用,即极电流能控制极电流。 9、(2-1,低)根据三极管的放大电路的输入回路与输出回路公共端的不同,可将三极管放大电路分为,,三种。 10、(2-1,低)三极管的特性曲线主要有曲线和曲线两种。 11、(2-1,中)三极管输入特性曲线指三极管集电极与发射极间所加电压V CE一定时, 与之间的关系。 12、(2-1,低)为了使放大电路输出波形不失真,除需设置外,还需输入信号。 13、(2-1,中)为了保证不失真放大,放大电路必须设置静态工作点。对NPN管组成的基本共射放大电路,如果静态工作点太低,将会产生失真,应调R B,使其,则I B,这样可克服失真。 14、(2-1,低)共发射极放大电路电压放大倍数是与的比值。 15、(2-1,低)三极管的电流放大原理是电流的微小变化控制电流的较大变化。 16、(2-1,低)共射组态既有放大作用,又有放大作用。 17、(2-1,中)共基组态中,三极管的基极为公共端,极为输入端,极为输出端。 18、(2-1,难)某三极管3个电极电位分别为V E=1V,V B=1.7V,V C=1.2V。可判定该三极管是工作于区的型的三极管。 19、(2-1,难)已知一放大电路中某三极管的三个管脚电位分别为①3.5V,②2.8 V,③5V,试判断: a.①脚是,②脚是,③脚是(e, b,c); b.管型是(NPN,PNP); c.材料是(硅,锗)。 20、(2-1,中)晶体三极管实现电流放大作用的外部条件是,电流分配关系是。 21、(2-1,低)温度升高对三极管各种参数的影响,最终将导致I C,静态工作点。 22、(2-1,低)一般情况下,晶体三极管的电流放大系数随温度的增加而,发射结的导通压降V BE则随温度的增加而。 23、(2-1,低)画放大器交流通路时,和应作短路处理。 24、(2-2,低)在多级放大器里。前级是后级的,后级是前级的。 25、(2-2,低)多级放大器中每两个单级放大器之间的连接称为耦合。常用的耦合方式有:,,。 26、(2-2,中)在多级放大电路的耦合方式中,只能放大交流信号,不能放大直流信号的是放大电路,既能放大直流信号,又能放大交流信号的是放大电

三极管常用应用电路

三极管常用电路 1.三极管偏置电路_固定偏置电路 如上图为三极管常用电路中的固定偏置电路:Rb的作用是用来控制晶体管的基极电路Ib,Ib称为偏流,Rb称为偏流电阻或偏置电阻.改变Rb的值,就可以改变Ib的大小.图中Rb 固定,称为固定偏置电阻. 这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻Rb固定,当温度升高时,晶体管的Iceo急剧增加,使Ie也增加,导致晶体管工作点发生变化.所以只有在温度变化不大,温度稳定性不高的场合才用固定偏置电路 2.三极管偏置电路_电压负反馈偏置电路 如上图为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极. 这个电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,Ic增大,那么Ic上的压降也要增大,使得Uce下降,通过Rb,必然Ib也随之减小,Ib的减小导致Ic的减小,从而稳定了Ic,保证了

Uce基本不变. 这个过程,称为负反馈过程,这个电路就是电压负反馈偏置电路. 2.三极管偏置电路_分压式电流负反馈偏置电路 如上图为三极管常用电路中的分压式电流负反馈偏置电路:这个电路通过发射极回路串入电阻Re和基极回路由电阻R1,R2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程. 当温度升高,Iceo增大使Ic增加.Ie也随之增加.这时发射极电阻Re上的压降Ue=Ie*Re 也随之升高.由于基极电位Ub是固定的,晶体管发射结Ube=Ub-Ue,所以Ube必然减小,从而使Ib减小,Ic和Ie也就减小了. 这个过程与电压负反馈类似,都能起到稳定工作点的目的.但是,这个电路的反馈是Ue=Ie*Re,取决于输出电流,与输出电压无关,所以称电流负反馈. 在这个电路中,上,下基极偏置电阻R1,R2的阻值适当小些,使基极电位Ub主要由它们的分压值决定.发射极上的反馈电阻Re越大,负反馈越深,稳定性越好.不过Re太大,在电源电压不变的情况下,会使Uce下降,影响放大,所以Re要选得适当. 如果输入交流信号,也会在Re上引起压降,降低了放大器的放大倍数,为了避免这一点,Re 两端并联了一个电容Ce,起交流旁路作用. 这种电路稳定性好,所以应用很广泛. 一、采用仪表放大器还是差分放大器 尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

晶体管恒流源的概念和应用

晶体管恒流源的概念和应用  1. 三极管的简化Ebers-Moll模型  如果你把三极管分开来看,你可以把他们想象成两个二极管的组合:    我们可以把一个npn的三极管看成一个三端的被动元件,而且工作时有下面几个性质: a. 集电极(Collector)的电位,Vc ,远高于射极(Emitter)电位,Ve 。  b. 基极-射极(base-emitter),基极-集电极(base-collector)的行为“基本上”是两个二极管。  c. 每个三极管最大允许集电极电流,Ic ,基极电流,Ib ,CE压差,Vce 。  d. Ic “基本上”与Ib 成正比:    以上性质称为三极管的简化Ebers-Moll模型(Simplified Ebers-Moll model, SEM model)。 在开始使用三极管构建恒流源之前要仔细讨论一下SEM模型: ● Ic与Ib都流经射极,但Ic远大于Ib。  ● Ib是因为基极高于射极电位0.6伏特,BE二极管处于导通状态。  ● Ic不是因为BC二极管处于导通状态,千万不要认为Ic的形成是因为BC半导体处于导通 状态。把Ic当成三极管的本性,当BE导通时,除了Ib外,另有一股电流自集电极流向射极。  ● 特性4告诉我们:小电流Ib可以控制大电流Ic。更准确的说法是:基极射极的电位差, Vbe控制Ic,而且基极射极之间有内在电阻。如果使用这种“Vbe控制电流Ic”的看法,这个三极管模型称为Ebers-Moll模型。Ic与Vbe的关系称为Ebers-Moll方程式。  ● Ic并不因为集电极电位Vc改变而剧烈变化。你可以想成BC间的二极管是处于逆向偏压 的状态。  ● 特性2告诉我们:对于NPN三极管来说,Vb大约是Ve+0.6伏特。对PNP三极管来说,则 是Ve大约是Vb+0.6伏特。所以,如果你在BE两端加上0.6到0.8伏特以上的电压时,会有巨大的电流由基极流向射极,呈现短路的现象。    2. 晶体管恒流源   现在让我们来看如何利用NPN三极管来构造一个恒流源,用来吸收稳定的电流:(见下页)      (本文主要讲述了三极管的直流应用,至于交流应用还是看《模拟电子线路》这本书上的解释较好)

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上, 图1 基本的三极管开关 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相,低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下: 输入与输出阻抗中等(Ri约1k~5k ;RO约50k)。 电流增益: 电压增益: 负号表示输出信号与输入信号反相(相位差180°)。 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受β值的变动影响,温度每升高10℃时,逆向饱和电流ICO增加一倍。温度每升高1℃时,基射电压VBE减少2.5mV ,β随温度升高而增加(影响最大) 。

图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定。 图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1(下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意: 三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真,注意C1及C3的容量大小对低频信号(尤其是脉波)有影响.在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB(一般大于十倍以上)时,可以用下列方法计算工作

LED驱动电源恒流电路方案详解

恒流案大全 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

三极管的使用方法

1.三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN而言,如果Uc>Ub>Ue,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce之间的电压是不确定的);如果Ub>Ue, Ub>Uc,该管处于饱和状态,c-e之间导通,其管压降为0.3-0.7V,与截止区相对立,此时该 二极管起到了开关的作用, 如图所示: 般应用在数字电路中。 3.72 12 * 饱和 3. 3 放大区截■ 止 3 区 3 区 对于PNP而言,当Ue>Ub>Uc即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且 Uc>Ub(这时候,Uc^ Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于 开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因 此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c点得工 作电压是不确定的(实际上在真正的电路中c点电压是确定的,但是从电路图中我们看不出 来)。真正的判断方法如下:当I/0引脚为高电平时,b点基极的电流是一定的,那么c点电 流也是一定的,而且是处在了三极管的饱和区,因此b点的电压为0.7v,三极管导通,贝U c 点的电压与e点压相同(比e点略大,约为0.5v,即为Uce),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN三极管断开,c-e之间不导通,那么此时 c 点(OUT)电位为高电平即VCC电压。这从而达到了用单片机引脚来控制Vcc的效果。 综上所述:当I/O为高电平,b-e之间有电压,三极管导通,c-e管压降小,OUT为低电平(Q 0.5);当I/O为低电平时,b-e之间没电压,三极管关断,c-e管压降非常大,OUT为高电平=Vcc; 上面就是NPN的使用方法。我们可以这么理解:在使用NPN时,要尽可能将e端接地,当b 端比e端至少高0.7v时,管子导通;否则管子断开。 同理,我们可以得出PNP三极管的使用电路和方法:

三极管电流源电路

三极管电流源电路 时间:2010-01-02 15:47:53 来源:资料室作者:编号: 1529 更新日期20120223 003530 三极管电流源 电流源是模拟集成电路中广泛使用的一种单元电路,如图1所示。 对电流源的主要要求是: (1)能输出符合要求的直流电流Io。 (2)交流电阻尽可能大。 图1 三极管电流源电路图 三极管射极偏置电路由Vcc、R b1、R b2和Re组成,当Vcc、R b1、R b2、Re确定之后,基极电位VB固定(Ib一定),可以推知Ic基本恒定。从三极管的输出特性曲线可以看出:三极管工作在放大区时,Ic具 有近似恒流的性质。当Ib一定时,三极管的直流电阻,V CEQ一般为几伏,所以RCE不大。 交流电阻为,为几十千欧至几百千欧。 1 MOS单管电流源 耗尽型MOS管组成单管电流源,如图2所示。 由交流等效电路图3得: ≈ 在分立元件电路中和某些模拟集成电路中,常用JFET接成的电流源。

图2耗尽型MOS管电流源图3交流等效电路 2 基本镜像电流源 基本镜像电流源电路如图4所示。 图4 基本镜像电流源电路 T1、T2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 I REF——基准电流: 推出,当β>>2时,I C2=I C1≈I REF≈ 优点: (1)I C2≈I REF,即I C2不仅由I REF确定,且总与IREF相等。 (2)T1对T2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B减少,所以I C2减少)。 缺点: (1)I REF(即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA数量级)的场合。若要I C2下降,则R就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻Ro不够大,恒流特性不理想。 (4)I C2与I REF的镜像精度决定于β。当β较小时,I C2与I REF的差别不能忽略。 3. 带有缓冲级的基本镜像电流源(改进电路一)

关于恒流源电路的研究与几种设计方案

第一章引言 随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。 恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。 本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。对以往恒流源进行了改进创新。 第二章基本恒流源电路 2.1恒流源基础知识 基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。2.1.1恒流源介绍 恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作 为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探 讨这些问题. 2.1.2恒流源的原理和特点

恒流源电路工作原理

恒流源电路工作原理 恒流源是输出电流保持不变的电流源,而理想的恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。 恒流源之电路符号: 理想的恒流源实际的流源 理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。实际的恒流源皆有内阻R。三极管的恒流特性:

从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。 电流镜电路Current Mirror:838电子 电流镜是一个输入电流IS与输出电流IO相等的电路: Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。

三极管之β受温度的影响,838电子但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经Q2去决定输出电流IO(IC2 = IO)。 例: 三极管射极偏压设计 范例1: 从左边看起:基极偏压 所以V E=V B - 0.6=1.0V 又因为射极电阻是1K,流经射极电阻的电流是 所以流经负载的电流就就是稳定的1mA新艺图库

这是个利用稳压二极管提供的基极偏压5.6V V E=V B - 0.6= 5V 流经负载的电流 范例3. 这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基

极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。 V E=V B + 0.6=8.8V PNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA 晶体恒流源应用注意事项 如果只用一个三极管不能满足需求,可以用两个三极管架成: 或是 也可以是

直流恒流源

<正> 如图所示的恒流源电路能从零毫安起调。电路的工作原理如下:由于运放的电压放大倍数很大,使其同相端电位和反相端电位可以看成相等,因此当电位器 W 中点调到①端时,取样电阻 R_o 两端的电压为零,从而使恒流源的输出电流为零。这时运放工作在开环状态,其输出端电压约为-U_xx。由于电位器 W 两端的电压就是三端稳压器的输出电压 U_xx,因此当W 中点调到②端时,取样电阻 R_o两端的电压为 U_xx,从而使恒流源的输出电流最大,其值为I_o=U_xx/R_o。这时运放接成电压跟随器,其输出端电压为负载电阻 R_L 两端的电压。【DOI】:CNKI:SUN:JCDL.0.1988-01-009 【正文快照】: 如图所示的恒流源电路能从零毫安起调.电路的工作原理如下:由于运放的电压放大倍数很大,使其同相端电位和反和端电位可以看成相等,因此当电位器w中点调到①端时,取样电阻Ro两端的电压为零,从而使恒流源的输出电流为零。这时运放工作在开环状态,其输出端电压约为一u:x.由于电位 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1 这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。 电流计算公式为:I = (Vd-Vbe)/R1 TL431是另外一个常用的电压基准,利用TL431搭建的恒流源,其中的三极管替换为场效应管可以得到更好的精度。 TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》 电流计算公式为:I = 2.5/R1 事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。利用三端稳压构成恒流源,也有非常好的性价比。 这种结构的恒流源,不适合太小的电流,因为这个时候,三端稳压自身的维持电流会导致较大的误差。 电流计算公式为:I = V/R1,其中V是三端稳压的稳压数值。

几种恒流源

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准, 电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

相关文档
相关文档 最新文档